Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = photovoltaic solar cooker

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2126 KB  
Article
Innovative Smart, Autonomous, and Flexible Solar Photovoltaic Cooking Systems with Energy Storage: Design, Experimental Validation, and Socio-Economic Impact
by Bilal Zoukarh, Mohammed Hmich, Abderrafie El Amrani, Sara Chadli, Rachid Malek, Olivier Deblecker, Khalil Kassmi and Najib Bachiri
Energies 2026, 19(2), 408; https://doi.org/10.3390/en19020408 - 14 Jan 2026
Abstract
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control [...] Read more.
This work presents the design, modeling, and experimental validation of an innovative, highly autonomous, and economically viable photovoltaic solar cooker, integrating a robust battery storage system. The system combines 1200 Wp photovoltaic panels, a control block with DC/DC power converters and digital control for intelligent energy management, and a thermally insulated heating plate equipped with two resistors. The objective of the system is to reduce dependence on conventional fuels while overcoming the limitations of existing solar cookers, particularly insufficient cooking temperatures, the need for continuous solar orientation, and significant thermal losses. The optimization of thermal insulation using a ceramic fiber and glass wool configuration significantly reduces heat losses and increases the thermal efficiency to 64%, nearly double that of the non-insulated case (34%). This improvement enables cooking temperatures of 100–122 °C, heating element surface temperatures of 185–464 °C, and fast cooking times ranging from 20 to 58 min, depending on the prepared dish. Thermal modeling takes into account sheet metal, strengths, and food. The experimental results show excellent agreement between simulation and measurements (deviation < 5%), and high converter efficiencies (84–97%). The integration of the batteries guarantees an autonomy of 6 to 12 days and a very low depth of discharge (1–3%), allowing continuous cooking even without direct solar radiation. Crucially, the techno-economic analysis confirmed the system’s strong market competitiveness. Despite an Initial Investment Cost (CAPEX) of USD 1141.2, the high performance and low operational expenditure lead to a highly favorable Return on Investment (ROI) of only 4.31 years. Compared to existing conventional and solar cookers, the developed system offers superior energy efficiency and optimized cooking times, and demonstrates rapid profitability. This makes it a sustainable, reliable, and energy-efficient home solution, representing a major technological leap for domestic cooking in rural areas. Full article
15 pages, 2676 KB  
Article
Integration of a Double-Concentrated Solar Cooking System Operable from Inside a Home for Energy Sustainability
by Raul Asher García Uribe, Sergio Rodríguez Miranda, Lourdes Vital López, Marco Antonio Zamora Antuñano and Raúl García García
Energies 2025, 18(11), 2673; https://doi.org/10.3390/en18112673 - 22 May 2025
Viewed by 1151
Abstract
Cooking food is a factor that contributes to global energy consumption and greenhouse gas emissions. This research proposes the design, simulation using thermal resistances with MATLAB Simulink, and experimental evaluation of an automated double-concentrated solar cooking system operable from inside a home. Water [...] Read more.
Cooking food is a factor that contributes to global energy consumption and greenhouse gas emissions. This research proposes the design, simulation using thermal resistances with MATLAB Simulink, and experimental evaluation of an automated double-concentrated solar cooking system operable from inside a home. Water was used as a cooking load. Each test for 25 min was entered into a system integrated by a programmable elevator to transport the food to the roof, a configurable temperature display, a photovoltaic power source, and double solar collection (direct through a modified box oven and reflected by a parabolic dish collector). When both solar components operated simultaneously, the system reached a temperature of 79 °C, representing a 57.34 °C increase. On average, the solar concentrator provided 78.02% more energy than the oven alone. This approach is expected to reduce cooking time and contribute to sustainable home design aimed at mitigating greenhouse gas emissions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 5755 KB  
Article
Solar Photovoltaic Cooker with No Electronics or Battery
by Antonio Lecuona-Neumann, José I. Nogueira-Goriba, Antonio Famiglietti, María del Carmen Rodríguez-Hidalgo and Jean Boubour
Energies 2024, 17(5), 1192; https://doi.org/10.3390/en17051192 - 2 Mar 2024
Cited by 8 | Viewed by 3428
Abstract
The paper offers innovative cooking utensil designs for remote, isolated, and even peri-urban communities at a low price, with high reliability and simple construction. It can alleviate energy poverty and improve food security. This utensil uses only local solar energy directly and allows [...] Read more.
The paper offers innovative cooking utensil designs for remote, isolated, and even peri-urban communities at a low price, with high reliability and simple construction. It can alleviate energy poverty and improve food security. This utensil uses only local solar energy directly and allows comfortable indoor cooking. This paper provides the design principles of a solar cooker/frying pan or generic heater, based on a PV panel or a plurality of them, which are directly connected to a plurality of Positive Thermal Coefficient (PTC) resistors to match the power. PTCs are nowadays produced in massive quantities and are widely available at low cost. The proposed device does not require an electronic controller or a battery for its operation. The aim is for family use, although the design can be easily scaled to a larger size or power, maintaining its simplicity. Electric heating inside or attached to the cooking pot, plus the temperature self-limiting effect of PTCs, allows for thermally insulating the cooking pot from its outside using ordinary materials. Insulation enhances energy efficiency during cooking and keeps cooked food warm for a long time. Clean development would receive a significant impulse with its application. A simple mathematical model describes its functioning and states guidelines for adequate design. Its results indicate a successful proof of concept and high efficiency both for water and oil as representatives of cooking. Full article
Show Figures

