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Abstract: In this work, electrochemical monitoring of stress corrosion cracking (SCC) behavior of
a X70 steel in acidic synthetic soil solution during the slow strain rate test (SSRT) was performed
by electrochemical noise (EN) using the conventional arrangement of symmetrical electrodes and
electrochemical emission spectroscopy (EES) using the asymmetrical arrangement replacing the
second working electrode for a platinum micro-cathode. The statistical method, fast Fourier transform,
and discrete wavelet transform were used for analyzing the potential and current signals recorded by
both arrangements. The results showed that EN arrangement was more effective to detect the crack
initiation at a point close to yield strength despite stress-induced asymmetry in one of the electrodes.
For the EES arrangement, the micro-cathode had a strong influence on the electrochemical noise of
the current and potential under stress conditions. From the transient features, statistical parameters,
and wavelet analysis, a discontinuous transgranular SCC mechanism was found. The resistance
values obtained by EN measurements had better correlation with the electrochemical impedance
spectroscopy results (EIS) than EES measurements.

Keywords: X70 steel; platinum micro-cathode; stress corrosion cracking (SCC); electrochemical
emission spectroscopy (EES); electrochemical noise (EN)

1. Introduction

Stress corrosion cracking (SCC) is defined as the interaction of a tensile stress with a
corrosion environment on a susceptible metallic surface resulting in crack initiation and
propagation [1]. SCC is a common phenomenon in the petroleum sector, and it is one
of the most critical corrosion mechanisms that can lead to catastrophic failures of buried
steel pipelines, resulting in significant economic losses and potential safety hazards [2,3].
Thus, research activities focused on non-invasive monitoring of SCC mechanisms have in
this field a significant practical importance [4]. One technique suitable for the detection
of individual electrochemical events during SCC could be the electrochemical noise (EN).
EN is a general term to describe the apparently random fluctuations of potential and
current generated spontaneously by corrosion processes [5,6]. Unlike other electrochemical
techniques, EN is carried out without external perturbation to the electrochemical system,
so it could provide useful information on the mechanisms and kinetics of corrosion without
altering some features of the electrochemical system under study [7]. The conventional EN
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measurement method uses three electrodes: two nominally identical working electrodes
(WE), between which the current noise is measured using a zero-resistance ammeter (ZRA),
and a reference electrode, which is used to determine the potential noise of the coupled
working electrode pair [8,9]. In some experimental arrangements, such as crevice corrosion,
wear corrosion, SCC, and fatigue corrosion studies, it is difficult to maintain the identical
behavior for the two working electrodes [10,11]. In the case of SCC studies, using the
slow strain rate test (SSRT), only one sample is under stress whereas the second originally
identical sample is unstressed, resulting in a galvanic corrosion that may significantly
accelerate the SCC process on the stressed sample. Despite this inconvenience, several
works [12–16] have used the conventional EN arrangement to study the behavior SCC
during the SSRT test, whereas other studies [17–19] have used a counter electrode made of
the same material of the WE with larger area and different geometric configuration. In this
aspect, Shahidi et al. [20] performed electrochemical current noise (ECN) measurements
using symmetrical and asymmetrical electrode system (large difference in size between
two WEs) and they found an increase of amplitude of current transients and the detection
of a higher number of events.

