Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = pistachio shell ash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7054 KiB  
Article
Pistachio Shell Ash in Agro-Waste Cement Composites: A Pathway to Low-Carbon Binders
by Mahmut Durmaz and Murat Doğruyol
Sustainability 2025, 17(9), 4003; https://doi.org/10.3390/su17094003 - 29 Apr 2025
Cited by 1 | Viewed by 522
Abstract
This study evaluates pistachio shell ash (PSA) as a sustainable cement substitute and investigates its effect on setting time, strength and microstructure. In this study, pistachio shell ash (PSA) obtained from the kiln flue gas filter of pistachio shells burnt at 300–350 °C [...] Read more.
This study evaluates pistachio shell ash (PSA) as a sustainable cement substitute and investigates its effect on setting time, strength and microstructure. In this study, pistachio shell ash (PSA) obtained from the kiln flue gas filter of pistachio shells burnt at 300–350 °C in an industrial kiln was used. PSA was substituted for ordinary Portland cement (OPC) at 5, 10, 15, 20, 25 and 30%. PSA increased the SO3 value in the cement mortars, so 5% PSA substitution delayed the cement setting time by up to 174%. However, it increased the water requirement of the cement mortar by about 2%. While it increased the early strength (22% on day 1, 15% on day 2, and 5% on day 7), the 28-day strength decreased slightly (about 4.5%) due to low pozzolanic activity. Microstructural analyses such as SEM-EDX and XRD showed that the calcite and gypsum phases of PSA provided early strength gains, but there were long-term losses. With a 5% replacement rate, PSA provides significant environmental benefits by reducing CO2 emissions while maintaining optimum mechanical performance and supports the circular economy through the efficient use of agricultural waste. Full article
Show Figures

Figure 1

10 pages, 2756 KiB  
Article
Utilizing Pistachio Shell Biochar to Replace Carbon Black in Natural Rubber Composites
by Steven C. Peterson and Bret J. Chisholm
J. Compos. Sci. 2024, 8(11), 482; https://doi.org/10.3390/jcs8110482 - 19 Nov 2024
Cited by 3 | Viewed by 1457
Abstract
Biochar is a promising source of renewable carbon that potentially can serve the same purpose as carbon black (sourced from fossil fuels) to reinforce rubber composites. Pistachio shells are a prolific agricultural waste product that is a suitable feedstock for biochar. Unlike many [...] Read more.
Biochar is a promising source of renewable carbon that potentially can serve the same purpose as carbon black (sourced from fossil fuels) to reinforce rubber composites. Pistachio shells are a prolific agricultural waste product that is a suitable feedstock for biochar. Unlike many other agricultural residues, pistachio shells are a feedstock that yields biochar with a high concentration of carbon (>80%) and low concentration of ash (<5%), which is necessary to replace carbon black without detrimental effects to the final composite. Filler blends of pistachio shell biochar and carbon black were explored to see how much carbon black could be replaced before composite properties were affected. Pistachio shell biochar was able to replace up to 40% of the carbon black while improving the tensile strength, elongation, and toughness of the rubber composites, but a reduction in modulus was observed. Based on the results obtained, pistachio shell biochar would be suitable for partially replacing carbon black in applications like hoses, seals, belts, and gloves, thereby enabling a new application for this sustainable, agricultural waste product that will help reduce dependence on fossil fuels. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

16 pages, 1284 KiB  
Article
Co-Gasification of Pistachio Shells with Wood Pellets in a Semi-Industrial Hybrid Cross/Updraft Reactor for Producer Gas and Biochar Production
by Jiří Ryšavý, Jakub Čespiva, Lenka Kuboňová, Milan Dej, Katarzyna Szramowiat-Sala, Oleksandr Molchanov, Lukasz Niedzwiecki, Wei-Mon Yan and Sangeetha Thangavel
Fire 2024, 7(3), 87; https://doi.org/10.3390/fire7030087 - 14 Mar 2024
Cited by 4 | Viewed by 2703
Abstract
The possibilities of pistachio shell biochar production on laboratory-scale gasification and pyrolysis devices have been described by several previous studies. Nevertheless, the broader results of the pistachio shell co-gasification process on pilot-scale units have not yet been properly investigated or reported, especially regarding [...] Read more.
The possibilities of pistachio shell biochar production on laboratory-scale gasification and pyrolysis devices have been described by several previous studies. Nevertheless, the broader results of the pistachio shell co-gasification process on pilot-scale units have not yet been properly investigated or reported, especially regarding the detailed description of the biochar acquired during the routine operation. The biochar was analysed using several analytical techniques, such as ultimate and proximate analysis (62%wt of C), acid–base properties analysis (pH 9.52), Fourier-transform infrared spectroscopy (the presence of –OH bonds and identification of cellulose, hemicellulose and lignin), Raman spectroscopy (no determination of Id/Ig ratio due to high fluorescence), and nitrogen physisorption (specific surface 50.895 m2·g−1). X-ray fluorescence analysis exhibited the composition of the main compounds in the biochar ash (32.5%wt of Cl and 40.02%wt of Na2O). From the energy generation point of view, the lower heating value of the producer gas achieved 6.53 MJ·m−3 during the co-gasification. The relatively high lower heating value of the producer gas was mainly due to the significant volume fractions of CO (6.5%vol.), CH4 (14.2%vol.), and H2 (4.8 %vol.), while hot gas efficiency accomplished 89.6%. Full article
(This article belongs to the Special Issue Combustion and Fire I)
Show Figures

