Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = piezocomposite sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3820 KB  
Article
Modeling and Experimental Evaluation of 1-3 Stacked Piezoelectric Transducers for Energy Harvesting
by Bryan Gamboa, Carlos Acosta, Wasim Hafiz Dipon, Amar S. Bhalla and Ruyan Guo
J. Compos. Sci. 2025, 9(6), 304; https://doi.org/10.3390/jcs9060304 - 16 Jun 2025
Viewed by 718
Abstract
Piezoelectric energy harvesting in roadways can power distributed sensors and electronics by capturing underutilized mechanical energy from traffic. In this research, 1-3 stacked piezocomposites were developed and evaluated to determine optimal designs for multiple applications. The design of these transducers aimed at operating [...] Read more.
Piezoelectric energy harvesting in roadways can power distributed sensors and electronics by capturing underutilized mechanical energy from traffic. In this research, 1-3 stacked piezocomposites were developed and evaluated to determine optimal designs for multiple applications. The design of these transducers aimed at operating in a multitude of scenarios, under compressive loads (1–10 kN) at low-frequency (10 Hz) applications, intended to simulate vehicular forces. Power comparison was utilized between numerous transducers to determine the most efficient configuration for electromechanical energy conversion. Design guidelines were based on mechanical integrity, output power, active piezoelectric volume percentage, aspect ratio, and geometric factors. The forces applied in this study were reliant on the average vehicle weight. An intermediate PZT volume fraction and moderate pillar aspect ratios were found to yield the highest power output, with the stacked 1-3 composite significantly outperforming a monolithic PZT of a similar size. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

31 pages, 8865 KB  
Article
Haptic Feedback Device Using 3D-Printed Flexible, Multilayered Piezoelectric Coating for In-Car Touchscreen Interface
by Van-Cuong Nguyen, Victor Oliva-Torres, Sophie Bernadet, Guilhem Rival, Claude Richard, Jean-Fabien Capsal, Pierre-Jean Cottinet and Minh-Quyen Le
Micromachines 2023, 14(8), 1553; https://doi.org/10.3390/mi14081553 - 2 Aug 2023
Cited by 9 | Viewed by 4642
Abstract
This study focuses on the development of a piezoelectric device capable of generating feedback vibrations to the user who manipulates it. The objective here is to explore the possibility of developing a haptic system that can replace physical buttons on the tactile screen [...] Read more.
This study focuses on the development of a piezoelectric device capable of generating feedback vibrations to the user who manipulates it. The objective here is to explore the possibility of developing a haptic system that can replace physical buttons on the tactile screen of in-car systems. The interaction between the user and the developed device allows completing the feedback loop, where the user’s action generates an input signal that is translated and outputted by the device, and then detected and interpreted by the user’s haptic sensors and brain. An FEM (finite element model) via ANSYS multiphysics software was implemented to optimize the haptic performance of the wafer structure consisting of a BaTiO3 multilayered piezocomposite coated on a PET transparent flexible substrate. Several parameters relating to the geometric and mechanical properties of the wafer, together with those of the electrodes, are demonstrated to have significant impact on the actuation ability of the haptic device. To achieve the desired vibration effect on the human skin, the haptic system must be able to drive displacement beyond the detection threshold (~2 µm) at a frequency range of 100–700 Hz. The most optimized actuation ability is obtained when the ratio of the dimension (radius and thickness) between the piezoelectric coating and the substrate layer is equal to ~0.6. Regarding the simulation results, it is revealed that the presence of the conductive electrodes provokes a decrease in the displacement by approximately 25–30%, as the wafer structure becomes stiffer. To ensure the minimum displacement generated by the haptic device above 2 µm, the piezoelectric coating is screen-printed by two stacked layers, electrically connected in parallel. This architecture is expected to boost the displacement amplitude under the same electric field (denoted E) subjected to the single-layered coating. Accordingly, multilayered design seems to be a good alternative to enhance the haptic performance while keeping moderate values of E so as to prevent any undesired electrical breakdown of the coating. Practical characterizations confirmed that E=20 V/μm is sufficient to generate feedback vibrations (under a maximum input load of 5 N) perceived by the fingertip. This result confirms the reliability of the proposed haptic device, despite discrepancies between the predicted theory and the real measurements. Lastly, a demonstrator comprising piezoelectric buttons together with electronic command and conditioning circuits are successfully developed, offering an efficient way to create multiple sensations for the user. On the basis of empirical data acquired from several trials conducted on 20 subjects, statistical analyses together with relevant numerical indicators were implemented to better assess the performance of the developed haptic device. Full article
Show Figures

