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Abstract: Access to reliable, clean, modern cooking enhances life chances. One option is photovoltaic
cooking systems. Accurate solar data are needed to ascertain to what extent these can satisfy the
needs of local people. In this paper, we investigate how to choose the most accurate satellite-derived
solar irradiance database for use in Africa. This is necessary because there is a general shortage of
ground measurements for Africa. The solar data are needed to model the output of solar cooking
systems, such as a solar panel, battery and electric pressure cooker. Four easily accessible global
horizontal irradiation (GHI) satellite databases are validated against ground measurements using a
range of statistical tests. The results demonstrate the impact of the mathematical measure used and
the phenomenon of balancing errors. Fitting of the satellite model to the appropriate climate zone
and/or nearby measurements improves accuracy, as does higher spatial and temporal resolution of
input parameters. That said, all the four databases reviewed were found to be suitable for simulating
PV yield in East Africa.

Keywords: solar radiation; satellite-derived irradiance; global horizontal irradiance; clear sky model;
ground stations; validation

1. Introduction

Accurate knowledge of incoming solar radiation at specific locations is very important
for many applications. In the context of this research, it is required for modelling PV
yield as input to solar cooking systems for the Modern Energy Cooking Services project
(https://mecs.org.uk/, accessed on 26 October 2021) Worldwide, nearly three billion
people rely on solid fuel for cooking and heating. This has health and environmental
implications. Women and children especially are exposed to smoke, resulting in respiratory
illnesses, cataracts, heart disease and cancer. Much time and human energy is expended in
firewood collection. Reliance on wood fuel contributes to climate change and local forest
degradation. The Modern Energy Cooking Services Programme (MECS) is investigating
how to rapidly transition from biomass to genuinely “clean” cooking (e.g., with electricity).
The aim of this ongoing research is to investigate the possibility of developing a solar
power support system that can support individual electric cooking systems in off-grid
situations. Such a system might comprise a solar panel, battery and a cooking device
such as an electric hob or electric pressure cooker. A detailed solar resource assessment is
necessary to discover to what extent such solar enabled cooking can supply people’s needs.

Europe has a relatively dense network of well-maintained weather stations which
provide publicly available data. In Africa, the situation is quite different. There are
proportionately few ground sensors and a dearth of accessible weather measurements [1].
Thus, an alternative source of information must be sought. Satellite-derived radiation
datasets are widely regarded as the most accurate alternative. However, not all solar
datasets are created equal. Moreover, as yet, there is no standardised approach for choosing
the most suitable solar irradiation dataset [2].
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It is difficult to select a dataset from published validation statistics. These use different
locations, temporal resolutions, methods of error calculation, data filtering and data aggre-
gation processes. Yang and Bright (2020) [3] suggest that due to uncertainties in ground
records, it is better to ask if the database under investigation is sufficient for the intended
purpose, or if one dataset performs better than another, rather than relying on error and
bias values. Another reference is [4].

The goal of this article is to determine which of four easily available satellite-derived
global horizontal products is to be preferred for modelling PV output in East Africa.
(Incidentally, hourly PV output may also be calculated from cloud data and ambient
temperature change [5]). This is novel because solar global horizontal irradiation (GHI)
satellite databases have only previously been compared in South Africa [6] where the solar
market is established.

There are three specific manuscript objectives:

1. To evaluate and compare GHI satellite datasets in East Africa with a view to advising
which database to use where. GHI satellite data are mostly verified against data
from the archive of the Baseline Surface Radiation Network (BSRN), based at the
World Radiation Monitoring Centre (WRMC). However, there are just three BSRN
monitoring stations on the continent of Africa (Algeria, Namib Desert and South
Africa), as opposed to 13 in the USA and 11 in Europe. Additionally, the West has
many other ground stations, which, although accurate, do not belong to the BSRN
network. Africa is very short of ground-based solar radiation sensors in general.

2. To establish whether the different clear sky models utilised by satellite-derived solar
radiation datasets affect the outcomes of the dataset values in East Africa. Clear sky
models differ in complexity of algorithm, atmospheric inputs, temporal and spatial
resolution of atmospheric inputs and location where the model was fitted.

3. To compare and contrast solar GHI satellite data with measurements from ground
stations in East Africa.

The paper is organised as follows. Section 2 describes the satellite-derived GHI
databases compared in this research, and the ground station data obtained for comparative
validation by this project. Section 3 summarises the methods used. Section 4 investigates
the extent to which comparative accuracy of databases can be ascertained without weather
station data; additionally, it explains and discusses the results of a multiplicity of statistical
tests used to differentiate between the four GHI satellite datasets. Finally, Sections 5 and 6
present the discussion, conclusions and main messages of this research.

