Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (131)

Search Parameters:
Keywords = physical publishing industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 427 KiB  
Article
ROS-Compatible Robotics Simulators for Industry 4.0 and Industry 5.0: A Systematic Review of Trends and Technologies
by Jose M. Flores Gonzalez, Enrique Coronado and Natsuki Yamanobe
Appl. Sci. 2025, 15(15), 8637; https://doi.org/10.3390/app15158637 - 4 Aug 2025
Viewed by 277
Abstract
Simulators play a critical role in the development and testing of Industry 4.0 and Industry 5.0 applications. However, few studies have examined their capabilities beyond physics modeling, particularly in terms of connectivity and integration within broader robotic ecosystems. This review addresses this gap [...] Read more.
Simulators play a critical role in the development and testing of Industry 4.0 and Industry 5.0 applications. However, few studies have examined their capabilities beyond physics modeling, particularly in terms of connectivity and integration within broader robotic ecosystems. This review addresses this gap by focusing on ROS-compatible simulators. Using the SEGRESS methodology in combination with the PICOC framework, this study systematically analyzes 65 peer-reviewed articles published between 2021 and 2025 to identify key trends, capabilities, and application domains of ROS-integrated robotic simulators in industrial and manufacturing contexts. Our findings indicate that Gazebo is the most commonly used simulator in Industry 4.0, primarily due to its strong compatibility with ROS, while Unity is most prevalent in Industry 5.0 for its advanced visualization, support for human interaction, and extended reality (XR) features. Additionally, the study examines the adoption of ROS and ROS 2, and identifies complementary communication and integration technologies that help address the current interoperability challenges of ROS. These insights are intended to inform researchers and practitioners about the current landscape of simulation platforms and the core technologies frequently incorporated into robotics research. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

12 pages, 1343 KiB  
Article
Cautionary Note on the Current EN1998-4 Formula of the Additional Pressure in the Seismic Design of Circular Silos
by Sulyman Mansour and Stefano Silvestri
Designs 2025, 9(4), 89; https://doi.org/10.3390/designs9040089 - 30 Jul 2025
Viewed by 185
Abstract
Silos are strategic structures widespread in the industrial sectors for post-harvest preservation purposes. Current standards on the seismic design of silos are understandably based on approximate and simplified assumptions, leading intentionally to conservative design-oriented formulae. However, unjustified over-estimation might lead to unnecessary economic [...] Read more.
Silos are strategic structures widespread in the industrial sectors for post-harvest preservation purposes. Current standards on the seismic design of silos are understandably based on approximate and simplified assumptions, leading intentionally to conservative design-oriented formulae. However, unjustified over-estimation might lead to unnecessary economic losses. As part of the authors’ analytical and experimental ongoing research on the complex seismic behavior of filled silo systems, in this short paper, an in-depth reading of the theoretical framework originally proposed during the 1970s and 1980s is provided to present a better understanding of the unexplained design-oriented formula of the seismic additional pressure in the European standard. A conceptual incongruence in the Eurocode EN1998-4:2006 is pointed out and discussed regarding the dynamic overpressure formula in the case of ground-supported flat-bottom circular silos subjected to seismic excitation. Specifically, a potential miscounting of the geometrical aspect in circular silos, with respect to rectangular ones, leads to an inconsistent amplification of the additional pressures in the range 1.65–2, depending on the filling aspect ratio of the silo. This inconsistency provides the reason for several unexplained results recently published in the scientific literature. A proposal for a physically based correction, retaining the current assumptions made by the EN1998-4, is finally given. Full article
Show Figures

