Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = phytoplankton assemblage structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 301
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

19 pages, 4055 KiB  
Article
Open-Ocean Carbonate System and Air–Sea CO2 Fluxes Across a NE Atlantic Seamount Complex (Madeira–Tore, August 2024)
by Marta Nogueira and Alexandra D. Silva
Oceans 2025, 6(3), 46; https://doi.org/10.3390/oceans6030046 - 17 Jul 2025
Viewed by 635
Abstract
This study focused on the carbonate system dynamics and air–sea CO2 fluxes in the open-ocean waters of the Madeira–Tore Seamount Complex during August 2024. Surface water properties revealed pronounced latitudinal gradients in sea surface temperature (21.9–23.1 °C), salinity (36.2–36.7), and dissolved oxygen [...] Read more.
This study focused on the carbonate system dynamics and air–sea CO2 fluxes in the open-ocean waters of the Madeira–Tore Seamount Complex during August 2024. Surface water properties revealed pronounced latitudinal gradients in sea surface temperature (21.9–23.1 °C), salinity (36.2–36.7), and dissolved oxygen (228–251 µmol Kg−1), influenced by mesoscale eddies and topographically driven upwelling. Despite oligotrophic conditions, distinct phytoplankton assemblages were observed, with coccolithophores dominating southern seamounts and open-ocean stations, and green algae and diatoms indicating episodic nutrient input. Surface total alkalinity (TA: 2236–2467 µmol Kg−1), dissolved inorganic carbon (DIC: 2006–2183 µmol Kg−1), and pCO2 (467–515 µatm) showed spatial variability aligned with water mass characteristics and biological activity. All stations exhibited positive air–sea CO2 fluxes (2.8–11.5 mmol m−2 d−1), indicating the region is a CO2 source during summer. Calcite and aragonite saturation states were highest in stratified, warmer waters. Principal Component Analysis highlighted the role of physical mixing, carbonate chemistry, and biological uptake in structuring regional variability. Our findings emphasize and contribute to the complex interplay of physical and biogeochemical drivers in modulating carbon cycling and ecosystem structure across Atlantic seamounts. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Effects of Different Ecological Floating Bed Plant Assemblages on Water Purification and Phytoplankton Community Structure in Shallow Eutrophic Lakes: A Case Study in Lake Taihu
by Yidong Liang, Ting Zhang, Wei Cui, Zhen Kuang and Dongpo Xu
Biology 2025, 14(7), 807; https://doi.org/10.3390/biology14070807 - 3 Jul 2025
Viewed by 463
Abstract
To explore the effects of different plant combinations in ecological floating beds on water quality purification and phytoplankton community structure in shallow eutrophic lakes, we conducted a survey of phytoplankton communities within ecological floating beds featuring distinct plant combinations in Meiliang Bay, Lake [...] Read more.
To explore the effects of different plant combinations in ecological floating beds on water quality purification and phytoplankton community structure in shallow eutrophic lakes, we conducted a survey of phytoplankton communities within ecological floating beds featuring distinct plant combinations in Meiliang Bay, Lake Taihu, during June and August 2021. The study focuses on two combinations: EA (Canna indica + Acorus calamus + Phragmites australis) and ES (Canna indica + Oenanthe javanica + Sagittaria sagittifolia). Results indicated that ecological floating beds significantly improved water quality, with the strongest restoration effects observed in the EA area. Specifically, turbidity was reduced by 47–89%, while chlorophyll a (Chl-a) concentration inhibition rates reached 82% in June and 54% in August. The comprehensive trophic state index (TLI) remained stable at levels indicating slight eutrophication (≤58.6). Phytoplankton community structure shifted from dominance by eutrophic functional groups (primarily FG M) toward greater diversity. In the EA area, the number of dominant functional groups increased from five (control) to six, and the abundance of the key cyanobacteria group (FG M) declined from 18.29% (control) to 7.86%. Redundancy analysis (RDA) revealed temporal changes in driving factors: nutrients were primary in June (explanation rate: 64.7%), while physical factors dominated in August (explanation rate: 51.2%). This study demonstrates that installing ecological floating beds with diverse plant combinations in shallow eutrophic lakes can effectively alter phytoplankton community structure and enhance in situ water restoration. Among the tested combinations, EA (Canna indica + Acorus calamus + Phragmites australis) exhibited the optimal restoration effect. These findings provide a scientific basis for water environment protection and aquatic biological resource restoration in shallow eutrophic lakes. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