2. Instruments, Places and Measurements

There are many satellite-derived solar radiation databases. For this research, up-to-
date, high-temporal resolution GHI ones were required (scales of one minute to one hour).
It was also necessary to select those which cover Africa, as some are confined to India,
Europe or the USA. Suitable candidate datasets include free products, e.g., Solemi [7],
available upon request. There are also paid-for services: Meteonorm [8], Reuniwatt [9],
SoDa [10], SolarAnywhere [11], Solargis [12], 3E [13] and 3Tier [14]. The four databases
selected for use in this paper (detailed in Section 2.1) were instantly downloadable and free.
(Except for Solcast, which has a generous free allowance for researchers).

Remotely sensed solar data also have a role to play in climate studies, e.g., radiative
transfer, solar radiation variability and the 11-year solar cycle [15]. Such archives have
extensive spatial coverage and comprise several decades of data [16].

The ground measurements used for validation were the only ones available to the
authors during the COVID-19 pandemic outbreak (2020–2021) when this paper was written.
The ground data locations are described in Section 2.2.

All the database time series values were averaged or rounded to the nearest time
period end so that inner database joins could be performed to enable subsequent analysis.
The global horizontal irradiance values in all databases have compatible units, being
recorded in Wh/m2, except for the ground measurements from Galu and Munje (see
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below). These daily values were divided by 10 (the average number of daylight hours in
the day in Kenya) to convert them to Wh/m2.

2.1. The Satellite-Derived GHI Databases Used in This Research

Two of the solar radiation products under investigation here are produced by the
Climate Monitoring Satellite Application Facility (CMSAF) of the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT). The Joint Research Centre
(JRC) Photovoltaic Geographical Information System [17] versions are used.

The first of these is SARAH, the Surface Solar Radiation DataSet-Heliosat. These data
are available at hourly intervals and at a spatial resolution of 0.05◦ (5.6 km). Extensive
validation has been performed by Urraca et al. [18]. SARAH employs observations from the
Meteosat Visible Infra-Red Imager (MVIRI) and the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) instruments carried by EUMETSAT geostationary Meteosat satellites. The
Heliosat-2 algorithm is utilised. It subtracts cloud properties recorded by the satellite sensor
from clear sky irradiance. Clear sky radiation is obtained via the SPECMAGIC method
(SPECtral Mesoscale Atmospheric Global Irradiance Code [19]). Inputs to SPECMAGIC
comprise aerosol properties, total column water vapour and ozone in the form of a monthly
look-up table for processing speed. SPECMAGIC was fitted at two European sites.

The second is CMSAF. CMSAF data are supplied at 15 min, hourly, daily and monthly
intervals, with 0.05◦ spatial resolution. CMSAF uses the same instruments, inputs and
algorithms as SARAH, but the look-up table is updated continuously with 3-hourly satellite-
derived values of atmospheric inputs [20].

The third satellite-derived GHI solar database examined is CAMS (Copernicus Atmo-
sphere Monitoring Service) [21]. Temporal resolution is one minute to one month. (One-,
five-, fifteen- and sixty-minute data are used here). It is spatially interpolated to the point
of interest. Again, CAMS uses Meteosat/SEVIRI, but this time, the Heliosat-4 model [22] is
applied. Heliosat-4 combines inputs from the McClear clear sky model and the McCloud
cloud properties model [22]. The McClear model (also used by this research) takes as
inputs the solar position, ground reflectance, ground elevation (Shuttle Radar Topography
Mission (SRTM)) and atmospheric particulates (with 3-h temporal resolution) zoned ac-
cording to simplified Köppen Climate Classification (tropic, mid-latitude or sub-Arctic).
The McCloud algorithm divides clouds into four types (low, medium, high or thin ice) and
treats these separately.

The last solar irradiance product studied in this paper is Solcast [23]. (Five-, fifteen-
and sixty-minute temporal scales are used here). This is a paid-for service. (The author
suggests the PVsyst version is chosen, regardless of intended software, for ease of analysis).
Satellite inputs include those from Meteosat. Like CAMS, a clear sky model (REST2v5,
parameterised in the U.S). and a cloud model (proprietary in this case) are used [24].
Atmospheric inputs are from MEERA-2 reanalysis [25]. MEERA-2 temporal resolution
is hourly, but the spatial resolution is 50 km. The ground altitude data incorporated are
likewise of low spatial resolution.

