Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = plastic deformation olivine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6935 KiB  
Article
Internal Structure and Inclusions: Constraints on the Origin of the Tancheng Alluvial Diamonds from the North China Craton
by Qing Lv, Fei Liu, Yue-Jin Ge, Zhao-Ying Li, Xiao Liu, Yong-Lin Yao, Yu-Feng Wang, Hai-Qin Wang, Sheng-Hu Li, Xiao-Dong Ma, Yong Zhang, Jia-Hong Xu and Ahmed E. Masoud
Minerals 2025, 15(6), 588; https://doi.org/10.3390/min15060588 - 30 May 2025
Viewed by 433
Abstract
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond View [...] Read more.
The internal growth patterns and surface micromorphology of diamonds provide a record of their multi-stage evolution, from initial formation within the mantle to their eventual ascent to the Earth’s surface via deeply derived kimberlite magmas. In this study, gemological microscopic examination, Diamond ViewTM, Raman spectroscopy, and electron probe analysis were employed to analyze the surface features, internal patterns, and inclusions of the Tancheng alluvial diamonds in Shandong Province, China. The results show that surface features of octahedra with triangular and sharp edges, thick steps with irregular contours or rounded edges, and thin triangular or serrated layers are developed on diamonds during deep-mantle storage, as well as during the growth process of diamonds, when they are not subjected to intense dissolution. The rounding of octahedral and cubic diamond edges and their transformation into tetrahedral (THH) shapes are attributed to resorption in kimberlitic magma. These characteristics indicate that the Tancheng diamonds were commonly resorbed by carbonate–silicate melts during mantle storage. Abnormal birefringence phenomena, including irregular extinction patterns, petaloid and radial extinction patterns, and banded birefringence, were formed during the diamond growth stage. In contrast, fine grid extinction patterns and composite superimposed extinction patterns are related to later plastic deformation. The studied diamonds mainly contain P-type inclusions of olivine and graphite, with a minority of E-type inclusions, including coesite and omphacite. The pressure of entrapment of olivine inclusions within the Tancheng diamonds ranges from 4.3 to 5.9 GPa, which is consistent with that of coesite inclusions, which yield pressure ranging from 5.2 to 5.5 GPa, and a temperature range of 1083–1264 °C. Overall, the evidence suggests that Tancheng diamonds probably originated from hybrid mantle sources metasomatized by the subduction of ancient oceanic lithosphere. Full article
Show Figures

Graphical abstract

20 pages, 25477 KiB  
Article
Mineralogical Features of Ultramafic and Mafic Rocks of Syum-Keu Ophiolite (Polar Urals, Russia): Implications for Petrology and Paleogeodynamics
by Timur D. Shabutdinov, Dmitry E. Saveliev, Ruslan A. Gataullin and Aidar A. Samigullin
Minerals 2024, 14(12), 1245; https://doi.org/10.3390/min14121245 - 6 Dec 2024
Viewed by 1308
Abstract
The Syum-Keu massif is the northernmost ophiolite complex of the Ural mobile belt. It differs from other massifs of the Polar Urals due to the prominent distribution of lherzolites in the upper mantle section. This feature aligns it more closely to some massifs [...] Read more.
The Syum-Keu massif is the northernmost ophiolite complex of the Ural mobile belt. It differs from other massifs of the Polar Urals due to the prominent distribution of lherzolites in the upper mantle section. This feature aligns it more closely to some massifs in the southern part of the belt (Kraka). Thus, a comparison of the ultramafic rock compositions in these massifs is highly relevant. Thus, comparing the compositions of ultramafic rocks from these massifs is highly relevant and is one of the primary objectives of this study. Our second objective is to study the microstructural features of ultramafic rocks from the upper mantle, as they can indicate modes of subsolidus processes that played a key role in the formation of this massif. Our study utilizes optical microscopy, assessments of bulk rock composition using X-ray fluorescence and ICP-MS, as well as mineralogical methods, such as scanning electron microscopy with energy dispersive spectroscopy and electron backscattered diffraction, for the microstructural analysis of peridotites. In addition to ultramafic rocks from the upper mantle section, the composition and mineralogy of mafic rocks from the crustal section were studied. The microstructural analysis of ultramafic rocks indicates their two-stage evolution. The first is associated with plastic flow under the upper mantle conditions dominated by the olivine slip along the {0kl}[100] system, while the second reflects formation in the lower crust, with lower-temperature deformation along the {110}[001] slip system. Comparing the mineralogy of the Syum-Keu peridotites to lherzolite massifs in the Southern Urals reveals a significant difference in accessory Cr-spinel composition; the former show elevated iron content (Fe trend), indicating intense crustal metamorphism. Similarly, amphiboles in Syum-Keu ultramafic rocks exhibit a significant crustal (metamorphic) component, while the same minerals in the Kraka massif suggest a mantle (magmatic) origin. Mafic rocks in the Syum-Keu massif also typically display a high degree of metamorphism. The obtained results generally corroborate prior findings on a longer evolution of the upper mantle ultramafic rocks of the Syum-Keu massif compared to those of the Kraka massif. Our results are also consistent with the suprasubduction nature of these ultramafic rocks. Our findings can be utilized in further studies of the microstructure and composition of ophiolites from the Polar Urals to provide a more detailed characterization of the partial melting conditions of the mantle source, the plastic flow of peridotites, and their interaction with melts and fluids. Full article
Show Figures