On the other hand, some authors [21–26] carried out a modified EN technique, called
electrochemical emission spectroscopy (EES), which was first proposed by Chen and
Bogaerts [27]. Unlike the traditional EN arrangement, only one WE is used in EES and
the second working electrode is replaced by a Pt micro-cathode. The Pt micro-cathode
area should be made small enough so that the galvanic couple effect can be neglected.
An assumption to justify the use of EES technique is that the noise generated by the Pt
micro-electrode is insignificant compared to that generated by the WE, thus permitting
the study of what is happening on the most active electrode [9]. Due to the apparent
advantages of using the EES technique, some works [28–30] deliberately adopted the EES
arrangement instead of using the conventional EN arrangement. However, studies such as
Aballe et al. [28] and Bautista et al. [10] revelated that although the potential and current
noise records using asymmetrical electrodes (EES arrangement) provided information on
the fluctuations of the WE, the corrosion rate estimation from impedance noise (Zn) or
resistance (Rn) was doubtful. In fact, they suggested to estimate Zn or Rn, only when the
noise delivered by the micro-cathode predominates, that is, when a vigorous hydrogen
evolution on the Pt micro-cathode takes place in an acidic solution. Cottis [9] claimed
that the measured current noise can be affected by the impedance of the micro-cathode
depending on the cathodic reaction that takes place on the micro-cathode surface. In a
recent study, Hu et al. [29], reported high correlation between corrosion rates obtained
from EES and linear polarization resistance (LPR) measurements on corrosion of aluminum
in several solutions used to simulate different corrosion types. They claimed that EES
measurements can be useful for in situ corrosion monitoring.

The aim of the present work was to show the advantages and disadvantages of using
the EN and ESS arrangements to monitor the SCC process of a X70 steel immersed acidic
solution. EN and EES analysis was carried out in time and frequency domain to identify
the SCC crack initiation.

2. Materials and Methods
2.1. Material and Test Solution

X70 steel samples were obtained from a pipeline with external diameter of 36 in
(914.4 mm) and a wall thickness of 0.902 in. (22.91 mm). Smooth cylindrical tensile samples
were cut from the pipeline in the cross direction and machined according to the NACE
TM-198 standard [30]. The chemical composition (wt. %) of X70 steel was 0.031 C, 1.48 Mn,
0.13 Si, 0.033 Al, 0.012 P, 0.002 S, 0.1 Nb, 0.29 Cu, 0.20 Ni, 0.27 Cr, 0.004 V, 0.012 Ti, and
Fe as balance. The microstructure of X70 steel consists of fine grains of ferrite (F) and
small regions of perlite (P) which is mainly in the grain limits as is shown in Figure 1. The
mechanical properties of X70 steel including yield strength (σYS) 566 MPa, ultimate tensile
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strength (σUTS) 612 MPa, percentage elongation (%η) 14.5%, and percentage reduction in
area (%ψ) 84%.
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Figure 1. Microstructure of the API X70 steel obtained by optical microscopy. Where P is perlite and
F is ferrite.

A synthetic soil solution NS4 was used as test solution containing the following com-
position: 0.483 g/L NaHCO3, 0.122 g/L KCl, 0.137 g/L CaCl2, and 0.131 g/L MgSO4.7H2O.
NS4 solution was prepared from analytical grade reagents with distilled water at pH 3. The
pH of the solution was adjusted by using a dilute solution of HCl.

2.2. Slow Strain Rate Test (SSRT)

The SSRT test was performed in a mobile constant extension rate tests machine
(MCERT, Intercorr, Houston, TX, USA) using a strain rate of 1 × 10−6 s−1. The SSRT
tests were carried out both in air and the acidic NS4 solution at room temperature. Before
each test, sample surface in the gauge section was polished with silicon carbide abrasive
paper up to 1200 grit along the vertical direction to avoid small cracks with silicon carbide
abrasive paper up to 1200 grit. All the specimens were rinsed with distilled water and
degreased with acetone, and finally dried in air. The exposed area of specimen was 2.84 cm2.
The mechanical characterization (tensile strengths and ductility parameters) derived from
SSRT and fractographic analysis was discussed further in a previous work [31].