15 pages, 4580 KiB  
Article
Effects of Nutrients on the Phytoplankton Community Structure in Zhanjiang Bay
by Zhen Zeng, Fajin Chen, Qibin Lao and Qingmei Zhu
J. Mar. Sci. Eng. 2025, 13(7), 1202; https://doi.org/10.3390/jmse13071202 - 20 Jun 2025
Cited by 2 | Viewed by 389
Abstract
With rapid economic and social development, eutrophication in coastal areas is currently one of the most severe environmental problems worldwide. However, our understanding of the response of the phytoplankton community structure to the intensification of coastal eutrophication is still relatively limited. Here, seasonal [...] Read more.
With rapid economic and social development, eutrophication in coastal areas is currently one of the most severe environmental problems worldwide. However, our understanding of the response of the phytoplankton community structure to the intensification of coastal eutrophication is still relatively limited. Here, seasonal phytoplankton, environmental factors, and nutrients were investigated in 2009 and 2019 in Zhanjiang Bay, where eutrophication has intensified in recent years, to analyze the variation in nutrient structure and its impact on the phytoplankton community. The results revealed that the DIP and DSI concentrations in 2019 were higher than those in 2009. However, dissolved inorganic nitrogen (DIN) has decreased substantially over the past several decades, which is due mainly to the decrease in anthropogenic nitrogen emissions, the substantial increase in the intrusion of high-salinity seawater, and the high-phosphorus wastewater discharged from urban industries. This resulted in a decrease in phytoplankton cell abundance, phytoplankton composition, and species diversity (H′) in 2019 compared with 2009. In addition, the superior N transport, storage, and response strategy to a low N supply of diatoms, especially Skeletonema and Chaetoceros, might benefit the growth of diatoms under low DIN conditions. The lower DIN/DIP ratio in 2019 favored the growth of diatoms, especially Skeletonema and Chaetoceros, leading diatoms to dominate the phytoplankton assemblage. This study demonstrates how changes in nutrient structure alter the community structure of phytoplankton, providing new insights into deepening our understanding of eco-environmental evolution. Full article
(This article belongs to the Section Chemical Oceanography)
Show Figures