Graphical abstract

11 pages, 3767 KiB  
Article
Going Inside a Historical Brazilian Diamond from the Spada Collection (19th Century)
by Giovanna Agrosì, Daniela Mele and Gioacchino Tempesta
Crystals 2024, 14(9), 779; https://doi.org/10.3390/cryst14090779 - 31 Aug 2024
Viewed by 888
Abstract
The characterization of objects of historical and cultural interest represents a crucial topic, specifically when it regards gemstones. Actually, the advanced investigation of precious minerals of gemological interest requires exclusively non-destructive analyses which are also suitable for determining their provenance when it is [...] Read more.
The characterization of objects of historical and cultural interest represents a crucial topic, specifically when it regards gemstones. Actually, the advanced investigation of precious minerals of gemological interest requires exclusively non-destructive analyses which are also suitable for determining their provenance when it is unknown. In this study, a non-destructive analytical protocol, previously tested on diamonds for petrogenetic studies, has been applied to a natural diamond of very high historical and gemological value, donated in 1852 by Monsignor Lavinio de ‘Medici Spada to the Museum of Earth Sciences of Sapienza University (Rome). The analytical protocol used includes X-ray diffraction topography, micro-computed X-ray tomography, single-crystal micro-X-ray diffraction and Fourier-transform infrared spectroscopy. The results show the presence of dislocations originating from inclusions and a very low degree of plastic deformation. The aggregation states of its N impurities show that this diamond is type IaAB, while the inclusions consist of olivine (Fo92-93), suggesting a lithospheric origin. The historical references found in the catalogs of the Museum indicate only a Brazilian origin, without any reference to the mining district. The information acquired in this study, enhanced by document research on mining in Brazil since 1700, suggests that the diamond likely comes from the district of Diamantina, Mina Gerais, Brazil. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