Figure 1

22 pages, 8752 KB  
Article
Design Rules of Bidirectional Smart Sensor Coating for Condition Monitoring of Bearings
by Van-Cuong Nguyen, Minh-Quyen Le, Sophie Bernadet, Yoann Hebrard, Jean-François Mogniotte, Jean-Fabien Capsal and Pierre-Jean Cottinet
Polymers 2023, 15(4), 826; https://doi.org/10.3390/polym15040826 - 7 Feb 2023
Cited by 10 | Viewed by 2656
Abstract
This paper reports a novel monitoring technique of bearings’ bidirectional load (axial and radial) based on a smart sensor coating, which is screen printed onto the surface of a cross-shaped steel substrate. To ensure the accuracy and stability of measurement as well as [...] Read more.
This paper reports a novel monitoring technique of bearings’ bidirectional load (axial and radial) based on a smart sensor coating, which is screen printed onto the surface of a cross-shaped steel substrate. To ensure the accuracy and stability of measurement as well as the durability of the printed coating, the developed prototype is built according to design rules commonly used in electronic circuits. The finite element model (FEM) is used to predict the mechanical property of the tested substrate under either unidirectional or bidirectional loads. Regarding the output voltage of the piezoelectric sensor, experimental results are revealed to be well-corelated to the numerical simulation. It is pointed out that the output signal generated from the sensor (electrode) could be particularly affected due to the capacitive parasite coming from the conductive tracks (CTs). Such a phenomenon might be reduced by printing them on the dielectric layer rather than on the piezocomposite layer. The study also investigates a highly anisotropic shape of electrodes (rectangular instead of circle), indicating that the orientation of such electrodes (axial or radial) does affect the output measurement. To sum up, the high performance of a sensor network coating depends not only on the ultimate characteristics of its own materials, but also on its structural design. Such an issue has been rarely reported on in the literature, but is nonetheless crucial to achieving reliable condition monitoring of bearings, especially for multidirectional loads—a key signature of early failure detection. Full article
(This article belongs to the Special Issue High-Performance Polymeric Sensors II)
Show Figures

Graphical abstract

20 pages, 6967 KB  
Article
Molten-State Dielectrophoretic Alignment of EVA/BaTiO3 Thermoplastic Composites: Enhancement of Piezo-Smart Sensor for Medical Application
by Omar Zahhaf, Giulia D’Ambrogio, Angela Giunta, Minh-Quyen Le, Guilhem Rival, Pierre-Jean Cottinet and Jean-Fabien Capsal
Int. J. Mol. Sci. 2022, 23(24), 15745; https://doi.org/10.3390/ijms232415745 - 12 Dec 2022
Cited by 7 | Viewed by 3628
Abstract
Dielectrophoresis has recently been used for developing high performance elastomer-based structured piezoelectric composites. However, no study has yet focused on the development of aligned thermoplastic-based piezocomposites. In this work, highly anisotropic thermoplastic composites, with high piezoelectric sensitivity, are created. Molten-state dielectrophoresis is introduced [...] Read more.
Dielectrophoresis has recently been used for developing high performance elastomer-based structured piezoelectric composites. However, no study has yet focused on the development of aligned thermoplastic-based piezocomposites. In this work, highly anisotropic thermoplastic composites, with high piezoelectric sensitivity, are created. Molten-state dielectrophoresis is introduced as an effective manufacturing pathway for the obtaining of an aligned filler structure within a thermoplastic matrix. For this study, Poly(Ethylene-co Vinyl Acetate) (EVA), revealed as a biocompatible polymeric matrix, was combined with barium titanate (BaTiO3) filler, well-known as a lead-free piezoelectric material. The phase inversion method was used to obtain an optimal dispersion of the BaTiO3 within the EVA thermoplastic matrix. The effect of the processing parameters, such as the poling electric field and the filler content, were analyzed via dielectric spectroscopy, piezoelectric characterization, and scanning electron microscopy (SEM). The thermal behavior of the matrix was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry analysis (DSC). Thermoplastic-based structured composites have numerous appealing advantages, such as recyclability, enhanced piezoelectric activity, encapsulation properties, low manufacturing time, and being light weight, which make the developed composites of great novelty, paving the way for new applications in the medical field, such as integrated sensors adaptable to 3D printing technology. Full article
(This article belongs to the Special Issue Polymer Composites: Preparation, Properties, and Application)
Show Figures