Figure 1

12 pages, 1793 KB  
Review
Overview of Energy Systems in Africa: A Comprehensive Review
by Michael M. Santos, Ana Teresa Vaz Ferreira and João C. G. Lanzinha
Solar 2023, 3(4), 638-649; https://doi.org/10.3390/solar3040034 - 8 Nov 2023
Cited by 5 | Viewed by 5990
Abstract
Africa has abundant solar resources but only 2% of its current capacity is generated from renewable sources. Photovoltaics (PV) offer sustainable, decentralized electricity access to meet development needs. This review synthesizes the recent literature on PV in Africa, with a focus on Mozambique. [...] Read more.
Africa has abundant solar resources but only 2% of its current capacity is generated from renewable sources. Photovoltaics (PV) offer sustainable, decentralized electricity access to meet development needs. This review synthesizes the recent literature on PV in Africa, with a focus on Mozambique. The 10 most cited studies highlight the optimization of technical components, such as storage and bifacial modules, and challenges in integrating large-scale PV. Case studies demonstrated Mozambique’s potential for PV applications in water heating, irrigation, and rural electrification. These benefits include reduced emissions and energy access. However, barriers, such as high costs, lack of infrastructure, and training, exist. While solar cookers are insufficient, thermal systems have unrealized potential. Mozambique’s urban and rural electrification rates are 57% and 13%, respectively, despite its energy resources. Targeted policies, financing, and community engagement are essential for promoting adoption. While PV can sustainably expand electricity access, coordinated efforts must address costs, infrastructure, maintenance, and social factors for successful implementation. Mozambique has immense solar potential, but strategic planning and support are critical to unlocking these benefits. This review provides insights into optimizing PV systems and policy frameworks for a clean and inclusive energy production future in Africa, to synthesize the 10 most cited studies on photovoltaic solar energy in Africa, and to deeply reflect upon the current energy needs in Mozambique, the benefits of employing PV and solar thermal systems, and the challenges of implementing such systems within the Mozambican context. Full article
Show Figures

Figure 1

17 pages, 7113 KB  
Article
Solar Resource and Energy Demand for Autonomous Solar Cooking Photovoltaic Systems in Kenya and Rwanda
by João P. Cardoso, António Couto, Paula A. Costa, Carlos Rodrigues, Jorge Facão, David Loureiro, Anne Wambugu, Sandra Banda, Izael Da Silva and Teresa Simões
Solar 2023, 3(3), 487-503; https://doi.org/10.3390/solar3030027 - 5 Sep 2023
Cited by 4 | Viewed by 3413 | Correction
Abstract
The challenges associated with traditional cooking methods in African countries, particularly the use of firewood and charcoal, which have negative impacts on the environment, health and human and economic development and safety, are addressed in this work. Given the high annual solar irradiation [...] Read more.
The challenges associated with traditional cooking methods in African countries, particularly the use of firewood and charcoal, which have negative impacts on the environment, health and human and economic development and safety, are addressed in this work. Given the high annual solar irradiation on the African continent, photovoltaic-powered electric cooking alternatives, such as electric pressure cookers (EPCs), are identified as a potential efficient, clean and affordable cooking solution. This work focuses on the potential of standalone solar electric cookers for use in rural African locations, namely, if this type of solution can satisfy cooking demand. Surveys and experimental data from several households in two different countries (Rwanda and Kenya) were collected. Specifically, the researchers performed a survey regarding cooking habits and an experimental campaign to determine real energy consumption profiles of EPCs. The main results are analyzed and discussed in this work. An assessment of the solar power capability to directly supply the EPCs’ energy demand, as determined from the experimental data, is performed. The findings indicate that, for the most commonly prepared food types, using EPCs saves considerable time in comparison with traditional cooking methods. In Rwanda, time savings range from 55% to 84%, while in Kenya, the time saved varies from 9% to 64%. Results show that, even for scenarios with high installed solar capacity, storage solutions are required to enable the PV-powered EPC system to supply more than 50% of meal demand. Full article
Show Figures