20 pages, 7915 KiB  
Article
Coexisting High-Al and High-Cr Chromitites in the Dingqing Ophiolite (SE Tibet): Inferences to Compositional Heterogeneity in the Tethyan Upper Mantle
by Boyang Zhang, Basem Zoheir, Chenjie Zhang, Xiaoping Mu, Xiangzhen Xu, Tian Qiu and Fahui Xiong
Minerals 2023, 13(9), 1234; https://doi.org/10.3390/min13091234 - 21 Sep 2023
Cited by 3 | Viewed by 1826
Abstract
The Dingqing ophiolite represents a significant allochthonous ophiolite nappe in the eastern segment of the Bangong–Nujiang suture zone in southeastern Tibet. The microanalytical data of associated podiform chromitites classify them into two distinct varieties: high-Al and high-Cr. The coexistence of both high-Cr and [...] Read more.
The Dingqing ophiolite represents a significant allochthonous ophiolite nappe in the eastern segment of the Bangong–Nujiang suture zone in southeastern Tibet. The microanalytical data of associated podiform chromitites classify them into two distinct varieties: high-Al and high-Cr. The coexistence of both high-Cr and high-Al chromitites in the Dingqing ophiolite suggests a complex or multistage evolutionary history of the host rocks. New petrological and geochemical analyses are used herein to unravel the interrelationships between the chromitite ores and host rocks and assess the mechanism of formation. The Dingqing ophiolitic nappe is made up mainly of harzburgite, dunite, and less abundant pyroxenite and gabbro. Several small lens-shaped bodies of chromitite ore are mostly confined to the harzburgite rocks, with ore textures varying from massive to sparsely disseminated chromite. In addition to magnesiochromite, the orebodies contain minor amounts of olivine, amphibole, and serpentine. The textural relationships provide compelling evidence of plastic deformation and partial melting of the associated peridotites. Detailed examination of the Cr-spinel grains reveals a wide range of composition, spanning from high-Al (Cr# = 3.18–59.5) to high-Cr (Cr# 60.3–87.32). The abundances of the platinum-group element (PGE) in chromitites are significantly variable (93 to 274 ppb). Formation of the Dingqing peridotites most likely took place in a mid-ocean ridge (MOR) setting, and subsequent modifications by supra-subduction zone (SSZ) melts resulted in heterogenous or mixed geochemical characteristics of these rocks. Chemistry of the spinel–olivine–clinopyroxene assemblage demonstrates multiple stages of partial melting of the source mantle rocks, including an early phase of restricted partial melting (~20%–30%) and a later phase of extensive partial melting (>40%). The formation of the high-Al chromitite type was associated with the early phase (constrained melting), whereas extensive partial melting in the late stages likely led to the accumulation of high-Cr podiform chromitite bodies. Full article
(This article belongs to the Special Issue Mineralogical and Geochemical Characteristics of Chromitites)
Show Figures

Figure 1

12 pages, 9439 KiB  
Article
Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha
by Yu Yang, Jingsui Yang, Weiwei Wu, Pengjie Cai and Haitao Ma
Minerals 2023, 13(8), 1047; https://doi.org/10.3390/min13081047 - 7 Aug 2023
Cited by 2 | Viewed by 1710
Abstract
The podiform chromitite found within the Luobusha ophiolite comprises characteristic nodules and massive chromitites. However, the exact origin of these formations remains a topic of ongoing debate. In this study, the microstructures of olivine and chromite are investigated to unravel their formation processes [...] Read more.
The podiform chromitite found within the Luobusha ophiolite comprises characteristic nodules and massive chromitites. However, the exact origin of these formations remains a topic of ongoing debate. In this study, the microstructures of olivine and chromite are investigated to unravel their formation processes and shed light on the associated geodynamic mechanisms. EBSD analysis provides insights into chromitite and host peridotite deformation mechanisms. Olivine grains in the host dunite and nodular chromite exhibit crystallographic preferred orientations (CPOs) with D-type fabrics, which show a girdle distribution in the [010] and [001] axes, normal to the foliation plane of the sample. The massive and disseminated chromitite displays B-type and C-type olivine fabric, with a concentration of [001] axes parallel to the lineation of the sample. Crystal plastic deformation can be observed in the Luobusha chromite grains, highlighting intercrystalline deformation processes. Small grains lacking misorientation observed in the massive chromitite are likely attributed to heterogeneous nucleation. Chromite nodules are found to be a patchwork of subgrains with various orientations and high-angle boundary misorientation. The formation of Luobusha chromitite involves deep-seated crystallization, followed by amalgamation, and subsequent deformation within the mantle peridotite. These findings distinguish Luobusha chromitite from other ophiolitic chromite deposits, offering valuable insights into the deformation history and formation processes. Full article
Show Figures