2.3. Electrochemical Noise (EN) Measurements

EN and EES measurements in current and potential were recorded during SSRT
test using a potentiostat/galvanostat (ACM Instruments, Cumbria, United) as is shown
in Figure 2. The conventional EN arrangement used a tensile sample as the working
electrode, a nominally identical tensile sample as a second working electrode (WE,2) and a
saturated calomel electrode (SCE) as reference electrode. For EES arrangement, the WE2
was substituted by a Pt microelectrode. The micro-cathode was made from commercial
platinum wire (0.5 mm in diameter). The Pt tip was around 1 mm of length. EN and
EES measurements were recorded at a sampling frequency of 1 Hz throughout the SSRT
test. These records were divided into blocks of 4096 readings. For the statistical and
frequency domain analysis, the DC trend removal of each block was removed using linear
regression [32]. In the frequency domain analysis, the fast Fourier transform (FFT) was
carried out to estimate the power spectral density (PSD) using a free program that was
programed by the European Cooperative Group on Corrosion Monitoring of Nuclear
Materials [33]. For the wavelet analysis, EN and EES data were analyzed by discrete
wavelet transform (DWT). The calculations for the signal decomposition were performed
at level 8 based on orthogonal db4 wavelet using the function wavedec [34].

Finally, in order to compare the resistance parameters obtained with the EN and EES
analysis, the EIS technique was carried out during the SSRT test over a frequency range
from 10 kHz to 0.01 Hz. Seven points per frequency decade were taken and an amplitude
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of 10 mV vs. open circuit potential (OCP). Instead of using a WE2, a graphite rod was used
as counter electrode.
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Figure 2. (a) Experimental setup of EN and EES measurements during SSRT test, (b) dimensions of
SSRT specimen.

3. Results
3.1. Transient Analysis during the SSRT Test

In order to discriminate signal features that may be not associated to SCC process, the
raw EN and EES time records of X70 steel in the acidic solution in stress-free conditions
are displayed in Figure 3. In the EN measurements (Figure 3a), some cathodic transients
were observed in the current signal, characterized by a rapid decay (0.2 µA) followed
by a slow logarithmic rise (30–40 s) and an anodic pick of short lifetime (5 s) and lower
amplitude (20 nA). As shown in Figure 3(a1), the absence of potential transients correlated
with these current transients can be due to corrosion event occurred on the WE2. This
kind of current transients have been often associated to localized corrosion events such
corrosion pits on the carbon steel [35,36]. Using the EES arrangement (Figure 3b), the
current signal showed fluctuations with lower amplitude (0.01 µA) and higher frequency.
In both arrangements, the potential signal features were similar. The coupling current was
of the same order of magnitude and current signals exhibited a low frequency component
(undulatory behavior). Homborg et al. [37] claimed that this behavior is typical of general
corrosion, or a corrosion process limited by diffusion, in which the general corrosion is
expected given the aggressive acid solution.