Figure 1

28 pages, 2461 KiB  
Review
Recycled Aggregate: A Solution to Sustainable Concrete
by Jitao Bai, Chenxi Ge, Jiahe Liang and Jie Xu
Materials 2025, 18(12), 2706; https://doi.org/10.3390/ma18122706 - 9 Jun 2025
Viewed by 621
Abstract
Recycling construction and demolition (C&D) waste into recycled aggregate (RA) and recycled aggregate concrete (RAC) is conducive to natural resource conservation and industry decarbonization, which have been attracting much attention from the community. This paper aims to present a synthesis of recent scientific [...] Read more.
Recycling construction and demolition (C&D) waste into recycled aggregate (RA) and recycled aggregate concrete (RAC) is conducive to natural resource conservation and industry decarbonization, which have been attracting much attention from the community. This paper aims to present a synthesis of recent scientific insights on RA and RAC by conducting a systematic review of the latest advances in their properties, test techniques, modeling, modification and improvement, as well as applications. Over 100 papers published in the past three years were examined, extracting enlightening information and recommendations for engineering. The review shows that consistent conclusions have been drawn about the physical properties in that RA can reduce the workability and the setting time of fresh RAC and increase the porosity of hardened RAC. Its impact on drying and autogenous shrinkage is governed by its size and the strength of the parent concrete. RA generally acts negatively on the durability and mechanical properties of concrete, but such effects remain controversial as many opposite observations have been reported. Apart from the commonly used multiscale test techniques, real-time monitoring also plays an important role in the investigation of deformation and fracture processes. Analytical models for RAC were usually modified from the existing models for NAC or established through regression analysis, while for numerical models, the distribution of attached mortar should be considered to improve their accuracy. Machine learning models are effective in predicting RAC properties. Modification of RA can be implemented by either removing or strengthening the attached mortar, while the modification of RAC is mainly achieved by improving its microstructure. Current exploration of RAC applications mainly focuses on the optimization of concrete design and mix procedures, structural components, as well as multifunctional construction materials, revealing the room for its further exploitation in the industry. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1689 KiB  
Systematic Review
A Bibliometric Analysis on Designing Urban Green and Blue Spaces Related to Environmental and Public Health Benefits
by Catarina de Sousa Silva, Simon Bell, Lenka Lackóová and Thomas Panagopoulos
Land 2025, 14(6), 1230; https://doi.org/10.3390/land14061230 - 6 Jun 2025
Viewed by 676
Abstract
Humans and nature have always been connected. Meanwhile, with the industrial revolution, landscapes have become more artificial, reducing the human–nature relationship. Urban design should follow biophilic principles to reconnect people with nature, mitigate climate change, improve air quality, restore biodiversity loss, and solve [...] Read more.
Humans and nature have always been connected. Meanwhile, with the industrial revolution, landscapes have become more artificial, reducing the human–nature relationship. Urban design should follow biophilic principles to reconnect people with nature, mitigate climate change, improve air quality, restore biodiversity loss, and solve social problems. Poor air quality affects people’s health, and vegetation plays a crucial role in purifying the air. Similarly, contact with nature benefits physical and mental health and well-being. However, there is no consensus on how urban design can be beneficial for improving air quality and human health. This review paper aims to provide a comprehensive evaluation of evidence linking nature-based solutions (NBSs), air quality, carbon neutrality, and human health and well-being. Five hundred articles published between 2000 and 2024 were analysed. A number of publications studied the benefits of green infrastructure in improving air quality, carbon sequestration, or the influence of green spaces on human health. The topic of NBSs has recently emerged related to air quality, health, and promoting physical activity, as has accessibility to green spaces and mental health, also associated with blue spaces and residential gardens. The results revealed the gaps in the literature on how to design green and blue spaces to tackle environmental and public health crises simultaneously. Full article
(This article belongs to the Special Issue Feature Papers for Land Planning and Landscape Architecture Section)
Show Figures

Figure 1

23 pages, 10426 KiB  
Article
Experimental Evaluation of Thermo-Mechanical Properties of GRCop-42, Produced by PBF-LB, at Low Temperatures
by Daniele Cortis, Cristina Giancarli, Francesco Ferella, Chiara Di Donato, Riccardo Elleboro, Alessandro Razeto, Stefano Nisi and Donato Orlandi
Metals 2025, 15(6), 604; https://doi.org/10.3390/met15060604 - 28 May 2025
Viewed by 441
Abstract
Today, Powder Bed Fusion-Laser Based technology is widely used in many industrial fields, but some high-demanding applications are still not fully investigated, such as low temperatures. In basic physics research, experiments usually use low temperatures to reduce external influences and to increase the [...] Read more.
Today, Powder Bed Fusion-Laser Based technology is widely used in many industrial fields, but some high-demanding applications are still not fully investigated, such as low temperatures. In basic physics research, experiments usually use low temperatures to reduce external influences and to increase the sensitivity of particle detectors, accelerators, etc. The production capabilities of this technology have become a standard for manufacturing such components, and the demand for high performance has led to the investigation of new materials, like GRCop-42. It possesses excellent thermal properties and strength at high temperatures, and although several works have been published in recent years, full research on its behaviour at low temperatures is still missing. The aim of the paper is to investigate the mechanical properties of GRCop-42, produced by PBF-LB, from low to room temperature, like Elastic Modulus and Poisson’s ratio, and correlate them with thermal conductivity in the as-built state and after heat treatment. The results showed that the material can maintain high strength even at low temperatures, without losing ductility and the ability to store strain energy; moreover, after heat treatment, it increases its thermal properties due to the way the precipitates are dispersed in the copper matrix. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Graphical abstract