Figure 1

18 pages, 2934 KiB  
Article
Phytoplankton and Zooplankton Assemblages Driven by Environmental Factors Along Trophic Gradients in Thai Lentic Ecosystems
by Peangtawan Phonmat, Ratcha Chaichana, Chuti Rakasachat, Pawee Klongvessa, Wirong Chanthorn and Sitthisak Moukomla
Diversity 2025, 17(6), 372; https://doi.org/10.3390/d17060372 - 22 May 2025
Viewed by 729
Abstract
This study investigates phytoplankton and zooplankton assemblages and their relationships with environmental factors along trophic gradients in 50 lentic ecosystems across Thailand. Field sampling was conducted at 264 points in April and May 2024. Physical, chemical, and biological parameters were measured both in [...] Read more.
This study investigates phytoplankton and zooplankton assemblages and their relationships with environmental factors along trophic gradients in 50 lentic ecosystems across Thailand. Field sampling was conducted at 264 points in April and May 2024. Physical, chemical, and biological parameters were measured both in the field and the laboratory. Plankton samples were identified and quantified to assess species richness, abundance, and community composition. The results revealed that lentic water bodies could be classified into four trophic states: 1 oligotrophic, 6 mesotrophic, 17 eutrophic, and 26 hypereutrophic systems. This study found that phytoplankton density peaked in hypereutrophic waters, while species richness was highest in oligotrophic conditions. Nutrient-rich environments favored Cyanophyta dominance, whereas Dinophyta were more abundant in nutrient-poor systems. Zooplankton assemblages, particularly Rotifers and Copepoda, showed higher abundance in eutrophic and hypereutrophic ecosystems, while diversity was greater in mesotrophic and oligotrophic waters. Statistical analyses indicated that environmental factors, especially nutrient concentrations, played a significant role in shaping plankton assemblages along the trophic gradients. Cyanophyta showed strong positive correlations with total dissolved solid (TDS) (r = 0.383, p < 0.01) and electrical conductivity (EC) (r = 0.403, p < 0.01), while Dinophyta showed a strong positive correlation with dissolved oxygen (r = 0.319, p < 0.05). Zooplankton, particularly Rotifers, exhibited significant correlations with total phosphorus (TP) (r = 0.358, p < 0.05) and TDS (r = 0.387, p < 0.01). Multidimensional Scaling (MDS) analysis and Principal Coordinate Analysis (PCoA) confirmed that water quality variables strongly influenced community structure. This study provides important insights into how environmental factors drive phytoplankton and zooplankton assemblages across trophic gradients in Thai lentic ecosystems, contributing to the improved understanding and management of freshwater bodies and eutrophication. Full article
Show Figures

Figure 1

16 pages, 3853 KiB  
Article
Temporal Variation of Plankton Community in Typical Lake in Middle Reaches of Yangtze River: Structure, Environmental Response and Interactions
by Borui Zou, Hongjuan Hu, Jia Jia, Weiju Wu, Xin Li, Xiaofei Chen, Honghui Zeng, Zhi Wang and Chenxi Wu
Water 2025, 17(7), 1021; https://doi.org/10.3390/w17071021 - 31 Mar 2025
Cited by 1 | Viewed by 534
Abstract
Liangzi Lake, a typical shallow lake in the middle reaches of the Yangtze River, is important for water resource and biodiversity conservation. With the development of urbanization, anthropogenic activities have posed serious threats to the water quality and biodiversity of Liangzi Lake. To [...] Read more.
Liangzi Lake, a typical shallow lake in the middle reaches of the Yangtze River, is important for water resource and biodiversity conservation. With the development of urbanization, anthropogenic activities have posed serious threats to the water quality and biodiversity of Liangzi Lake. To assess the aquatic ecosystem health of Liangzi Lake, the structure, the environmental response, and the interactions of plankton were investigated in 2022 and 2023. The results indicated that water temperature was a pivotal factor regulating plankton dynamics, with the assemblage patterns predominantly shaped by the phytoplankton species, which were Bacillariophyta in spring and Chlorophyta in summer. In terms of the phytoplankton, dissolved oxygen and the N:P ratio significantly affect cyanobacteria distribution. The high biomass and abundance of cyanobacteria in summer highlight the potential risk of harmful algal blooms. In contrast to the phytoplankton, the zooplankton exhibited enhanced resilience to changes in the surrounding environment. Rotifera was the dominant group in summer in terms of both abundance and biomass. Most core genera of plankton were jointly identified by eDNA metabarcoding and microscopical analysis, and eDNA metabarcoding had advantages in revealing a higher diversity. However, some taxa among rotifers such as Liliferotrocha were only identified using microscopical analysis. Therefore, a combination of both the methods is recommended to better understand the structuring mechanisms of plankton assemblages in lake ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