Figure 1

31 pages, 7690 KiB  
Article
Silicates from Lherzolites in the South-Eastern Part of the Kempirsay Massif as the Source for Giant Chromitite Deposits (the Southern Urals, Kazakhstan)
by Dmitri E. Saveliev, Darkhan K. Makatov, Ildar R. Rakhimov, Ruslan A. Gataullin and Vladimir V. Shilovskikh
Minerals 2022, 12(8), 1061; https://doi.org/10.3390/min12081061 - 22 Aug 2022
Cited by 7 | Viewed by 2640
Abstract
We provide results of a comprehensive mineralogical and microstructural study of relict lherzolites of the main ore field and fresh rocks from a deep structural borehole drilled in the south-eastern part of the Kempirsay massif. Olivine and orthopyroxene from lherzolites contain numerous pieces [...] Read more.
We provide results of a comprehensive mineralogical and microstructural study of relict lherzolites of the main ore field and fresh rocks from a deep structural borehole drilled in the south-eastern part of the Kempirsay massif. Olivine and orthopyroxene from lherzolites contain numerous pieces of evidence of material redistribution at different scales caused mainly by solid-state processes, such as plastic flow of mantle, syntectonic recrystallization, and annealing. The results of deformation-induced processes at the submicron scale are recorded by optical and electronic microscopy. In olivine, the plastic deformation caused segregation of impurities at structural defects. As a result, abundant tiny rods of newly formed Cr-spinels occurred inside its grains. Moreover, in enstatite, deformation caused partial or complete chemical decomposition with exsolution of diopside, pargasite and spinel lamellae up to the formation of a “fibrous” structure. In other cases, it provided partial or complete recrystallization to form new phases of enstatite-2, forsterite, diopside, pargasite, and spinel. Petrographic observations are validated by geochemical data, i.e., regularly decreasing concentrations of minor elements in neoblasts compared to large grains (porphyroclasts). Further redistribution of spinel grains with the formation of chromitite bodies is witnessed by their permanent association with the most mobile phase of the upper mantle, i.e., olivine, which is the only mineral that remains stable under the intense plastic flow. An increased concentration of Cr-spinel grains during formation of massive chromitites could appear under conditions close to pressure sintering, as evidenced by stressed textures of ores and an increased grain size compared to disseminated chromitites. The formation of unique chromitite deposits is associated with integration of numerous disparate podiform bodies into “ore bunches” due to the tectonic impact in the shear-compression regime. This was most likely associated with transition of the rifting (spreading) regime to that of the upper mantle of the fore-arc basin. Full article
Show Figures

Figure 1

18 pages, 8780 KiB  
Article
Dislocation Creep of Olivine and Amphibole in Amphibole Peridotites from Åheim, Norway
by Sejin Jung, Takafumi Yamamoto, Jun-ichi Ando and Haemyeong Jung
Minerals 2021, 11(9), 1018; https://doi.org/10.3390/min11091018 - 18 Sep 2021
Cited by 6 | Viewed by 3454
Abstract
Amphibole peridotite samples from Åheim, Norway, were analyzed to understand the deformation mechanism and microstructural evolution of olivine and amphibole through the Scandian Orogeny and subsequent exhumation process. Three Åheim amphibole peridotite samples were selected for detailed microstructural analysis. The Åheim amphibole peridotites [...] Read more.
Amphibole peridotite samples from Åheim, Norway, were analyzed to understand the deformation mechanism and microstructural evolution of olivine and amphibole through the Scandian Orogeny and subsequent exhumation process. Three Åheim amphibole peridotite samples were selected for detailed microstructural analysis. The Åheim amphibole peridotites exhibit porphyroclastic texture, abundant subgrain boundaries in olivine, and the evidence of localized shear deformation in the tremolite-rich layer. Two different types of olivine lattice preferred orientations (LPOs) were observed: B- and A-type LPOs. Electron backscatter diffraction (EBSD) mapping and transmission electron microscopy (TEM) observations revealed that most subgrain boundaries in olivine consist of dislocations with a (001)[100] slip system. The subgrain boundaries in olivine may have resulted from the deformation of olivine with moderate water content. In addition, TEM observations using a thickness-fringe method showed that the free dislocations of olivine with the (010)[100] slip system were dominant in the peridotites. Our data suggest that the subgrain boundaries and free dislocations in olivine represent a product of later-stage deformation associated with the exhumation process. EBSD mapping of the tremolite-rich layer revealed intracrystalline plasticity in amphibole, which can be interpreted as the activation of the (100)[001] slip system. Full article
Show Figures