Figure 4 shows the EN and EES measurements during the SCC process. In this figure,
it is possible to observe the stress–strain curve of X70 steel in the acidic NS4 solution,
along with EN and EES time records during the SSRT test. For the potential time records
(Figure 4a), the potential value gradually decreased as the SSRT elapsed. Cui et al. [38]
found a similar behavior in their OCP measurements of X70 steel in NS4 solution during
the SSRT test. The EES measurements showed a higher number of potential transients with
of high amplitude (~20 mV), mainly after the stress reached the yield strength. This would
suggest that EES arrangement exhibited higher sensibility to detect corrosion events. For
the EN measurements, only few potential transients of relative high amplitude (3 mV) were
observed close to yield strength. Likewise, as seen in Figure 4b, transients of high amplitude
(~10 µA) in the EN current signal were revealed at the same stress level, probably due
to SCC crack initiation on the steel surface. Some works [39,40] reported the detection of
initiation of cracks closed to macroscopic yield strength value, which is enough stress level
to induce localized microplastic deformation. On the other hand, the DC trend of current
followed the trend of the SSRT curve. Li et al. [40] believe that the DC trend is caused by
the actual asymmetry between the electrochemical activities of two working electrodes.
However, the DC trend was less pronounced during the plastic deformation, condition in
which the electrochemical behavior of both WE would be expected to be different from
each other because of permanent deformation suffered by the stressed sample. Rather,
the coupling current value increased as the stress level increased, which was an order of
magnitude higher in comparison to stress-free conditions. This fact could indicate the
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electrode asymmetry suggesting that the stressed sample behaved preferentially as an
anode whereas the unstressed sample acted as cathode [41]. In EES arrangement, the
coupling current kept more stable, and it is shown in Figure 4(b1), the current noise was
predominant during the elastic stress, and subsequently, the amplitude and occurrence of
transients decreased as the SSRT test was carried out.
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and (b1) enlarged current record obtained from EES measurements. The point where the EN was
measured are T0 at the beginning of the test, EZ being the elastic zone, YS the yield strength, and AN
after the necking.
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In order to identify a better evolution of transient’s features during the SSRT test, EN
time records after trend removal corresponding to several points on the SSRT curve are
shown in Figure 5. Those points are indicated in Figure 4a, where T0 is at the beginning of
the test, EZ is the elastic zone, YS is the yield strength, and AN is after the necking. In case
of potential and current measured at the beginning of the SSRT test (Figure 5a), they do
not show transients. Figure 5b showed that appearance of potential and current transients
started well below the yield point, σYS (approximately 30% of the σYS value). It should
be noted that these current transients had similar features to those obtained in stress-free
conditions (Figure 3(a1)), with the difference that amplitude (3 µA) and lifetime (from 30
to 60 s) of transients was higher under stress conditions. It is evidence of enhancement of
electrochemical activity due to the stress effect. Moreover, the correlation of these current
transients with positive potential transients of high amplitude (2–4 mV) could also be
attributed to the nucleation, growth, and release of hydrogen bubbles that take place on
the cathodic sites on the metal surface [42]. Once the yield point was reached (Figure 5c),
a positive current transient with the highest amplitude and lifetime (~10 µA and ~200 s,
respectively) was recorded (Figure 5(c1)). Jiao et al. [19] declared that strong long-period
spikes can be originated from the initiation of micro-cracks. In addition, both potential
and current signal showed some transients like those shown in Figure 5b followed by a
couple of transients with similar features. Kim and Cho [12] showed this kind of couple
transients during the SSRT in an acidified 3.5% NaCl solution. These transients seem to
be a consequence of crack initiation, catalytic surface generation along with the hydrogen
reduction, and consequently, generation of atomic hydrogen adsorption that takes place on
this active surface. Some hydrogen atoms will have a chemical reaction and they can form
molecular hydrogen bubbles, but others can diffuse into the steel because of enhancement
of hydrogen diffusivity caused by dislocation movement during the stress application [43].
After the UTS (Figure 5d), the amplitude of potential and current decreased, and the
current signal exhibited an undulatory behavior. Wang et al. [44] associated this low
frequency component to crack propagation in their EN measurements on SCC of pre-
cracked 304 stainless steel sample. However, this behavior can be attributed to the uniform
corrosion that prevailed on the electrode surface after the necking zone.

Figure 6 shows EES arrangement, in case of Figure 6a, the current signal had saw-
tooth-type shapes transients when the steel was subject under elastic stress. These types
of transients were recorded by Du et al. [22] in their EES measurements of a 304 stainless
steel in acidic NaCl solution during the SSRT. Likewise, electrochemical systems where
the hydrogen bubble evolution take place on the catalytic electrode surface have also
shown similar transient features [42,45]. The fact that this behavior was not shown in the
unstressed sample (Figure 3b) suggests that it should be related to effect of stress on anodic
and cathodic reactions that occurs on the metal/solution interface. Although the small
area of platinum would not be enough to support the reduction of all electrons produced
by the stress enhanced anodic reaction, some electrons could be reduced in platinum,
contributing to the intensity of potential and current signals, and producing overlapped
transients. This current signal pattern prevailed up to the yield point (Figure 6b,c) with the
difference that amplitude of transients decreased (from 4 to 1 µA), whereas the amplitude
of the potential transients increased (from 8 to 20 mV). Furthermore, from this point, most
potential transients of high amplitude were correlated with negative current transients
(Figure 6(c1)), suggesting that these transients correspond to those recorded in the EN
measurements. It should be pointed out that one similarity between both arrangements
was the unidirectionality of potential transients in the positive direction. Aballe et al. [28]
believe that this unidirectionality is due to detachment of the H2 bubble, which causes a
transient increase of the cathodic component of the current. In addition, Eden [46] found
that transgranular SCC of carbon steel led to positive potential transients, associated with
cathodic processes induced by crack propagation. Finally, after the necking zone (Figure 6d),
the current signal features changed, exhibiting an undulatory behavior with occurrence of
overlapped transients of quick rise (10 nA) and slow recovery (50–60 s). Ortiz et al. [47]
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recorded current EN signals with similar features after the yield point, attributing it to
crack propagation by slip-step anodic dissolution mechanisms. However, the experimental
conditions (acidic solution and the absence of a passive film on the metal surface) of the
present study suggests that the SCC mechanism involved the combination of hydrogen
embrittlement and anodic dissolution. This fact was confirmed by fractography analysis in
a previous work [31].
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3.2. Statistical Analysis