All the satellite-derived GHI databases reviewed here use input data from the same
satellite sensors. All are semi-empirical (fitted to ground measurements somewhere to some
extent). CMSAF might be expected to be more accurate than SARAH because atmospheric
data are three-hourly rather than monthly. This also applies to CAMS. Differences may
also arise from the different clear sky models (SPECMAGIC versus McClear) and cloud
properties models. Solcast has high temporal resolution of atmospheric variables but these
have low spatial resolution, as do the ground elevation data inputs. The four satellite-
derived databases analysed in this research are summarised in Table 1.
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Table 1. Models and data inputs of satellite-derived GHI datasets under review.

Database Satellite Model Clear
Sky Model

Cloud
Properties Model

Temporal Resolution
of Clear Sky Inputs

Spatial Resolution of
Clear Sky Inputs

SARAH Heliosat-2 SPECMAGIC - Monthly 125 km
CMSAF Heliosat-2 SPECMAGIC - 3-hourly 125 km
CAMS Heliosat-4 McClear McCloud 3-hourly 125 km
Solcast Proprietary REST2v5 Proprietary Hourly 50 km

2.2. The Ground-Based Data Used in This Research

The ground-based data measurements used in this research are from two sources. The
first is from two locations for a solar nano-grids project [26] (Figure 1). The second author
was involved in this project.
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The two villages in Kenya where the measurement instruments are located are:

1. Lemolo B (latitude: –0.01◦; longitude: 36.04◦), in a semi-arid region of Kenya (Köppen–
Geiger climate classification AW, tropical savannah);

2. Echareria (latitude: −0.35◦; longitude: 36.22◦) with a Köppen–Geiger climate classifi-
cation of Csb. That is, it enjoys a “Mediterranean” climate with a dry summer and
mild wet winter.

Data are available from Lemolo B for July 2016 to December 2017, and from Echareria
for September 2016 to October 2017. The data logging interval varies slightly but is
generally 7 consecutive one-second values at the end of each minute (UTC). One-, five-,
fifteen, sixty-minute and daily averages were calculated for the purposes of this analysis.
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The measurement instrument was a CS300 (SP-110) APOGEE PYR-P silicon photovoltaic
detector. (Calibration uncertainty at 1000 Wm2 less than 3%, traceable to the World
Radiometric Reference (WRR) in Davos, Switzerland). The data were quality controlled as
described in Appendix A.

The second source of ground data measurements is daily global horizontal irradiance
data for two locations in a ground water management project [27] (Figure 1).

The details of the two villages in Kwale County, Kenya, where measurement took
place are:

1. Galu: latitude −4.35◦, longitude 39.57◦; and
2. Munje: latitude −4.51◦, longitude 39.46◦.

Both are Köppen–Geiger climate classification Af, tropical rainforest. They are coastal,
near Mombasa. The measurement equipment is Maplin Professional Solar Powered
Wi-Fi Weather Station (Maplin N23DQ), which records solar radiation every 5 min
(accuracy ± 3–7%). This is aggregated to daily totals before being made public. There is no
way of obtaining any further information about these data.

During the COVID-19 pandemic when this article was written, these were the only
ground GHI measurements that were possible to obtain. There are few solar data for Africa
in any eventuality. Comparisons with all GHI satellite databases were affected, so none of
them were unfairly disadvantaged.

3. Methodology

The following statistical tests were used to validate the GHI satellite data against
the ground values: normalised Root Mean Error (nRMSE), normalised Mean Bias Error
(nMBE), hourly average, hourly standard deviation, trendlines, Pearson Product-Moment
Correlation Coefficient, average GHI per hour of day, average GHI per day of year and
frequency distribution.

4. Results
4.1. Selection of GHI Satellite Database without Ground Validation

Initially, we attempted to choose a suitable database to simulate PV output for a
cooking system without the support of ground-based measurements, which is normally
the situation throughout most of Africa. Two databases were selected for comparison:
SARAH and CMSAF. Ten years of data (2007–2016) were analysed. The port of Dar es
Salaam, on the Tanzanian coast, was taken as the example. Dar Es Salaam is Köppen
Climate Classification subtype “Aw” (Tropical Savannah Climate). It is located on the coast
of the Indian Ocean, at an elevation of 10–60 m, in the southern hemisphere.

Direct comparison methods were selected from the many statistical metrics available,
as they are well known and simple to apply. As can be seen in Table 2, overall summations
and averages do little to distinguish between the two GHI satellite databases. Yearly totals
and hourly averages are almost the same. Mean standard deviation of each hourly GHI
value over 10 years is not particularly high, at around 10% of maximum hourly values,
although SARAH does vary more than CMSAF.