20 pages, 988 KiB  
Review
Safety and Security Considerations for Online Laboratory Management Systems
by Andrea Eugenia Pena-Molina and Maria Mercedes Larrondo-Petrie
J. Cybersecur. Priv. 2025, 5(2), 24; https://doi.org/10.3390/jcp5020024 - 13 May 2025
Viewed by 775
Abstract
The pandemic forced educators to shift abruptly to distance learning, also referred to as e-learning education. Educational institutions integrated new educational tools and online platforms. Several schools, colleges, and universities began incorporating online laboratories in different fields of education, such as engineering, information [...] Read more.
The pandemic forced educators to shift abruptly to distance learning, also referred to as e-learning education. Educational institutions integrated new educational tools and online platforms. Several schools, colleges, and universities began incorporating online laboratories in different fields of education, such as engineering, information technology, physics, and chemistry. Online laboratories may take the form of virtual laboratories, software-based simulations available via the Internet, or remote labs, which involve accessing physical equipment online. Adopting remote laboratories as a substitute for conventional hands-on labs has raised concerns regarding the safety and security of both the remote lab stations and the Online Laboratory Management Systems (OLMSs). Design patterns and architectures need to be developed to attain security by design in remote laboratories. Before these can be developed, software architects and developers must understand the domain and existing and proposed solutions. This paper presents an extensive literature review of safety and security concerns related to remote laboratories and an overview of the industry, national and multinational standards, and legal requirements and regulations that need to be considered in building secure and safe Online Laboratory Management Systems. This analysis provides a taxonomy and classification of published standards as well as security and safety problems and possible solutions that can facilitate the documentation of best practices, and implemented solutions to produce security by design for remote laboratories and OLMSs. Full article
Show Figures