19 pages, 4143 KiB  
Article
A Stable Isotope Analysis to Quantify the Contribution of Basal Dietary Sources to Food Webs of Drinking Water Reservoirs
by Feng Huang, Wen Zhao, Xingye Qiao, Changge Xia, Yuan Liu, Jie Wei, Dongpeng Yin and George Arhonditsis
Water 2024, 16(22), 3338; https://doi.org/10.3390/w16223338 - 20 Nov 2024
Cited by 1 | Viewed by 1339
Abstract
This study investigates the food web structure of the Xinlicheng Reservoir, a drinking water source of critical importance in Changchun, China, by employing stable isotope analysis (SIA) to quantify the contribution ratios of four basal dietary sources—phytoplankton, zooplankton, sediment organic matter, and particulate [...] Read more.
This study investigates the food web structure of the Xinlicheng Reservoir, a drinking water source of critical importance in Changchun, China, by employing stable isotope analysis (SIA) to quantify the contribution ratios of four basal dietary sources—phytoplankton, zooplankton, sediment organic matter, and particulate organic matter (POM)—to the diets of two key filter-feeding fish species, Hypophthalm ichthys molitrix and Aristichthys nobilis. The analysis reveals that phytoplankton is the dominant dietary source for both species, contributing 32.08% and 34.06%, respectively, whereas the POM contribution is discernably lower (13.25%). The average trophic level of the fish assemblage in Xinlicheng Reservoir is 3.03, while the trophic levels of the two filter-feeding species lie between 3.00 and 3.50. Furthermore, a random forest model was used to identify key environmental drivers of isotopic variations in these basal dietary sources, highlighting the significant role of pH, total nitrogen (TN), chloride (Cl), calcium (Ca2+), phosphorus (TP), and silicate (SiO44) in influencing carbon and nitrogen isotopic ratios. These findings provide critical insights to optimize biomanipulation strategies aimed at improving water quality in drinking water reservoirs by enhancing our understanding of the environmental factors that govern trophic interactions and broader food web dynamics. Full article
Show Figures

Figure 1

15 pages, 18138 KiB  
Article
Phytoplankton Structure in a Coastal Region of the Eastern Entrance of the Gulf of California during La Niña 2022
by Elizabeth Durán-Campos, David Alberto Salas-de-León, Erik Coria-Monter, María Adela Monreal-Gómez and Benjamín Quiroz-Martínez
Oceans 2024, 5(3), 647-661; https://doi.org/10.3390/oceans5030037 - 10 Sep 2024
Cited by 1 | Viewed by 1733
Abstract
This paper assessed the phytoplankton structure and its relationship with the physical environment in the coastal region off Mazatlán, Mexico, in two seasons of 2022, a year in which a strong La Niña event took place: (1) the warmer (August) and (2) the [...] Read more.
This paper assessed the phytoplankton structure and its relationship with the physical environment in the coastal region off Mazatlán, Mexico, in two seasons of 2022, a year in which a strong La Niña event took place: (1) the warmer (August) and (2) the transitional period to the cold phase (November), based on hydrographic data and samples collected in two systematic scientific expeditions. The results showed clear differences between both seasons. Regarding total abundance, August reached 125,200 cells L−1, while November amounted to 219,900 cells L−1. Regarding species composition, the diatoms Cylindrotheca closterium and Planktoniella sol were dominant in August, while Thalassionema nitzschioides and Tetramphora decussata dominated the assemblages in November. The dinoflagellate Protoperidinium punctulatum was dominant in both seasons. However, very marked differences in its abundance are reported. The differences observed in the species richness and abundance could be attributed to the physical configuration of the water column, particularly the surface temperature, which showed clear changes between both seasons. The results presented here confirmed the high phytoplankton richness (some of them with the potential to generate harmful algal blooms), abundance, and diversity values of the region, suggesting a strong relationship with the physical environment. Full article
Show Figures