Statistical parameters such as skewness (S) and kurtosis (k) of potential and current
time series recorded using EN and EES arrangement during the SSRT test were determined
in the time domain. S and k were calculated by the following equations [48]:

mn =
1
N ∑N

i=1 (i − i)n (1)

S =
m3

m2/3
2

(2)

k =
m4

m2
2

(3)

where N is the data number of time record, i represents potential or current noise, i is the
potential or current mean value, and n is the moment order, m2, m3, and m4 the second,
third, and fourth moments, respectively. S provides information about the asymmetry
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of the probability distribution of the EN data, whereas k is a measure of the shape of
the EN data [49]. As seen in Figure 7a,b, the higher statistical parameters values arising
from potential records were obtained from the EES measurements. In Figure 7c,d, the
higher k values and lower S values derived from current signals were obtained with the
EN arrangement near to the time interval of the yield point of the SSRT curve. This sharp
decrease and increase of S and k values, respectively, can be associated to initiation of
cracking. Reid and Eden [50] identified the corrosion type based on S and k values (see
Table 1), which are summarized in the Table 1. According to this table, the S and k calculated
would indicate a transgranular SCC. This cracking morphology occurs in the near-neutral
pH SCC of pipelines, which involves the participation of hydrogen, diffusing towards the
metal lattice and producing embrittlement. Liu et al. [51] reported that grains of X70 steel
have an anodic behavior in comparison to the grain boundary in a NS4 solution. Therefore,
the anodic dissolution takes place preferentially into the grains, becoming the active path
to crack advance.
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Table 1. Skewness and kurtosis values for corrosion processes.

Corrosion Type
Potential Current

Skewness Kurtosis Skewness Kurtosis

Uniform <±1 <3 <±1 <3
Pitting <−2 >>3 >±2 >>3

Transgranular (SCC) 4 20 −4 20
Intergranular (SCC #1) −6.6 18 to 114 1.5 to 3.2 6.4 to 15.6
Intergranular (SCC #2) −2 to −6 5 to 45 3 to 6 10 to 60
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Localization index (LI) is another statistical parameter used to identify the corrosion
processes mechanism. LI is calculated as:

LI =
σI

IRMS
(4)

where σI is the current standard deviation and IRMS is the current root mean square value.
An LI value between 0.1 and 1.0 indicates localized corrosion, a value between 0.01 and 0.1
is indicative of mixed corrosion, and for passive or uniform conditions the range is between
0.01 and 0.001 [52].

Figure 8 shows the variation of LI value test calculated from current time records using
the EN and EES arrangement during the SSRT test. Some authors [37,52] have emphasized
that LI has some theoretical limitations, and it should be associated to asymmetry of work-
ing electrodes rather than the corrosion mechanism. The IL values obtained with the EN
arrangement indicated localized corrosion process during the first 8 h of exposure, time at
which nucleation of microcracks is presumed to have initiated, then the IL values corre-
sponded to general and mixed corrosion, whilst the IL derived from EES measurements
indicated mixed corrosion during the whole SSRT test.
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Figure 8. LI values during the SSRT obtained with EN and EES measurements of X70 steel in the
acidic NS4 solutions.