Figure 1

24 pages, 3003 KiB  
Systematic Review
Application-Wise Review of Machine Learning-Based Predictive Maintenance: Trends, Challenges, and Future Directions
by Christos Tsallis, Panagiotis Papageorgas, Dimitrios Piromalis and Radu Adrian Munteanu
Appl. Sci. 2025, 15(9), 4898; https://doi.org/10.3390/app15094898 - 28 Apr 2025
Cited by 1 | Viewed by 3527
Abstract
This systematic literature review (SLR) provides a comprehensive application-wise analysis of machine learning (ML)-driven predictive maintenance (PdM) across industrial domains. Motivated by the digital transformation of industry 4.0, this study explores how ML techniques optimize maintenance by predicting faults, estimating remaining useful life [...] Read more.
This systematic literature review (SLR) provides a comprehensive application-wise analysis of machine learning (ML)-driven predictive maintenance (PdM) across industrial domains. Motivated by the digital transformation of industry 4.0, this study explores how ML techniques optimize maintenance by predicting faults, estimating remaining useful life (RUL), and reducing operational downtime. Sixty peer-reviewed articles published between 2020 and 2024 were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines, and were analyzed based on industrial sector, ML techniques, datasets, evaluation metrics, and implementation challenges. Results show that combining ML with diverse sensor data enhances predictive performance under varying operational conditions across manufacturing, energy, healthcare, and transportation. Frequently used open datasets include the commercial modular aero-propulsion system simulation (CMAPSS), the malfunctioning industrial machine investigation and inspection (MIMII), and the semiconductor manufacturing process (SECOM) datasets, though data heterogeneity and imbalance remain major barriers. Emerging paradigms such as hybrid modeling, digital twins, and physics-informed learning show promise but face issues like computational cost, interpretability, and limited scalability. The findings highlight future research needs in model generalizability, real-world validation, and explainable artificial intelligence (AI) to bridge gaps between ML innovations and industrial practice. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 3018 KiB  
Article
Biodigital Micro-Cellular Mashrabiya: Lattice Architectural Microbial Membranes for Sustainable Built Environments
by Yomna K. Abdallah and Alberto T. Estevez
J 2025, 8(2), 13; https://doi.org/10.3390/j8020013 - 3 Apr 2025
Viewed by 749
Abstract
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, [...] Read more.
A typical Mashrabiya in Islamic architecture represents an integral climatic and sustainable solution, not only by offering recycling and the responsible use of small pieces of wood assembled in stunning geometrical and natural abstract lattice panels, but also because it offers air cooling, filtration, and flow from the exterior to the interior of a building. This leads to the air flow being cooled by the water spray offered by the interior patio fountains, in addition to protecting the sanctity and privacy of a building’s inhabitants, which complies with religious beliefs and social considerations. This integral sustainable solution acts on multiple scales: material recycling and responsible use, as well as climatic and socio-cultural considerations similar to Gaudi’s approach with Trencadís technology, not far from the Arabic and Islamic architectural influence revived in the Catalan Modernism contemporary to his time. In these footsteps, we explore the Mashrabiya of our time: an interactive and living architectural membrane, a soft interface that reacts by growing, giving shade, filtrating air, and transforming in time. Despite attempts to design a contemporary concept of the Mashrabiya, none of them have adopted the living organism to form an interactive living lattice architectural system. In this work, we propose the biodigital micro-cellular Mashrabiya as a novel idea and a proof of concept based on employing the authors’ previously published research findings to utilize eco-friendly biopolymers inoculated with useful native–domestic microbial strains to act as soft and living membranes, where these organisms grow and vary in their chemical and physical characteristics, sustainable function, and industrial value. This study implements an analytical–descriptive methodology to analyze the key characteristics of a traditional Mashrabiya as an integral sustainable solution and how the proposed micro-cellular biodigital Mashrabiya system can fulfill these criteria to be integrated into the built environment, forging future research trajectories on the bio-/micro-environmental compatibility of this biomaterial-based biodigital Mashrabiya system by understanding these materials’ physical, chemical, and physiological traits and their sustainable value. In this work, a biodigital Mashrabiya is proposed based on employing previous research findings on experimentally analyzed biomaterials from a biomineralized calcium-phosphate-based hydrogel and bio-welded seashell–mycelium biocomposite in forging the lattice system of a biodigital Mashrabiya, analyzing the feasibility and sustainability impact of these systems for integration into the architectural built environment. Full article
Show Figures

Figure 1

39 pages, 8548 KiB  
Review
Driving Supply Chain Transformation with IoT and AI Integration: A Dual Approach Using Bibliometric Analysis and Topic Modeling
by Jerifa Zaman, Atefeh Shoomal, Mohammad Jahanbakht and Dervis Ozay
IoT 2025, 6(2), 21; https://doi.org/10.3390/iot6020021 - 25 Mar 2025
Cited by 3 | Viewed by 3331
Abstract
The objective of this study is to conduct an analysis of the scientific literature on the application of the Internet of Things (IoT) and artificial intelligence (AI) in enhancing supply chain operations. This research applies a dual approach combining bibliometric analysis and topic [...] Read more.
The objective of this study is to conduct an analysis of the scientific literature on the application of the Internet of Things (IoT) and artificial intelligence (AI) in enhancing supply chain operations. This research applies a dual approach combining bibliometric analysis and topic modeling to explore both quantitative citation trends and qualitative thematic insights. By examining 810 qualified articles, published between 2011 and 2024, this research aims to identify the main topics, key authors, influential sources, and the most-cited articles within the literature. The study addresses critical research questions on the state of IoT and AI integration into supply chains and the role of these technologies in resolving digital supply chain management challenges. The convergence of IoT and AI holds immense potential to redefine supply chain management practices, improving productivity, visibility, and sustainability in interconnected global supply chains. This research not only highlights the continuous evolution of the supply chain field in light of Industry 4.0 technologies—such as machine learning, big data analytics, cloud computing, cyber–physical systems, and 5G networks—but also provides an updated overview of advanced IoT and AI technologies currently applied in supply chain operations, documenting their evolution from rudimentary stages to their current state of advancement. Full article
Show Figures