Figure 1

18 pages, 2713 KiB  
Article
Continuous Zonal Gradients Characterize Epipelagic Plankton Assemblages and Hydrography in the Subtropical North Atlantic
by Antonio Bode, María Ángeles Louro, Elena Rey and Angel F. Lamas
Oceans 2024, 5(1), 109-126; https://doi.org/10.3390/oceans5010007 - 1 Mar 2024
Viewed by 1548
Abstract
The subtropical North Atlantic is a key region for understanding climate impact in the ocean. Plankton studies in this region have been generally framed in biogeographic provinces or focused on latitudinal gradients. In this study, we demonstrate the benefits of using empirically constructed [...] Read more.
The subtropical North Atlantic is a key region for understanding climate impact in the ocean. Plankton studies in this region have been generally framed in biogeographic provinces or focused on latitudinal gradients. In this study, we demonstrate the benefits of using empirically constructed continuous gradients versus the use of average values for biogeographical provinces to characterize plankton assemblages along a longitudinal transect at 24.5° N using an unprecedented array of stations including hydrographic observations, abundance of phytoplankton and zooplankton, and plankton size spectra in the epipelagic layer (0–200 m). In addition, the variability of zooplankton assemblages was analyzed using detailed taxonomic identification at selected stations. We found significant gradients in most hydrographic and plankton variables. The former, including surface temperature and salinity, the depth of the upper mixing layer, and the depth of the chlorophyll maximum, displayed non-linear gradients with maximum or minimum values near the center of the transect. In contrast, most plankton variables showed linear zonal gradients. Phytoplankton, microzooplankton (<100 µm), and the slope and the intercept of the size spectra increased (and Trichodesmium decreased) to the west. Total mesozooplankton (>200 µm) did not show any significant zonal pattern, but the taxonomic assemblages were characterized by a gradual replacement of large Calanoids by small-bodied Cyclopoid copepods from east to west. The use of continuous gradients provides more detailed information on the zonal structure of subtropical plankton than the classical approach using discrete areas. Full article
Show Figures

Figure 1

53 pages, 7312 KiB  
Article
Diversity, Composition and Environmental Relations of Periphytic Rotifer Assemblages in Lentic Freshwater Bodies (Flanders, Lower Belgium)
by Luc Denys and Willem H. De Smet
Diversity 2023, 15(12), 1214; https://doi.org/10.3390/d15121214 - 12 Dec 2023
Cited by 3 | Viewed by 2368
Abstract
Periphytic rotifer assemblages from lentic habitats are understudied. To improve knowledge on the principal environmental determinants of their structure and composition, we examined summer periphyton from 184 freshwater bodies from a taxonomic and multi-trait-based perspective. Only the latter allowed consideration of all bdelloids. [...] Read more.
Periphytic rotifer assemblages from lentic habitats are understudied. To improve knowledge on the principal environmental determinants of their structure and composition, we examined summer periphyton from 184 freshwater bodies from a taxonomic and multi-trait-based perspective. Only the latter allowed consideration of all bdelloids. Alpha diversity decreased with electrolyte and aluminium concentration but increased with macrophyte richness, pointing at salinization, metal toxicity and loss of structural niche heterogeneity as potential threats for rotifer diversity. Replacement was the prominent component of beta diversity, with acidified sites showing the highest local contributions. Variation partitioning indicated that local conditions explained variation in species composition best, but general setting (soil type, land cover, connectivity) and spatial context were also not insignificant. Redundancy analysis related species composition more particularly to gradients of pH and trophic status, whereas the representation of functional groups was structured mainly by phytoplankton productivity. Mirroring shifts observed in the plankton, high phytoplankton productivity associated with larger size and more detritibacterivory. Dominance of collectors constrained variation in guild ratios, underlining the need for more refined functional approaches. To aid the use of periphytic rotifers in regional water quality assessment, we identified indicators and community thresholds for pH and trophic variables and determined optima and tolerances for individual taxa. Full article
(This article belongs to the Special Issue Biodiversity of Rotifers-2nd Edition)
Show Figures