Mixed corrosion means that localized corrosion processes such as corrosion pits, mi-
crocracks, and uniform corrosion coexisted on the metal surface. This is confirmed from
Figure 9, showing SEM images of the side surface or the gage section showed mixed and lo-
calized corrosion in forms of pits (Figure 9a); few secondary cracks with corrosion products
caused by the SCC process were observed (Figure 9b,c). Few branched cracks caused by the
SCC process were observed (Figure 9d). A brittle fracture was observed (Figure 9e), with
some transgranular cracks in the surface fracture (Figure 9e,f), that involved the hydrogen
embrittlement mechanism.
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3.3. Frequency Domain Analysis

The EN and EES data were transformed from time domain to frequency domain by
FFT to estimate the potential PSD (PSDE) and current (PSDI). The parameter associated
to the corrosion resistance in the frequency domain is the spectral noise impedance Zn(f),
defined as square root of the PSDE and PSDI quotient (see Equation (5)) [53].

Zn(f) =

√
PSDE(f)
PSDI(f)

(5)

Several works [54,55] have shown that Zn(f) and modulus impedance (|Z|) derived
from EIS measurements can be comparable if both parameters present a low-frequency
plateau and when the corrosion process is under charge transfer control. The noise
impedance (Zn) value was estimated using the method described by Mansfeld et al. [54],
which consists of calculating the mean value of Zn(f) in the low frequency plateau. Finally,
the noise resistance (Rn), defined in Equation (6), was calculated to compare with the other
resistance parameters.

Rn =
σE

σI
(6)

Figure 10 shows the values of Rn, Zn obtained from EN and EES measurements and
|Z| at the frequency of 0.1 Hz arising from EIS measurements during the SSRT test. Zn and
Rn values were in good agreement for each arrangement. Furthermore, with the resistance
parameters it was found that they have good agreement using both arrangements at the
beginning of the test. However, Zn values obtained from EES were increased until two
orders of magnitude whereas the Zn values derived from EN remained in the same order
of magnitude in comparison to |Z| as SSRT test elapsed. According to the theoretical
predictions about Zn and |Z| relationship reported by Bautista et al. [10], the results for
EES measurements would imply that the noise level of the micro-cathode was lower than
the noise level of the stressed sample or that is to say, the impedance of micro-cathode
was higher than the |Z| of the stressed sample. The EN arrangement may have the same
limitations, where it would be expected that the noise level of stressed sample higher than
unstressed sample, nevertheless, the difference between Zn and |Z| obtained from EN
arrangement was less pronounced compared to EES arrangement. From this result, it
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can be concluded that the corrosion rate cannot be accurately estimated using the EES
arrangement under the present conditions.
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Figure 10. Variation of the Rn, Zn, and 1Z1values during the SSRT obtained with EN and EES
measurements of X70 steel in the acidic NS4 solution.

The roll-off slope of potential PSD (βE) and current PSD (βI) are parameters in the
frequency domain that have been used to differentiate between localized and uniform
corrosion processes. βE values lower than −20 dB/dec correspond to localized corrosion,
whereas βE values higher than −20 dB/dec correspond to general corrosion or passi-
vation [48,56]. Figure 11a shows that βE values are higher than −20 dB/dec and were
obtained after a point closed to yield strength using both arrangements, being more evident
the results obtained by the EN arrangement. This increment of βE values can be associated
to pit nucleation and/or crack initiation, whereas the decrease of βE can be attributed to
predominant corrosion uniform that happened on the metal surface. Similar behavior is
shown in the βI value (Figure 11b). Li et al. [57] reported the transition point detection
from uniform corrosion to pitting corrosion during the SCC using the βE value. Therefore,
the βE value was more sensible to identify a change in the corrosion process that occurred
on the metal surface.
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3.4. Wavelet Analysis