Figure 1

17 pages, 4331 KiB  
Article
Life Cycle Carbon Emissions Accounting of China’s Physical Publishing Industry
by Ruixin Xu, Yongwen Yang, Liting Zhang, Qifen Li, Fanyue Qian, Lifei Song and Bangpeng Xie
Sustainability 2025, 17(4), 1664; https://doi.org/10.3390/su17041664 - 17 Feb 2025
Viewed by 1181
Abstract
The publishing industry, a major contributor to greenhouse gas emissions, produced approximately 730 Mt CO2eq globally in 2020 during the paper production phase alone. Unlike other sectors, decarbonization in publishing requires systematic reforms across the supply chain, production efficiency, energy transitions, [...] Read more.
The publishing industry, a major contributor to greenhouse gas emissions, produced approximately 730 Mt CO2eq globally in 2020 during the paper production phase alone. Unlike other sectors, decarbonization in publishing requires systematic reforms across the supply chain, production efficiency, energy transitions, consumption patterns, and recycling processes, as reliance on renewable energy alone is insufficient. This study focuses on China’s physical publishing industry, developing a comprehensive, high-resolution carbon emissions dataset that spans multiple publication types, stages, and processes. It reveals the emission characteristics across the life cycle, aiming to quantify the emissions accurately and address the lack of life-cycle-based research. This study explores efficient, replicable, and scalable strategies to facilitate the industry’s low-carbon transformation and sustainable development. The findings are as follows. (1) Books are the primary carbon emissions source, contributing approximately 77.05% of the total emissions, while journals and newspapers account for 13.20% and 9.75%, respectively. (2) Annual carbon accounting across the life-cycle identifies paper production and printing as the most carbon-intensive stages, responsible for about 85% of the total emissions. (3) In terms of recycling efforts, carbon reductions of approximately 347,000 t CO2eq per year can be achieved through measures such as waste paper and plastic packaging recycling, second-hand publication exchanges, and energy recovery from incineration. Full article
Show Figures

Figure 1

22 pages, 14692 KiB  
Review
A Systematic Review of Locomotion Assistance Exoskeletons: Prototype Development and Technical Challenges
by Weiqi Lin, Hui Dong, Yongzhuo Gao, Wenda Wang, Yi Long, Long He, Xiwang Mao, Dongmei Wu and Wei Dong
Technologies 2025, 13(2), 69; https://doi.org/10.3390/technologies13020069 - 5 Feb 2025
Cited by 5 | Viewed by 4148
Abstract
Exoskeletons can track the wearer’s movements in real time, thereby enhancing physical performance or restoring mobility for individuals with gait impairments. These wearable assistive devices have demonstrated significant potential in both rehabilitation and industrial applications. This review focuses on the major advancements in [...] Read more.
Exoskeletons can track the wearer’s movements in real time, thereby enhancing physical performance or restoring mobility for individuals with gait impairments. These wearable assistive devices have demonstrated significant potential in both rehabilitation and industrial applications. This review focuses on the major advancements in exoskeleton technology published since 2020, with particular emphasis on the development of structural designs for lower-limb exoskeletons employed in locomotion assistance. We employed a systematic literature review methodology, categorizing the included studies into three main types: rigid exoskeleton, soft exoskeleton, and tethered platform. The current development status of robotic exoskeletons is analyzed based on publication year, system weight, target assistive joints, and main effects. Furthermore, we examine the factors driving these advancements and their implications for the field. The key challenges and opportunities that may influence the future development of exoskeleton technologies are also highlighted in this review. Full article
(This article belongs to the Collection Review Papers Collection for Advanced Technologies)
Show Figures