Figure 1

35 pages, 2591 KiB  
Article
Patterns and Predictors of Phytoplankton Assemblage Structure in a Coastal Lagoon: Species-Specific Analysis Needed to Disentangle Anthropogenic Pressures from Ocean Processes
by Maria João Lima, Ana B. Barbosa, Cátia Correia, André Matos and Alexandra Cravo
Water 2023, 15(24), 4238; https://doi.org/10.3390/w15244238 - 10 Dec 2023
Cited by 3 | Viewed by 2469
Abstract
Phytoplankton are dominant primary producers and key indicators in aquatic ecosystems. Understanding the controlling factors on the structure of phytoplankton assemblages is fundamental, but particularly challenging at the land–ocean interface. To identify the patterns and predictors of phytoplankton assemblage structure in the Ria [...] Read more.
Phytoplankton are dominant primary producers and key indicators in aquatic ecosystems. Understanding the controlling factors on the structure of phytoplankton assemblages is fundamental, but particularly challenging at the land–ocean interface. To identify the patterns and predictors of phytoplankton assemblage structure in the Ria Formosa coastal lagoon (south Portugal), this study combined phytoplankton abundance along a transect between the discharge point of a wastewater treatment plant and a lagoon inlet, over two years, with physico-chemical, hydrographic, and meteo-oceanographic variables. Our study identified 147 operational taxonomic units (OTUs), and planktonic diatoms (60–74%) and cryptophyceans (17–25%) dominated the phytoplankton in terms of abundance. Despite strong lagoon hydrodynamics, and the lack of spatial differences in the phytoplankton abundance and most diversity metrics, the multivariate analysis revealed differences in the assemblage structure between stations (p < 0.001) and seasons (p < 0.01). Indicator analysis identified cryptophyceans as lagoon generalists, and 11 station-specific specialist OTUs, including Kryptoperidinium foliaceum and Oscillatoriales (innermost stations) and potentially toxigenic species (Pseudo-nitzschia and Dinophysis; outer lagoon station, p < 0.05). Water temperature, pH, and nutrients emerged as the variables that best explained the changes in the phytoplankton assemblage structure (p < 0.001). Our findings provide insight into the relevance of local anthropogenic and natural forcings on the phytoplankton assemblage structure and can be used to support the management of RF and other coastal lagoons. Full article
(This article belongs to the Special Issue Changing Phytoplankton Communities in Aquatic Environments)
Show Figures

Figure 1

25 pages, 6216 KiB  
Article
Response of Phytoplankton Communities to Variation in Salinity in a Small Mediterranean Coastal Lagoon: Future Management and Foreseen Climate Change Consequences
by Viviana Ligorini, Marie Garrido, Nathalie Malet, Louise Simon, Loriane Alonso, Romain Bastien, Antoine Aiello, Philippe Cecchi and Vanina Pasqualini
Water 2023, 15(18), 3214; https://doi.org/10.3390/w15183214 - 9 Sep 2023
Cited by 7 | Viewed by 2870
Abstract
Mediterranean coastal lagoons are particularly vulnerable to increasing direct anthropogenic threats and climate change. Understanding their potential responses to global and local changes is essential to develop management strategies adapted to these ecosystems. Salinity is a fundamental structuring factor for phytoplankton communities; however, [...] Read more.
Mediterranean coastal lagoons are particularly vulnerable to increasing direct anthropogenic threats and climate change. Understanding their potential responses to global and local changes is essential to develop management strategies adapted to these ecosystems. Salinity is a fundamental structuring factor for phytoplankton communities; however, its role under climate change is understudied. We hypothesized that salinity variations imposed by climate change and/or management actions could disturb Mediterranean lagoons’ phytoplankton communities. To test our hypothesis, we performed two 5-day microcosm experiments in which natural phytoplankton assemblages from the Santa Giulia lagoon (Corsica Island) were subjected to three increasing (53–63–73) and decreasing (33–26–20) levels of salinity, to mimic strong evaporation and flash flooding, respectively. Results indicate that over-salinization inhibited growth and modified the assemblages’ composition. Freshening, on the contrary, showed feeble effects, mainly boosting microphytoplankton abundance and depleting diversity at lowest salinity. In both experiments and under freshening in particular, initially rare species emerged, while photosynthetic activity was degraded by salinity increase only. We demonstrated that phytoplankton communities’ structure and metabolism are strongly altered by the predicted implications of climate change. Such impacts have to be considered for future management of coastal lagoons (control of sea exchanges and watershed fluxes). This work constitutes a priority step towards the proactive adapted management and conservation of such as-yet-neglected ecosystems in the context of climate change. Full article
Show Figures