Figure 1

18 pages, 750 KiB  
Article
The Impact of Nutshell Biochar on the Environment as an Alternative Fuel or as a Soil Amendment
by Lukáš Jeníček, Barbora Tunklová, Jan Malaťák, Jan Velebil, Jitka Malaťáková, Michal Neškudla and František Hnilička
Materials 2023, 16(5), 2074; https://doi.org/10.3390/ma16052074 - 3 Mar 2023
Cited by 12 | Viewed by 3277
Abstract
Walnut, pistachio, and peanut nutshells were treated by pyrolysis to biochar and analyzed for their possible usage as fuels or soil fertilizers. All the samples were pyrolyzed to five different temperatures, i.e., 250 °C, 300 °C, 350 °C, 450 °C, and 550 °C. [...] Read more.
Walnut, pistachio, and peanut nutshells were treated by pyrolysis to biochar and analyzed for their possible usage as fuels or soil fertilizers. All the samples were pyrolyzed to five different temperatures, i.e., 250 °C, 300 °C, 350 °C, 450 °C, and 550 °C. Proximate and elemental analyses were carried out for all the samples, as well as calorific value and stoichiometric analysis. For sample usage as a soil amendment, phytotoxicity testing was performed and the content of phenolics, flavonoids, tannin, juglone, and antioxidant activity were determined. To characterize the chemical composition of walnut, pistachio, and peanut shells, lignin, cellulose, holocellulose, hemicellulose, and extractives were determined. As a result, it was found that walnut shells and pistachio shells are best pyrolyzed at the temperature of 300 °C and peanut shells at the temperature of 550 °C for their use as alternative fuels. The highest measured net calorific value was in pistachio shells, which were biochar pyrolyzed at 550 °C, of 31.35 MJ kg−1. On the other hand, walnut biochar pyrolyzed at 550 °C had the highest ash share of 10.12% wt. For their use as soil fertilizers, peanut shells were the most suitable when pyrolyzed at 300 °C, walnut shells at 300 and 350 °C, and pistachio shells at 350 °C. Full article
(This article belongs to the Topic Advances in Biomass Conversion)
Show Figures

Figure 1

18 pages, 6309 KiB  
Article
The Course and the Effects of Agricultural Biomass Pyrolysis in the Production of High-Calorific Biochar
by Paweł Kazimierski, Katarzyna Januszewicz, Wojciech Godlewski, Aleksander Fijuk, Tomasz Suchocki, Patryk Chaja, Beata Barczak and Dariusz Kardaś
Materials 2022, 15(3), 1038; https://doi.org/10.3390/ma15031038 - 28 Jan 2022
Cited by 34 | Viewed by 3662
Abstract
The thermal pyrolysis of agriculture biomass has been studied in a fixed-bed reactor, where the pyrolysis was conducted at a steady temperature of 800 °C. This work analyses the pyrolysis products of six agricultural wastes: pistachio husks, walnut husks, sunflower hulls, buckwheat husks, [...] Read more.
The thermal pyrolysis of agriculture biomass has been studied in a fixed-bed reactor, where the pyrolysis was conducted at a steady temperature of 800 °C. This work analyses the pyrolysis products of six agricultural wastes: pistachio husks, walnut husks, sunflower hulls, buckwheat husks, corncobs and coconut shells. The conducted research compared examples of large waste biomass streams from different parts of the world as a potential source of renewable energy. Additionally, the kinetics of the reaction with the activation energy were analyzed and calculated for all raw materials in pyrolysis process. Biochars are characterised by higher combustion heat in comparison to the raw material samples. The average value of the heat of combustion increased due to pyrolysis process from 10 MJ/kg, with minimal value of 2.7 MJ/kg (corncob) and maximum of 13.0 MJ/kg for coconut, which is also characterised by the maximal absolute combustion heating value (32.3 MJ/kg). The increase in calorific values varied from 15% to 172% (with 54% reference for wood chips), which indicates that charring is an effective method for increasing the energy concentration. The obtained biochar were compared with wood chips, which are widely used solid fuel of organic origin. The studied biomass-derived fuels are characterised by lower ash contribution than wood. An analogous observation was made for the obtained biochars, whose ash contribution was lower than for the chips in terms of both unit-mass and unit-combustion-heat. The main advantage of this method is the production of solid fuel from biomass, which increases the calorific value and bulk density of biochar in comparison to raw material. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

Back to TopTop