Figure 1

16 pages, 19992 KB  
Article
3D-Printable Piezoelectric Composite Sensors for Acoustically Adapted Guided Ultrasonic Wave Detection
by Thomas Roloff, Rytis Mitkus, Jann Niklas Lion and Michael Sinapius
Sensors 2022, 22(18), 6964; https://doi.org/10.3390/s22186964 - 14 Sep 2022
Cited by 9 | Viewed by 3158
Abstract
Commercially available photopolymer resins can be combined with lead zirconate titanate (PZT) micrometer size piezoelectric particles to form 3D-printable suspensions that solidify under UV light. This in turn makes it possible to realize various non-standard sensor geometries which might bring benefits, such as [...] Read more.
Commercially available photopolymer resins can be combined with lead zirconate titanate (PZT) micrometer size piezoelectric particles to form 3D-printable suspensions that solidify under UV light. This in turn makes it possible to realize various non-standard sensor geometries which might bring benefits, such as increased piezoelectric output in specific conditions and less interference with incoming waves due to better acoustical adaptation compared to solid PZT ceramics. However, it is unclear whether piezoelectric composite materials are suitable for guided ultrasonic wave (GUW) detection, which is crucial for structural health monitoring (SHM) in different applications. In this study, thin piezoelectric composite sensors are tape casted, solidified under UV light, covered with electrodes, polarized in a high electric field and adhesively bonded onto an isotropic aluminum waveguide. This approach helps to demonstrate the capabilities of tape casting’s freedom to manufacture geometrically differently shaped, thin piezoelectric composite sensors for GUW detection. In an experimental study, thin two-dimensional piezoelectric composite sensors demonstrate successful detection of GUW for frequency-thickness products of up to 0.5 MHz mm. An analytical calculation of the maximum and minimum amplitudes for the ratio of the wavelength and the sensor length in wave propagation direction shows good agreement with the sensor-recorded signals. The output of the piezoelectric composite sensors and occurring reflections as measure for wave interactions are compared to commercial piezoelectric discs to evaluate their performance. Full article
Show Figures

Figure 1

14 pages, 5696 KB  
Article
Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor
by Rishikesh Srinivasaraghavan Govindarajan, Eduardo Rojas-Nastrucci and Daewon Kim
Crystals 2021, 11(12), 1576; https://doi.org/10.3390/cryst11121576 - 17 Dec 2021
Cited by 26 | Viewed by 4470
Abstract
A surface acoustic wave (SAW), device composed of polymer and ceramic fillers, exhibiting high piezoelectricity and flexibility, has a wide range of sensing applications in the aerospace field. The demand for flexible SAW sensors has been gradually increasing due to their small size, [...] Read more.
A surface acoustic wave (SAW), device composed of polymer and ceramic fillers, exhibiting high piezoelectricity and flexibility, has a wide range of sensing applications in the aerospace field. The demand for flexible SAW sensors has been gradually increasing due to their small size, wireless capability, low fabrication cost, and fast response time. This paper discusses the structural, thermal, and electrical properties of the developed sensor, based on different micro- and nano-fillers, such as lead zirconate titanate (PZT), calcium copper titanate (CCTO), and carbon nanotubes (CNTs), along with polyvinylidene fluoride (PVDF) as a polymer matrix. The piezocomposite substrate of the SAW sensor is fabricated using a hot press, while interdigital transducers (IDTs) are deposited through 3D printing. The piezoelectric properties are also enhanced using a non-contact corona poling technique under a high electric field to align the dipoles. Results show that the developed passive strain sensor can measure mechanical strains by examining the frequency shifts of the detected wave signals. Full article
(This article belongs to the Special Issue Piezoelectric Sensors Application)
Show Figures

Figure 1

9 pages, 17483 KB  
Proceeding Paper
3D Printable Piezoelectric Composite Sensors for Guided Ultrasonic Wave Detection
by Thomas Roloff, Rytis Mitkus, Jann Niklas Lion and Michael Sinapius
Eng. Proc. 2021, 10(1), 36; https://doi.org/10.3390/ecsa-8-11308 - 1 Nov 2021
Cited by 5 | Viewed by 2077
Abstract
Commercially available photopolymer resin is combined with Lead Zirconate Titanate (PZT) micrometer size piezoelectric particles to form 3D printable suspensions that solidify under UV light. This in turn allows achieving various non-standard sensor geometries that might bring benefits, such as increased piezoelectric output [...] Read more.
Commercially available photopolymer resin is combined with Lead Zirconate Titanate (PZT) micrometer size piezoelectric particles to form 3D printable suspensions that solidify under UV light. This in turn allows achieving various non-standard sensor geometries that might bring benefits, such as increased piezoelectric output in specific conditions. However, it is unclear whether piezoelectric composite materials are suitable for Guided Ultrasonic Wave (GUW) detection, which is crucial for Structural Health Monitoring (SHM) in different applications. In this study, thin piezoelectric composite sensors are tape casted, solidified under UV light, covered with electrodes, polarized in a high electric field and adhesively bonded onto a wave guide. This approach helps to understand the capabilities of thin piezoelectric composite sensors for GUW detection. In an experimental study, thin 2-dimensional rectangular, circular and annulus segment shaped piezoelectric composite sensors with an effective surface area smaller than 400 mm2 applied to an aluminum plate with a thickness of 2 mm demonstrate successful detection of GUW up to 250 kHz. An analytical calculation of the maximum and minimum amplitude for the ratio of the wavelength and the sensor length in wave propagation direction shows good agreement with the sensor-recorded amplitude. The output of the piezoelectric composite sensors is compared to commercial piezoelectric discs to evaluate their performance. Full article
Show Figures