Wavelet analysis is a mathematical tool in the time-frequency, specifically, the DWT is
an algorithm that discomposes the potential and current of the electrochemical noise in a
set of approximation coefficients (S) and details coefficients (crystals, D) where S contains
information about the DC trend of the signal, whereas crystals (D) contain information



Metals 2022, 12, 1545 13 of 17

about local fluctuations in the noise signal. Results of the wavelet transform can be
represented using the energy distribution plot (EDP) of the crystals. The energy, E, of
a signal (EN or EES time record), xn, containing N number of data points, where it is
estimated by following expressions [56]:

EXn = ∑N
n=1 x2

n (7)

The fraction of energy associated with each crystal can be calculated as:

Ed
j =

1
EXn

∑N/2J

n=1 d2
j,n j = 1, . . . , J (8)

The EDP calculated from wavelet transform has been used as “fingerprints” of noise
signals and can discriminate different corrosion mechanisms [58]. Figure 12 shows the
evolution of Ej

d values of each crystal (D1–D8) obtained from EN and EES measurements.
For EN measurements (Figure 12a), the variation of Ej

d derived from potential signals
revealed that the highest fraction energy of crystals was observed in a point closed to
yield point, concentrating the relative energy distribution on crystals D6 and D7, which
contains information about all transients with large time scale (low frequency) of 64–32 s
and 128–64 s, respectively.
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The energy pick at approximately 22 h was discarded because it was caused by the
sudden decrease of potential values in a point after the necking zone (see Figure 4a), where
the plastic instability prevails. On the other hand, Figure 12b show that several picks of
the Ej

d value were observed during the SSRT test using the EES arrangement, the relative
energy was distributed on large time scale the D7 and D8. Figure 12c,d showed that the
behavior of Ej

d during the SSRT test was similar using both arrangements, reaching the
Ej

d highest values during the first hours of SSRT test, concentrating the relative energy
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distribution on D6–D8 crystals. Suresh et al. [48] showed that maximum values of Ej
d

concentrated on D1–D3, provide information about rapid events such as metastable pitting,
D3–D6 is associated with repassivation/pits propagation, and the large time scale D6–D8
crystal that it gives information about the diffusion or pits growth. In order to get the EN
and EES measurements, the SCC process of X70 steel was characterized by transients and
fluctuations of medium and large time scale.

The crack nucleation in active sites such as corrosion pits, and crack propagation
caused by synergic of stress, anodic dissolution, and hydrogen diffusion in the steel,
involved medium and large time scale process.

It is worth noting that SCC may propagate by discontinuous or continuous processes,
and each process has different current and potential signals characteristics [59,60]. The
discontinuous process is similar to the occurrence of metastable pitting due to the crack tip
evolution that leads to abrupt current transients, whereas the continuous process may lead
to a decrease in the noise level due to a shielding effect of the crack tip. The evolution of
EN signals and behavior of some parameters obtained by mathematical methods during
the SSRT test indicated that SCC crack propagation was a discontinuous process before the
necking zone, then the SCC crack propagation was shielded due to uniform corrosion or a
possible transition of discontinuous to continuous SCC propagation mechanism.

4. Conclusions

The comparative study of electrochemical study of the SCC process of a X70 steel in
acidic NS4 solution during the SSRT between EN and EES measurements was carried out,
and it generated the following conclusions:

• The stress had a strong influence on the characteristic of transients recorded by both
arrangements, showing more sensibility to record a higher number of transients using
the EES arrangement. However, this fact complicated the identification of a possible
SCC crack initiation.

• The examination of transients, statistical, and wavelets analysis indicated that EN
measurements were more effective to detect the initiation of SCC cracking at a point
close to the yield strength. After the necking, the uniform corrosion of the steel
predominated in the EN measurements.

• The analysis of the features of EN signals with statistical and wavelet analysis sug-
gested a discontinuous SCC transgranular cracking that involved the hydrogen em-
brittlement and anodic dissolution mechanism.

• The Zn and Rn obtained by EN measurements had a better correlation with |Z|
derived from EIS than EES measurements
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