Figure 1

22 pages, 4601 KiB  
Article
Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield)
by Artem V. Mokrushin and Valery F. Smol’kin
Minerals 2021, 11(7), 772; https://doi.org/10.3390/min11070772 - 16 Jul 2021
Cited by 9 | Viewed by 3486
Abstract
In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoproterozoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O [...] Read more.
In 1990, the Sopcheozero Cr deposit was discovered in the Monchegorsk Paleoproterozoic layered mafic-ultramafic layered intrusion (Monchepluton). This stratiform early-magmatic deposit occurs in the middle part of the Dunite Block, which is a member of the Monchepluton layered series. The Cr2O3 average-weighted content in ordinary and rich ores of the deposit is 16.65 and 38.76 wt.%, respectively, at gradually changing concentrations within the rich, ordinary and poor ore types and ore body in general. The ores of the Sopcheozero deposit, having a ratio of Cr2O3/FeOtotal = 0.9–1.7, can serve as raw materials for the refractory and chemical industries. The ore Cr-spinel (magnochromite and magnoalumochromite) is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity. The coexisting Cr-spinel-olivine pairs crystallized at temperatures from 1258 to 1163 °C, with accessory Cr-spinel crystallizing at relatively low, while ore Cr-spinel at higher temperatures. The host rock and ore distinguish with widespread plastic deformations of olivine at the postcrystallization phase under conditions of high temperature (above 400 °C) and pressure (5 kbar). At the post magmatic Svecofennian stage (1.84 Ga), the deposit, jointly with the Monchepluton, was subject to diverse tectonic deformations. Full article
(This article belongs to the Special Issue Chromite Deposits: Mineralogy, Petrology and Genesis)
Show Figures

Figure 1

19 pages, 3945 KiB  
Article
Using Multigrain Crystallography to Explore the Microstructural Evolution of the α-Olivine to γ-Ringwoodite Transformation and ε-Mg2SiO4 at High Pressure and Temperature
by Brian Chandler, Michelle Devoe, Martin Kunz and Hans-Rudolf Wenk
Minerals 2021, 11(4), 424; https://doi.org/10.3390/min11040424 - 16 Apr 2021
Cited by 3 | Viewed by 3721
Abstract
The introduction of multigrain crystallography (MGC) applied in a laser-heated diamond anvil cell (LH-DAC) using synchrotron X-rays has provided a new path to investigate the microstructural evolution of materials at extreme conditions, allowing for simultaneous investigations of phase identification, strain state determination, and [...] Read more.
The introduction of multigrain crystallography (MGC) applied in a laser-heated diamond anvil cell (LH-DAC) using synchrotron X-rays has provided a new path to investigate the microstructural evolution of materials at extreme conditions, allowing for simultaneous investigations of phase identification, strain state determination, and orientation relations across phase transitions in a single experiment. Here, we applied this method to a sample of San Carlos olivine beginning at ambient conditions and through the α-olivine → γ-ringwoodite phase transition. At ambient temperatures, by measuring the evolution of individual Bragg reflections, olivine shows profuse angular streaking consistent with the onset of yielding at a measured stress of ~1.5 GPa, considerably lower than previously reported, which may have implications for mantle evolution. Furthermore, γ-ringwoodite phase was found to nucleate as micron to sub-micron grains imbedded with small amounts of a secondary phase at 15 GPa and 1000 °C. Using MGC, we were able to extract and refine individual crystallites of the secondary unknown phase where it was found to have a structure consistent with the ε-phase previously described in chondritic meteorites. Full article
(This article belongs to the Special Issue Structural Characterization of Earth Materials at Extreme Conditions)
Show Figures