Figure 1

18 pages, 63597 KB  
Article
PDMS-ZnO Piezoelectric Nanocomposites for Pressure Sensors
by Karina Jeronimo, Vasileios Koutsos, Rebecca Cheung and Enrico Mastropaolo
Sensors 2021, 21(17), 5873; https://doi.org/10.3390/s21175873 - 31 Aug 2021
Cited by 59 | Viewed by 8784
Abstract
The addition of piezoelectric zinc oxide (ZnO) fillers into a flexible polymer matrix has emerged as potential piezocomposite materials that can be used for applications such as energy harvesters and pressure sensors. A simple approach for the fabrication of PDMS-ZnO piezoelectric nanocomposites based [...] Read more.
The addition of piezoelectric zinc oxide (ZnO) fillers into a flexible polymer matrix has emerged as potential piezocomposite materials that can be used for applications such as energy harvesters and pressure sensors. A simple approach for the fabrication of PDMS-ZnO piezoelectric nanocomposites based on two ZnO fillers: nanoparticles (NP) and nanoflowers (NF) is presented in this paper. The effect of the ZnO fillers’ geometry and size on the thermal, mechanical and piezoelectric properties is discussed. The sensors were fabricated in a sandwich-like structure using aluminium (Al) thin films as top and bottom electrodes. Piezocomposites at a concentration of 10% w/w showed good flexibility, generating a piezoelectric response under compression force. The NF piezocomposites showed the highest piezoelectric response compared to the NP piezocomposites due to their geometric connectivity. The piezoelectric compound NF generated 4.2 V while the NP generated 1.86 V under around 36 kPa pressure. The data also show that the generated voltage increases with increasing applied force regardless of the type of filler. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 6749 KB  
Article
A Versatile Analog Electronic Interface for Piezoelectric Sensors Used for Impacts Detection and Positioning in Structural Health Monitoring (SHM) Systems
by Lorenzo Capineri and Andrea Bulletti
Electronics 2021, 10(9), 1047; https://doi.org/10.3390/electronics10091047 - 29 Apr 2021
Cited by 10 | Viewed by 3448
Abstract
Continuous monitoring of mechanical impacts is one of the goals of modern SHM systems using a sensor network installed on a structure. For the evaluation of the impact position, there are generally applied triangulation techniques based on the estimation of the differential time [...] Read more.
Continuous monitoring of mechanical impacts is one of the goals of modern SHM systems using a sensor network installed on a structure. For the evaluation of the impact position, there are generally applied triangulation techniques based on the estimation of the differential time of arrival (DToA). The signals generated by impacts are multimodal, dispersive Lamb waves propagating in the plate-like structure. Symmetrical S0 and antisymmetrical A0 Lamb waves are both generated by impact events with different velocities and energies. The discrimination of these two modes is an advantage for impact positioning and characterization. The faster S0 is less influenced by multiple path signal overlapping and is also less dispersive, but its amplitude is generally 40–80 dB lower than the amplitude of the A0 mode. The latter has an amplitude related to the impact energy, while S0 amplitude is related to the impact velocity and has higher frequency spectral content. For these reasons, the analog front-end (AFE) design is crucial to preserve the information of the impact event, and at the same time, the overall signal chain must be optimized. Large dynamic range ADCs with high resolution (at least 12-bit) are generally required for processing these signals to retrieve the DToA information found in the full signal spectrum, typically from 20 kHz to 500 kHz. A solution explored in this work is the design of a versatile analog front-end capable of matching the different types of piezoelectric sensors used for impact monitoring (piezoceramic, piezocomposite or piezopolymer) in a sensor node. The analog front-end interface has a programmable attenuator and three selectable configurations with different gain and bandwidth to optimize the signal-to-noise ratio and distortion of the selected Lamb wave mode. This interface is realized as a module compatible with the I/O of a 16 channels real-time electronic system for SHM previously developed by the authors. High-frequency components up to 270 kHz and lower-frequency components of the received signals are separated by different channels and generate high signal-to-noise ratio signals that can be easily treated by digital signal processing using a single central unit board with ADC and FPGA. Full article
Show Figures