Figure 1

17 pages, 3713 KB  
Article
Performance Analysis of Three Side Roughened Solar Air Heater: A Preliminary Investigation
by Aruna Kumar Behura, Chinmaya Prasad Mohanty, Manas Ranjan Singh, Ashwini Kumar, Emanoil Linul and Dipen Kumar Rajak
Materials 2022, 15(7), 2541; https://doi.org/10.3390/ma15072541 - 30 Mar 2022
Cited by 4 | Viewed by 3517
Abstract
In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the [...] Read more.
In recent years, sunlight has been used in several fields such as photovoltaic cells, flat plate collectors, solar cookers, green buildings, and agricultural applications. Improved thermal performance has been seen which comes of three sides absorber plate with glass cover compared to the traditional one. This paper presents the Nusselt (Nu) number, collector efficiency factor (CEF), and collector heat removal factor (CHRF) for the optimal solution of three sides artificially roughened solar air heater. Five input variables such as Reynolds (Re) number, relative roughness pitch, relative roughness height, mass flow rate, and air temperature of the duct are taken into account for improved efficiency optimization of collector, collector heat removal factor, and Nu number. Technique for order of preference by similarity to ideal solution (TOPSIS) technique is used to identify the best alternative amongst a number of performance measures by converting them into an equivalent single variable. Moreover, the results revealed the high accuracy of the CEF, CHRF, and Nu number of 75–80%, 74–78%, and 63–71%, respectively. Meanwhile, it has been also observed that roughness Re number varies between 12,500 and 13,500, and height of relative roughness is 0.0245, including pitch of relative roughness 10 along with the rate of mass flow is 0.041 kg/s. Full article
Show Figures

Figure 1

24 pages, 5912 KB  
Article
Evaluation of High-Resolution Satellite-Derived Solar Radiation Data for PV Performance Simulation in East Africa
by Diane Palmer and Richard Blanchard
Sustainability 2021, 13(21), 11852; https://doi.org/10.3390/su132111852 - 27 Oct 2021
Cited by 6 | Viewed by 3395
Abstract
Access to reliable, clean, modern cooking enhances life chances. One option is photovoltaic cooking systems. Accurate solar data are needed to ascertain to what extent these can satisfy the needs of local people. In this paper, we investigate how to choose the most [...] Read more.
Access to reliable, clean, modern cooking enhances life chances. One option is photovoltaic cooking systems. Accurate solar data are needed to ascertain to what extent these can satisfy the needs of local people. In this paper, we investigate how to choose the most accurate satellite-derived solar irradiance database for use in Africa. This is necessary because there is a general shortage of ground measurements for Africa. The solar data are needed to model the output of solar cooking systems, such as a solar panel, battery and electric pressure cooker. Four easily accessible global horizontal irradiation (GHI) satellite databases are validated against ground measurements using a range of statistical tests. The results demonstrate the impact of the mathematical measure used and the phenomenon of balancing errors. Fitting of the satellite model to the appropriate climate zone and/or nearby measurements improves accuracy, as does higher spatial and temporal resolution of input parameters. That said, all the four databases reviewed were found to be suitable for simulating PV yield in East Africa. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

14 pages, 2153 KB  
Article
Solar e-Cooking: A Proposition for Solar Home System Integrated Clean Cooking
by Simon Batchelor, Md. Arifur Rahman Talukder, Md. Raihan Uddin, Sandip Kumar Mondal, Shemim Islam, Rezwanul Karim Redoy, Rebecca Hanlin and M. Rezwan Khan
Energies 2018, 11(11), 2933; https://doi.org/10.3390/en11112933 - 27 Oct 2018
Cited by 22 | Viewed by 12968
Abstract
This paper presents the feasibility of using solar photovoltaics (Solar PV) as the energy source for cooking with special focus on the loss mechanisms and possible remedial measures. If the heat loss is minimized, to reduce the temperature losses, it is possible to [...] Read more.
This paper presents the feasibility of using solar photovoltaics (Solar PV) as the energy source for cooking with special focus on the loss mechanisms and possible remedial measures. If the heat loss is minimized, to reduce the temperature losses, it is possible to cook with a low power source less than 500 W. A slogan has been adopted by the researchers—‘It is temperature that cooks food not heat’, meaning that it is not the flow of energy that cooks food, but rather, that food is cooked when held at a key temperature for a time. The slogan draws attention to the core concept that if heat loss is minimized, maintaining the temperature inside the cooker and the cooking pan, then the cooking process becomes very energy efficient. The paper considers ways to maintain temperature, but with due reference to the ‘art of cooking’, those all-important cultural processes that determine how meals are made. A prototype solar home system e-cooker was designed, fabricated and tested for cooking different foods in Bangladesh. Experimental results are presented to show that cooking is possible using much less power and energy than is commonly thought. A cost analysis is also presented to show that such a cooker can be cost effective in off-grid areas if connected to a properly designed Solar Home System. Full article
Show Figures

Figure 1

Back to TopTop