Figure 1

30 pages, 4171 KiB  
Review
Animal-Morphing Bio-Inspired Mechatronic Systems: Research Framework in Robot Design to Enhance Interplanetary Exploration on the Moon
by José Cornejo, Cecilia E. García Cena and José Baca
Biomimetics 2024, 9(11), 693; https://doi.org/10.3390/biomimetics9110693 - 13 Nov 2024
Cited by 2 | Viewed by 3803
Abstract
Over the past 50 years, the space race has potentially grown due to the development of sophisticated mechatronic systems. One of the most important is the bio-inspired mobile-planetary robots, actually for which there is no reported one that currently works physically on the [...] Read more.
Over the past 50 years, the space race has potentially grown due to the development of sophisticated mechatronic systems. One of the most important is the bio-inspired mobile-planetary robots, actually for which there is no reported one that currently works physically on the Moon. Nonetheless, significant progress has been made to design biomimetic systems based on animal morphology adapted to sand (granular material) to test them in analog planetary environments, such as regolith simulants. Biomimetics and bio-inspired attributes contribute significantly to advancements across various industries by incorporating features from biological organisms, including autonomy, intelligence, adaptability, energy efficiency, self-repair, robustness, lightweight construction, and digging capabilities-all crucial for space systems. This study includes a scoping review, as of July 2024, focused on the design of animal-inspired robotic hardware for planetary exploration, supported by a bibliometric analysis of 482 papers indexed in Scopus. It also involves the classification and comparison of limbed and limbless animal-inspired robotic systems adapted for movement in soil and sand (locomotion methods such as grabbing-pushing, wriggling, undulating, and rolling) where the most published robots are inspired by worms, moles, snakes, lizards, crabs, and spiders. As a result of this research, this work presents a pioneering methodology for designing bio-inspired robots, justifying the application of biological morphologies for subsurface or surface lunar exploration. By highlighting the technical features of actuators, sensors, and mechanisms, this approach demonstrates the potential for advancing space robotics, by designing biomechatronic systems that mimic animal characteristics. Full article
Show Figures

Figure 1

46 pages, 8536 KiB  
Review
A Comprehensive Review of Remaining Useful Life Estimation Approaches for Rotating Machinery
by Shahil Kumar, Krish Kumar Raj, Maurizio Cirrincione, Giansalvo Cirrincione, Vincenzo Franzitta and Rahul Ranjeev Kumar
Energies 2024, 17(22), 5538; https://doi.org/10.3390/en17225538 - 6 Nov 2024
Cited by 4 | Viewed by 3764
Abstract
This review paper comprehensively analyzes the prognosis of rotating machines (RMs), focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable energy applications. It introduces common mechanical faults in rotating machinery, their causes, and their potential impacts on RM performance and longevity, [...] Read more.
This review paper comprehensively analyzes the prognosis of rotating machines (RMs), focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable energy applications. It introduces common mechanical faults in rotating machinery, their causes, and their potential impacts on RM performance and longevity, particularly in wind, wave, and tidal energy systems, where reliability is crucial. The study outlines the primary procedures for RUL estimation, including data acquisition, health indicator (HI) construction, failure threshold (FT) determination, RUL estimation approaches, and evaluation metrics, through a detailed review of published work from the past six years. A detailed investigation of HI design using mechanical-signal-based, model-based, and artificial intelligence (AI)-based techniques is presented, emphasizing their relevance to condition monitoring and fault detection in offshore and hybrid renewable energy systems. The paper thoroughly explores the use of physics-based, data-driven, and hybrid models for prognosis. Additionally, the review delves into the application of advanced methods such as transfer learning and physics-informed neural networks for RUL estimation. The advantages and disadvantages of each method are discussed in detail, providing a foundation for optimizing condition-monitoring strategies. Finally, the paper identifies open challenges in prognostics of RMs and concludes with critical suggestions for future research to enhance the reliability of these technologies. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 2867 KiB  
Article
Analytical Prediction of Multi-Phase Texture in Laser Powder Bed Fusion
by Wei Huang, Mike Standish, Wenjia Wang, Jinqiang Ning, Linger Cai, Ruoqi Gao, Hamid Garmestani and Steven Y. Liang
J. Manuf. Mater. Process. 2024, 8(5), 234; https://doi.org/10.3390/jmmp8050234 - 17 Oct 2024
Cited by 2 | Viewed by 1441
Abstract
For advancing manufacturing, arising AM, with an inverse philosophical approach compared to conventional procedures, has benefits that include intricate fabrication, reduced material waste, flexible design, and more. Regardless of its potential, AM must overcome several challenges due to multi-physical processes with miscellaneous physical [...] Read more.
For advancing manufacturing, arising AM, with an inverse philosophical approach compared to conventional procedures, has benefits that include intricate fabrication, reduced material waste, flexible design, and more. Regardless of its potential, AM must overcome several challenges due to multi-physical processes with miscellaneous physical stimuli in diverse materials systems and situations, such as anisotropic microstructure and mechanical properties, a restricted choice of materials, defects, and high cost. Unlike conventional experimental work that requires extensive trial and error resources and FEM, which generally consumes substantial computational power, the analytical approach based on physics is an exceptional choice. Understanding the relationship between the microstructure and material properties of the fabricated parts is a crucial focus in AM research. Texture is a vital factor in almost every modern industry. This study first proposed a physics-based model to foreshadow the multi-phase crystallographic orientation distribution in Ti-6Al-4V LPBF while considering the part boundary conditions due to the importance of part geometry in real industry. The thermal distribution obtained from this function operates as the information for the single-phase crystallographic texture model. In this model, we forerun and validate the orientations of single-phase materials utilizing three Euler Angles with the principles of CET and thermodynamics, as well as the intensity of the texture by approximating them with published results. Then, we transform the single-phase texture into a dual-phase texture in Bunge calculation, illustrating visualized by pole figures of both BCC and HCP phases. The tendency and appearances of both BCC and HCP phases in pole figures predicted agree well with the experimental results. This texture evolution model provides a new paradigm for future researchers to model the texture or microstructure evolution semi-analytically and save many computational resources in a real-world perspective. Others have not yet done this work about simulating the multi-phase texture in an analytical approach, so this work bridges the gap in this field. Furthermore, this paper establishes the foundation for future research on materials properties affected by microstructure or texture in academic and industrial environments. The precision and dependability of the results obtained through this method make it a valuable tool for ongoing research and advancement. Full article
(This article belongs to the Special Issue Advances in Powder Bed Fusion Technologies)
Show Figures