Figure 1

20 pages, 3550 KiB  
Article
Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer
by Sergey A. Mosharov, Elena I. Druzhkova, Andrey F. Sazhin, Pavel V. Khlebopashev, Anastasia N. Drozdova, Nikolay A. Belyaev and Andrey I. Azovsky
J. Mar. Sci. Eng. 2023, 11(4), 832; https://doi.org/10.3390/jmse11040832 - 15 Apr 2023
Cited by 6 | Viewed by 2009
Abstract
Knowledge of the features of the structure and productivity of the Arctic communities of marine planktonic algae is necessary to identify possible changes in the pelagic ecosystem functioning under the changing climate condition of the Kara Sea. This study shows that the species [...] Read more.
Knowledge of the features of the structure and productivity of the Arctic communities of marine planktonic algae is necessary to identify possible changes in the pelagic ecosystem functioning under the changing climate condition of the Kara Sea. This study shows that the species diversity, abundance of phytoplankton, and production activity of algae are at a maximum at the beginning of summer during a seasonal ice melting period. The studies were carried out in the southwestern Kara Sea and in the estuarine zone of the Ob and Yenisei rivers from 29 June to 15 July 2018. The concentrations of nutrients and dissolved organic carbon were determined. The optical properties of chromophoric dissolved organic matter, species composition, abundance and biomass of all size groups of phototrophic and heterotrophic phytoplankton, and parameters of primary production and potential photosynthetic capacity were considered. Statistical data analysis showed that the leading factors influencing changes in the abundance of phytoplankton and its productivity are the content of silicates and salinity. At the same time, the production potential of algae is realized as short-lived and small phytoplankton assemblages differed in number taxa and diversity, with an equally rapid decrease in photosynthetic activity. Such changes affect the Marine Zone to a greater extent and the Estuarine Zone to a lesser extent. Full article
Show Figures

Figure 1

15 pages, 2158 KiB  
Article
Different Geographic Strains of Dinoflagellate Karlodinium veneficum Host Highly Diverse Fungal Community and Potentially Serve as Possible Niche for Colonization of Fungal Endophytes
by Yunyan Deng, Kui Wang, Zhangxi Hu, Qiang Hu and Yingzhong Tang
Int. J. Mol. Sci. 2023, 24(2), 1672; https://doi.org/10.3390/ijms24021672 - 14 Jan 2023
Cited by 5 | Viewed by 2679
Abstract
In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of [...] Read more.
In numerous studies, researchers have explored the interactions between fungi and their hosting biota in terrestrial systems, while much less attention has been paid to the counterpart interactions in aquatic, and particularly marine, ecosystems. Despite the growing recognition of the potential functions of fungi in structuring phytoplankton communities, the current insights were mostly derived from phytoplankton hosts, such as diatoms, green microalgae, and cyanobacteria. Dinoflagellates are the second most abundant group of phytoplankton in coastal marine ecosystems, and they are notorious for causing harmful algal blooms (HABs). In this study, we used high-throughput amplicon sequencing to capture global snapshots of specific fungal assemblages associated with laboratory-cultured marine dinoflagellate. We investigated a total of 13 clonal cultures of the dinoflagellate Karlodinium veneficum that were previously isolated from 5 geographic origins and have been maintained in our laboratory from several months to more than 14 years. The total recovered fungal microbiome, which consisted of 349 ASVs (amplicon sequencing variants, sequences clustered at a 100% sequence identity), could be assigned to 4 phyla, 18 classes, 37 orders, 65 families, 97 genera, and 131 species. The fungal consortium displayed high diversity and was dominated by filamentous fungi and ascomycetous and basidiomycetous yeasts. A core set of three genera among all the detected fungi was constitutively present in the K. veneficum strains isolated from geographically distant regions, with the top two most abundant genera, Thyridium and Pseudeurotium, capable of using hydrocarbons as the sole or major source of carbon and energy. In addition, fungal taxa previously documented as endophytes in other hosts were also found in all tested strains of K. veneficum. Because host–endophyte interactions are highly variable and strongly case-dependent, these fungal taxa were not necessarily genuine endosymbionts of K. veneficum; instead, it raised the possibility that dinoflagellates could potentially serve as an alternative ecological niche for the colonization of fungal endophytes. Our findings lay the foundation for further investigations into the potential roles or functions of fungi in the regulation of the growth dynamics and HABs of marine dinoflagellates in the field. Full article
(This article belongs to the Special Issue Plant-Microbe Interactions 2.0)
Show Figures