Figure 1

11 pages, 2208 KiB  
Article
Development of a Stress Sensor for In-Situ High-Pressure Deformation Experiments Using Radial X-Ray Diffraction
by Jennifer Girard, Reynold E. Silber, Anwar Mohiuddin, Haiyan Chen and Shun-ichiro Karato
Minerals 2020, 10(2), 166; https://doi.org/10.3390/min10020166 - 13 Feb 2020
Cited by 8 | Viewed by 2851
Abstract
We developed a stress sensor for in-situ deformation experiments using synchrotron radial X-ray diffraction. This stress sensor provided nearly diffraction-plane-independent stress that, when used in series with a sample, reduced the uncertainty of the average stress estimation acting on a sample. Here, we [...] Read more.
We developed a stress sensor for in-situ deformation experiments using synchrotron radial X-ray diffraction. This stress sensor provided nearly diffraction-plane-independent stress that, when used in series with a sample, reduced the uncertainty of the average stress estimation acting on a sample. Here, we present the results of a study where pyrope was used as a stress sensor. Using a Deformation-DIA (D-DIA) high-pressure deformation apparatus, pyrope, olivine and alumina were deformed in the same run/cell assembly placed in series along the compression direction. Deformation experiments were conducted at pressures between 4 and 5 GPa and temperatures between 730 and 1273 K with strain-rates between 10−5 and 10−6 s−1. Stresses estimated from various (hkl) planes in pyrope were nearly the same; i.e., pyrope is plastically isotropic with ≤10 % variation with (hkl). However, stresses from various (hkl) planes in olivine and alumina varied by approximately a factor of 3. Comparisons between average stresses inferred from pyrope and those from different diffraction planes in olivine and alumina showed that the average stress in these materials evolved from low-end stress, estimated from various (hkl) planes at small strain, to high-end stress at a large strain. This suggests that the rate-controlling slip system in these materials changes from the soft to the hard slip system with strain. Full article
(This article belongs to the Special Issue Mineral Physics—In Memory of Orson Anderson)
Show Figures

Figure 1

22 pages, 4542 KiB  
Article
Pressure Dependence of Magnesite Creep
by Joseph W. Millard, Caleb W. Holyoke, Rachel K. Wells, Cole Blasko, Andreas K. Kronenberg, Paul Raterron, Casey Braccia, Nicholas Jackson, Caleb A. McDaniel and Leif Tokle
Geosciences 2019, 9(10), 420; https://doi.org/10.3390/geosciences9100420 - 26 Sep 2019
Cited by 6 | Viewed by 2836
Abstract
We determined the activation volumes (V*) for polycrystalline magnesite with grain sizes of 2 and 80 µm deforming by low temperature plasticity (LTP) mechanisms (kinking and dislocation glide), diffusion creep, and dislocation creep at temperatures of 500, 750, and 900 °C, [...] Read more.
We determined the activation volumes (V*) for polycrystalline magnesite with grain sizes of 2 and 80 µm deforming by low temperature plasticity (LTP) mechanisms (kinking and dislocation glide), diffusion creep, and dislocation creep at temperatures of 500, 750, and 900 °C, respectively, and a strain rate of 1–2 × 10−5 s−1 at effective pressures of 2.9–7.5 GPa in a D-DIA and 0.76 GPa in a Griggs apparatus. In each set of experiments performed at a given temperature, the strength of magnesite increases with increasing pressure. Microstructures of fine-grained magnesite deformed at 500 °C and 750 °C are consistent with deformation by LTP mechanisms and diffusion creep, respectively. Microstructures of coarse-grained magnesite deformed at 900 °C are consistent with deformation by dislocation creep. Pressure dependencies of magnesite flow laws for LTP, diffusion creep, and dislocation creep are given by activation volumes of 34 (± 7), 2 (± 1), and 10 (± 5) × 10−6 m3/mol, respectively. Addition of these activation volumes to previously determined flow laws predicts magnesite strength to be much lower than the flow strength of olivine at all subduction zone depths of the upper mantle. Thus, subducting oceanic lithosphere that has been partially carbonated by reaction with CO2-bearing fluids may deform at lowered stresses where magnesite is present, possibly resulting in strain localization and unstable run-away shear. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