Figure 1

13 pages, 1179 KiB  
Systematic Review
Burnout and Stress in Forensic Science Jobs: A Systematic Review
by Claudia Lombardo, Emanuele Capasso, Giuseppe Li Rosi, Monica Salerno, Mario Chisari, Massimiliano Esposito, Lucio Di Mauro and Francesco Sessa
Healthcare 2024, 12(20), 2032; https://doi.org/10.3390/healthcare12202032 - 12 Oct 2024
Cited by 4 | Viewed by 4275
Abstract
Background/Objectives. Burnout and occupational stress are significant issues among forensic professionals, impacting their well-being and job performance. This systematic review aims to provide an up-to-date overview of the occupational stress and burnout experienced by forensic personnel, exploring the profound and multifaceted impact on [...] Read more.
Background/Objectives. Burnout and occupational stress are significant issues among forensic professionals, impacting their well-being and job performance. This systematic review aims to provide an up-to-date overview of the occupational stress and burnout experienced by forensic personnel, exploring the profound and multifaceted impact on their physical, mental, professional, and interpersonal well-being. Methods. A systematic review was conducted following PRISMA guidelines using Scopus and WOS databases to search for articles published from 1 January 2000 to 31 August 2024. The search used keywords related to burnout and forensic professions. Inclusion criteria were original articles in English and French, while reviews, book chapters, editorials, and notes were excluded. A total of 10 studies were included after eliminating duplicates and excluding irrelevant articles. Results. The review identified seven key findings. (1) High levels of occupational stress and burnout among forensic personnel necessitate effective stress management strategies and resilience training; (2) autopsy technicians in Romania experience burnout and alexithymia, particularly related to traumatic events involving children, highlighting the need for specialized support systems; (3) disparities in burnout and post-traumatic stress disorder (PTSD) symptoms were observed in autopsy technicians and resident doctors, suggesting tailored mental health resources; (4) organizational factors, such as peer support and compensation satisfaction, significantly impact burnout and secondary traumatic stress (STS) among sexual assault nurse examiners; (5) burnout among forensic physicians, both in Romania and Egypt, is linked to personality traits, job satisfaction, and socio-demographic factors; (6) pathologists face a range of health issues, including musculoskeletal problems and psychological disorders, underscoring the need for industry-specific health measures; and (7) the lack of wellness resources for forensic professionals calls for improved mental health support and training. Conclusions. The findings highlight the pervasive issue of burnout and stress among forensic professionals globally. Addressing these challenges requires comprehensive stress management programs, tailored mental health resources, and organizational support. Future research should focus on developing and implementing effective interventions to enhance resilience and job satisfaction within this high-stress field. Full article
Show Figures

Figure 1

Back to TopTop