Figure 1

34 pages, 6651 KiB  
Article
Physical and Biological Features of the Waters in the Outer Patagonian Shelf and the Malvinas Current
by Pavel A. Salyuk, Sergey A. Mosharov, Dmitry I. Frey, Valentina V. Kasyan, Vladimir I. Ponomarev, Olga Yu. Kalinina, Eugene G. Morozov, Alexander A. Latushkin, Philipp V. Sapozhnikov, Sofia A. Ostroumova, Nadezhda A. Lipinskaya, Maxim V. Budyansky, Pavel V. Chukmasov, Viktor A. Krechik, Michael Yu. Uleysky, Pavel A. Fayman, Alexander Yu. Mayor, Irina V. Mosharova, Anton D. Chernetsky, Svetlana P. Shkorba and Nikita A. Shvedadd Show full author list remove Hide full author list
Water 2022, 14(23), 3879; https://doi.org/10.3390/w14233879 - 28 Nov 2022
Cited by 10 | Viewed by 3939
Abstract
The aim of this study is to trace how the fine-thermohaline and kinematic structure, formed over a section along 45.8° S in the interaction zone of the outer Patagonian Shelf (PS) and Malvinas (Falkland) Current (MC) System waters, affect the spatial distribution of [...] Read more.
The aim of this study is to trace how the fine-thermohaline and kinematic structure, formed over a section along 45.8° S in the interaction zone of the outer Patagonian Shelf (PS) and Malvinas (Falkland) Current (MC) System waters, affect the spatial distribution of bio-optical characteristics, phyto/zooplankton, birds, and marine mammals. For the first time, simultaneous multidisciplinary observations at high spatial resolution (~2.5 km) were performed in this region during the cruise of the R/V “Akademic Mstislav Keldysh” in February 2022. A fine structure of alternating upwelling and downwelling zones over the PS and slope was identified, which resulted from the interaction between the MC inshore branch (MCi), bottom topography, and wind. This interaction significantly affects all the physical, and optical characteristics analyzed in the work, as well as the biota of the region. It was found that the euphotic zone is larger in the downwelling zones than in the upwelling zones, and all spatially local maxima of phytoplankton photosynthetic efficiency are observed in the zones between upwelling and downwelling. Phytoplankton along the section were represented by 43 species. A total of 30 zooplankton species/taxa were identified. Three species of marine mammals and 11 species of birds were recorded in the study site. Most of the phytoplankton species list were formed by dinoflagellates, and picoplankton Prasinoderma colonial quantitatively dominated everywhere. Two floristic and three assemblage groups were distinguished among the analyzed phytoplankton communities. High phytoplankton biodiversity was observed above the PS and low above the PS edge and in the MCi core. Copepods mostly dominated in zooplankton. Subantarctic species/taxa of zooplankton concentrated in the nearshore waters of the PS, while Antarctic species/taxa were most abundant in the zone between the MCi and the MC offshore branch (MCo). The relative abundance of birds in the PS was several times higher than in the MCo. The minimum abundance of birds was in the MCi in the zone of the strongest upwelling identified above the PS edge. Full article
Show Figures

Figure 1

Back to TopTop