Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = pivoting wave energy converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10042 KB  
Article
CFD Study of a Novel Wave Energy Converter in Survival Mode
by Cassandre Senocq, Daniel Clemente, Mailys Bertrand, Paulo Rosa-Santos and Gianmaria Giannini
Energies 2025, 18(19), 5189; https://doi.org/10.3390/en18195189 - 30 Sep 2025
Abstract
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called [...] Read more.
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called the Pivoting WEC (PWEC), which includes a passive duck diving survival mode to reduce extreme wave impacts. Its performance is evaluated using detailed wave simulations based on Reynolds-Averaged Navier–Stokes (RANS) equations and the Volume-of-Fluid (VoF) method in OpenFOAM-olaFlow, which is validated with data from small-scale (1:20) wave tank experiments. Extreme non-breaking and breaking waves are simulated based on 100-year hindcast data for the case study site of Matosinhos (Portugal) using a modified Miche criterion. These are validated using data of surface elevation and force sensors. Wave height errors averaged 5.13%, and period errors remain below 0.75%. The model captures well major wave loads with a root mean square error down to 47 kN compared to a peak load of 260 kN and an R2 up to 0.80. The most violent plunging waves increase peak forces by 5 to 30% compared to the highest non-breaking crests. The validated numerical approach provides accurate extreme load predictions and confirms the effectiveness of the PWEC’s passive duck diving survival mode. The results contribute to the development of structurally resilient WECs, supporting the progress of WECs toward higher readiness levels. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

28 pages, 17728 KB  
Article
Computational Fluid Dynamics Simulation on Blade Geometry of Novel Axial FlowTurbine for Wave Energy Extraction
by Mohammad Nasim Uddin, Yang Gao and Paul M. Akangah
Energies 2024, 17(14), 3602; https://doi.org/10.3390/en17143602 - 22 Jul 2024
Cited by 1 | Viewed by 1963
Abstract
Wave energy converters (WECs) utilizing the Oscillating Water Column (OWC) principle have gained prominence for harnessing kinetic energy from ocean waves. This study explores an innovative approach by transforming the pivoting Denniss–Auld turbine blades into a fixed configuration, offering a simplified alternative. The [...] Read more.
Wave energy converters (WECs) utilizing the Oscillating Water Column (OWC) principle have gained prominence for harnessing kinetic energy from ocean waves. This study explores an innovative approach by transforming the pivoting Denniss–Auld turbine blades into a fixed configuration, offering a simplified alternative. The fixed-blade design emulates the maximum pivot points during the OWC’s exhalation and inhalation phases. Traditional Denniss–Auld turbines rely on complex hub systems to enable controllable blade rotation for performance optimization. This research examines the turbine’s efficiency without mechanical actuation. The simulations were conducted using ANSYS™ CFX 2023 R2 to solve the three-dimensional, incompressible, steady-state Reynolds-Averaged Navier–Stokes (RANS) equations, employing the k-ω SST turbulence model to close the system of equations. A grid convergence study was performed, and the numerical results were validated against available experimental and numerical data. An in-depth analysis of the intricate flow field around the turbine blades was also conducted. The modified Denniss–Auld turbine demonstrated a broad operating range, avoiding stalling at high flow coefficients and exhibiting performance characteristics like an impulse turbine. However, the peak efficiency was 12%, significantly lower than that of conventional Denniss–Auld and impulse turbines. Future research should focus on expanding the design space through parametric studies to enhance turbine efficiency and power output. Full article
(This article belongs to the Topic Energy from Sea Waves)
Show Figures