Figure 1

20 pages, 8648 KB  
Review
State-of-the-Art and Practical Guide to Ultrasonic Transducers for Harsh Environments Including Temperatures above 2120 °F (1000 °C) and Neutron Flux above 1013 n/cm2
by Bernhard R. Tittmann, Caio F.G. Batista, Yamankumar P. Trivedi, Clifford J. Lissenden and Brian T. Reinhardt
Sensors 2019, 19(21), 4755; https://doi.org/10.3390/s19214755 - 1 Nov 2019
Cited by 32 | Viewed by 5327
Abstract
In field applications currently used for health monitoring and nondestructive testing, ultrasonic transducers primarily employ PZT5-H as the piezoelectric element for ultrasound transmission and detection. This material has a Curie–Weiss temperature that limits its use to about 210 °C. Some industrial applications require [...] Read more.
In field applications currently used for health monitoring and nondestructive testing, ultrasonic transducers primarily employ PZT5-H as the piezoelectric element for ultrasound transmission and detection. This material has a Curie–Weiss temperature that limits its use to about 210 °C. Some industrial applications require much higher temperatures, i.e., 1000–1200 °C and possible nuclear radiation up to 1020 n/cm2 when performance is required in a reactor environment. The goal of this paper is the survey and review of piezoelectric elements for use in harsh environments for the ultimate purpose for structural health monitoring (SHM), non-destructive evaluation (NDE) and material characterization (NDMC). The survey comprises the following categories: 1. High-temperature applications with single crystals, thick-film ceramics, and composite ceramics, 2. Radiation-tolerant materials, and 3. Spray-on transducers for harsh-environment applications. In each category the known characteristics are listed, and examples are given of performance in harsh environments. Highlighting some examples, the performance of single-crystal lithium niobate wafers is demonstrated up to 1100 °C. The wafers with the C-direction normal to the wafer plane were mounted on steel cylinders with high-temperature Sauereisen and silver paste wire mountings and tested in air. In another example, the practical use in harsh radiation environments aluminum nitride (AlN) was found to be a good candidate operating well in two different nuclear reactors. The radiation hardness of AlN was evident from the unaltered piezoelectric coefficient after a fast and thermal neutron exposure in a nuclear reactor core (thermal flux = 2.12 × 1013 ncm−2; fast flux 2 (>1.0 MeV) = 4.05 × 1013 ncm−2; gamma dose rate: 1 × 109 r/h; temperature: 400–500 °C). Additionally, some of the high-temperature transducers are shown to be capable of mounting without requiring coupling material. Pulse-echo signal amplitudes (peak-to-peak) for the first two reflections as a function of the temperature for lithium niobate thick-film, spray-on transducers were observed to temperatures of about 900 °C. Guided-wave send-and-receive operation in the 2–4 MHz range was demonstrated on 2–3 mm thick Aluminum (6061) structures for possible field deployable applications where standard ultrasonic coupling media do not survive because of the harsh environment. This approach would benefit steam generators and steam pipes where temperatures are above 210 °C. In summary, there are several promising approaches to ultrasonic transducers for harsh environments and this paper presents a survey based on literature searches and in-house laboratory observations. Full article
(This article belongs to the Special Issue Sensors for Ultrasonic NDT in Harsh Environments)
Show Figures

Figure 1

15 pages, 4392 KB  
Article
Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range
by Vasileios Mitrakos, Philip J. W. Hands, Gerard Cummins, Lisa Macintyre, Fiona C. Denison, David Flynn and Marc P. Y. Desmulliez
Micromachines 2018, 9(2), 43; https://doi.org/10.3390/mi9020043 - 26 Jan 2018
Cited by 26 | Viewed by 6694
Abstract
Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of [...] Read more.
Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT)-elastomer composite and a Quantum Tunneling Composite (QTC), have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics. Full article
Show Figures

Figure 1

27 pages, 5848 KB  
Review
High Temperature, High Power Piezoelectric Composite Transducers
by Hyeong Jae Lee, Shujun Zhang, Yoseph Bar-Cohen and Stewart Sherrit
Sensors 2014, 14(8), 14526-14552; https://doi.org/10.3390/s140814526 - 8 Aug 2014
Cited by 191 | Viewed by 21452
Abstract
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and [...] Read more.
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. Full article
Show Figures

Back to TopTop