16 pages, 52216 KiB  
Article
Microstructural Evidence for Grain Boundary Migration and Dynamic Recrystallization in Experimentally Deformed Forsterite Aggregates
by Caroline Bollinger, Billy C. Nzogang, Alexandre Mussi, Jérémie Bouquerel, Dmitri A. Molodov and Patrick Cordier
Minerals 2019, 9(1), 17; https://doi.org/10.3390/min9010017 - 27 Dec 2018
Cited by 6 | Viewed by 6378
Abstract
Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, [...] Read more.
Plastic deformation of peridotites in the mantle involves large strains. Orthorhombic olivine does not have enough slip systems to satisfy the von Mises criterion, leading to strong hardening when polycrystals are deformed at rather low temperatures (i.e., below 1200 °C). In this study, we focused on the recovery mechanisms involving grain boundaries and recrystallization. We investigated forsterite samples deformed at large strains at 1100 °C. The deformed microstructures were characterized by transmission electron microscopy using orientation mapping techniques (ACOM-TEM). With this technique, we increased the spatial resolution of characterization compared to standard electron backscatter diffraction (EBSD) maps to further decipher the microstructures at nanoscale. After a plastic strain of 25%, we found pervasive evidence for serrated grain and subgrain boundaries. We interpreted these microstructural features as evidence of occurrences of grain boundary migration mechanisms. Evaluating the driving forces for grain/subgrain boundary motion, we found that the surface tension driving forces were often greater than the strain energy driving force. At larger strains (40%), we found pervasive evidence for discontinuous dynamic recrystallization (dDRX), with nucleation of new grains at grain boundaries. The observations reveal that subgrain migration and grain boundary bulging contribute to the nucleation of new grains. These mechanisms are probably critical to allow peridotitic rocks to achieve large strains under a steady-state regime in the lithospheric mantle. Full article
Show Figures

Figure 1

10 pages, 24119 KiB  
Article
Application of Scanning Precession Electron Diffraction in the Transmission Electron Microscope to the Characterization of Deformation in Wadsleyite and Ringwoodite
by Billy C. Nzogang, Simon Thilliez, Alexandre Mussi, Takaaki Kawazoe, Nobuyoshi Miyajima, Jérémie Bouquerel and Patrick Cordier
Minerals 2018, 8(4), 153; https://doi.org/10.3390/min8040153 - 12 Apr 2018
Cited by 5 | Viewed by 5643
Abstract
The mantle transition zone represents an important layer in the interior of the Earth that is characterized by phase transformations of olivine polymorphs. Constraining the rheology difference between wadsleyite and ringwoodite is important in determining the viscosity contrast at a depth of 520 [...] Read more.
The mantle transition zone represents an important layer in the interior of the Earth that is characterized by phase transformations of olivine polymorphs. Constraining the rheology difference between wadsleyite and ringwoodite is important in determining the viscosity contrast at a depth of 520 km. In this study, we perform a post-mortem by transmission electron microscopy of a wadsleyite + ringwoodite aggregate, deformed at high-pressure and high-temperature, in a deformation-DIA apparatus. From orientation maps acquired by scanning precession electron diffraction, we calculate local misorientations and misorientation-gradients, which are used as a proxy of plastic strain. We show that at 17.3 GPa, 1700 K, the plastic responses of wadsleyite and ringwoodite are comparable, although recovery by subgrain boundary migration is more easily activated in wadsleyite. Full article
Show Figures

Figure 1

Back to TopTop