Figure 1

22 pages, 9014 KB  
Article
On the Development of a Near-Shore Pivoting Wave Energy Converter
by Gianmaria Giannini, Esmaeil Zavvar, Victor Ramos, Tomás Calheiros-Cabral, Isabel Iglesias, Francisco Taveira-Pinto and Paulo Rosa-Santos
Energies 2024, 17(11), 2695; https://doi.org/10.3390/en17112695 - 1 Jun 2024
Cited by 5 | Viewed by 1645
Abstract
Numerous offshore wave energy converter (WEC) designs have been invented; however, none has achieved full commercialization so far. The primary obstacle impeding WEC commercialization is the elevated levelized cost of energy (LCOE). Consequently, there exists a pressing need to innovate and swiftly diminish [...] Read more.
Numerous offshore wave energy converter (WEC) designs have been invented; however, none has achieved full commercialization so far. The primary obstacle impeding WEC commercialization is the elevated levelized cost of energy (LCOE). Consequently, there exists a pressing need to innovate and swiftly diminish the LCOE. A critical challenge faced by WECs is their susceptibility to extreme wave loads during storms. Promising concepts must demonstrate robust design features to ensure resilience in adverse conditions, while maintaining efficiency in harnessing power under normal sea states. It is anticipated that the initial commercial endeavors will concentrate on near-shore WEC technologies due to the cost advantages associated with proximity to the coastline, facilitating more affordable power transmission and maintenance. In response, this manuscript proposes a pioneering near-shore WEC concept designed with a survivability mode that is engineered to mitigate wave loads during severe sea conditions. Moreover, prior investigations have highlighted favorable resonance properties of this novel concept, enhancing wave power extraction during recurrent energetic sea states. This study employs numerical and physical modelling techniques to evaluate wave loads on the proposed WEC. The results indicate a remarkable 65% reduction in wave loads on the moving floater of the WEC during a range of sea states under the implemented survivability mode. Full article
Show Figures

Figure 1

22 pages, 3768 KB  
Article
Numerical Performance of a Buoy-Type Wave Energy Converter with Regular Short Waves
by Carlos Sosa, Ismael Mariño-Tapia, Rodolfo Silva and Rodrigo Patiño
Appl. Sci. 2023, 13(8), 5182; https://doi.org/10.3390/app13085182 - 21 Apr 2023
Cited by 7 | Viewed by 2852
Abstract
The numerical performance of a buoy-type wave energy converter (WEC) under regular wave conditions is described in this paper. The open-source computational fluid dynamics software OpenFOAM® was used to couple a grid for the solid body motion of the WEC, with the [...] Read more.
The numerical performance of a buoy-type wave energy converter (WEC) under regular wave conditions is described in this paper. The open-source computational fluid dynamics software OpenFOAM® was used to couple a grid for the solid body motion of the WEC, with the grid designed for wave propagation, in order to calculate buoy movement parameters. The buoy has a horizontal, cylindrical structure, with a pivot point for semi-axis rotation. Five buoy-radiuses were analyzed, as this parameter considerably increases the efficiency of the WEC point absorber. To better understand the interaction of the WEC with the waves, the transmission and reflection coefficients were calculated, along with two non-linear parameters: skewness and asymmetry. The results indicate that, with this system, more power can be extracted from shorter waves, T = 4 s, compared to T = 8 s of the same wave height. This implies that a small buoy could be employed at sites with this prevailing wave regime, without a decrease in efficiency and with considerable cost reductions. Finally, this WEC increases the values of wave skewness, which is linked to onshore sediment transport; therefore, if appropriately designed, WEC arrays installed near the coast could also promote onshore sediment transport. Full article
Show Figures

Figure 1

20 pages, 6250 KB  
Article
A Model for Performance Estimation of Flapping Foil Operating as Biomimetic Stream Energy Device
by Iro E. Malefaki and Kostas A. Belibassakis
J. Mar. Sci. Eng. 2021, 9(1), 21; https://doi.org/10.3390/jmse9010021 - 27 Dec 2020
Cited by 6 | Viewed by 3267
Abstract
During the recent period intensive research has focused on the advancement of engineering and technology aspects concerning the development and optimization of wave and current energy converters driven by the need to increase the percentage of marine renewable sources in the energy-production mix, [...] Read more.
During the recent period intensive research has focused on the advancement of engineering and technology aspects concerning the development and optimization of wave and current energy converters driven by the need to increase the percentage of marine renewable sources in the energy-production mix, particularly from offshore installations. Most stream energy-harvesting devices are based on hydro-turbines, and their performance is dependent on the ratio of the blade-tip speed to incident-flow speed. As the oncoming speed of natural-occurring currents varies randomly, there is a penalty for the latter device’s performance when operating at non-constant tip-speed ratio away from the design value. Unlike conventional turbines that are characterized by a single degree of freedom rotating around an axis, a novel concept is examined concerning hydrokinetic energy converters based on oscillating hydrofoils. The biomimetic device includes a rotating, vertically mounted, biomimetic wing, supported by an arm linked at a pivot point on the mid-chord. Activated by a controllable self-pitching motion the system performs angular oscillations around the vertical axis in incoming flow. In this work, the performance of the above flapping-foil, biomimetic flow energy harvester is investigated by application of a semi-3D model based on unsteady hydrofoil theory and the results are verified by comparison to experimental data and a 3D boundary element method based on vortex rings. By systematical application of the model the power extraction and efficiency of the system is presented for various cases including different geometric, mechanical, and kinematic parameters, and the optimal performance of the system is determined. Full article
(This article belongs to the Special Issue Wave Phenomena in Ship and Marine Hydrodynamics)
Show Figures

Figure 1

14 pages, 4347 KB  
Article
Perturb and Observe Control for an Embedded Point Pivoted Absorber
by Gianluca Brando, Domenico Pietro Coiro, Marino Coppola, Adolfo Dannier, Andrea Del Pizzo and Ivan Spina
Energies 2016, 9(11), 939; https://doi.org/10.3390/en9110939 - 10 Nov 2016
Cited by 1 | Viewed by 4414
Abstract
Marine energy sources represent an attractive and inexhaustible reservoir able to contribute to the fulfillment of the world energy demand in accordance with climate/energy regulatory frameworks. Wave energy converter (WEC) integration into the main grid requires both the maximization of the harvested energy [...] Read more.
Marine energy sources represent an attractive and inexhaustible reservoir able to contribute to the fulfillment of the world energy demand in accordance with climate/energy regulatory frameworks. Wave energy converter (WEC) integration into the main grid requires both the maximization of the harvested energy and the proper management of the generation variability. The present paper focuses on both these mentioned issues. More specifically, it presents an embedded point pivoted absorber (PPA) and its related control strategy aimed at maximizing the harvested energy. Experimental and numerical investigations have been carried out in a wave/towing tank facility in order to derive the design characteristics of the full-scale model and demonstrate the validity and effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue Numerical Modelling of Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 1263 KB  
Article
Design Specifications for the Hanstholm WEPTOS Wave Energy Converter
by Arthur Pecher, Jens Peter Kofoed and Tommy Larsen
Energies 2012, 5(4), 1001-1017; https://doi.org/10.3390/en5041001 - 18 Apr 2012
Cited by 49 | Viewed by 11057
Abstract
The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped [...] Read more.
The WEPTOS wave energy converter (WEC) is a novel device that combines an established and efficient wave energy absorbing mechanism with a smart structure, which can regulate the amount of incoming wave energy and reduce loads in extreme wave conditions. This adjustable A-shaped slack-moored and floating structure absorbs the energy of the waves through a multitude of rotors. The shape of the rotors is based on the renowned Salter’s Duck. On each leg, the rotors pivot around a common axle, through which the rotors transfer the absorbed power to a common power take off system. The study investigates the required capacity of the power take off (PTO) system and the structural forces on a WEPTOS WEC prototype, intended for installation at Hanstholm (Denmark), based on large scale experimental tests using a highly realistic laboratory model of the complete device. The results hereof includes the rotational speed and transmitted torque (and hereby power) to the PTO system using different PTO control strategies, the impact of fluctuations of the available mechanical power and the effect of limiting the PTO capacity on the annual energy production. Acquisition of structural forces includes mooring forces and structural bending moments in both production and extreme wave conditions, illustrating that the regulation of the angle in the A shape ensures that extreme forces on the structure can be kept in the same order of magnitude as in production conditions. Full article
Show Figures

Figure 1

Back to TopTop