Table 2. Overall comparison of two satellite-derived GHI datasets at Dar es Salaam (2005–2016, 87,648 h).

Statistical Measure CMSAF SARAH % Difference

Average annual in-plane irradiation kWh/m2 1650.67 1664.12 −0.81
10-year average hourly GHI Wh/m2 188.28 189.81 −0.81

Mean std dev of each hourly GHI value Wh/m2 73.98 82.10 −9.90

More useful for distinguishing between the datasets are average hour of day values,
which show that SARAH is nearly always greater than CMSAF, except at the end of the
day (Figure 2). Here, SARAH is overestimating (or CMSAF is underestimating), although
the differences are not very large, except for the last daylight hour.
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Monthly differences tell us that SARAH GHI is less than CMSAF in May–November,
when precipitation is at its lowest. SARAH GHI is more than CMSAF in the other months
(Figure 3). Therefore, one of the models is not responding to cloud cover as well as the
other. Again, the differences are not very big (average monthly difference: 3.4%).

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 26 
 

Table 2. Overall comparison of two satellite-derived GHI datasets at Dar es Salaam (2005–2016, 
87,648 h). 

Statistical Measure CMSAF SARAH % Difference 
Average annual in-plane irradiation kWh/m2 1650.67 1664.12 −0.81 

10-year average hourly GHI Wh/m2 188.28 189.81 −0.81 
Mean std dev of each hourly GHI value Wh/m2 73.98 82.10 −9.90 

More useful for distinguishing between the datasets are average hour of day values, 
which show that SARAH is nearly always greater than CMSAF, except at the end of the 
day (Figure 2). Here, SARAH is overestimating (or CMSAF is underestimating), although 
the differences are not very large, except for the last daylight hour. 

 
Figure 2. Ten-year average GHI per hour of day for Dar es Salaam. 

Monthly differences tell us that SARAH GHI is less than CMSAF in May–November, 
when precipitation is at its lowest. SARAH GHI is more than CMSAF in the other months 
(Figure 3). Therefore, one of the models is not responding to cloud cover as well as the 
other. Again, the differences are not very big (average monthly difference: 3.4%). 

 

Figure 3. Ten-year average GHI kWh/m2 for each month over ten years at Dar es Salaam.

Daily averages also indicate that SARAH GHI is less than CMSAF in May–October
(cooler dry season) (Figure 4).

Looking at the frequency chart (Figure 5), CMSAF GHI is greater than SARAH for
GHI between 226–426 Wh/m2 and 476–550 Wh/m2. That is, SARAH GHI is less than
CMSAF at low-medium GHI values. It is likely that these are occurring in the dry season
(from the daily and monthly graphs) and from 5:00 p.m. to 6:00 p.m. from the daily graph.
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The statistical tests so far indicate that there is a difference between the two GHI
satellite datasets but do not give any guidance on which is preferable for the intended
purpose. SARAH has lower irradiance values in the dry season, suggesting that it is
possibly less representative of the true situation, but the evidence for this is weak.

The problem of model validation without measurement data has been discussed in
the discipline of hydrology [28], but there are no references on this topic in the solar PV
field, despite it being a very common problem. In hydrology, nearby data are used, but
solar data change rapidly over short distances [29]. Therefore, the second suggestion of
using values from the literature is adopted in the following investigation. Theoretical clear
sky values from Meteonorm are compared to the two GHI satellite databases at Dar es
Salaam for one year (Figure 6).
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Figure 6. Comparison of Meteonorm (Clear sky), SARAH and CMSAF hourly GHI for Dar es
Salaam 2016.

It may be seen that SARAH tracks the clear sky values more closely. The general
trend is for SARAH GHI values to be higher than those of CMSAF. While this would
indicate accuracy in a desert, Dar es Salaam is a tropical savannah, also known as a tropical
wet and dry climate. Therefore, variance well below clear sky values in the wet season
(November–May) is anticipated. Turning to the dry season (May–November), both GHI
satellite databases occasionally exceed the clear sky value, SARAH 16% of the year and
CMSAF 9% of the year.

The foregoing comparison with theoretical values again indicates that there is a
difference between the two GHI satellite datasets. There is weak evidence to suggest that
SARAH is less accurate.

To conclude this section, it may be deduced that some idea of which database better
relates to reality may be obtained by comparing them to local climate descriptions and
seasonal behaviour. Comparison with clear sky values is another alternative. In both cases,
any inference reached is somewhat arguable, and there appears to be a strong need for
validation with ground measurements.

4.2. Accuracy of the GHI Satellite Databases Determined by Ground Validation

The following four sections describe the comparison of GHI satellite databases to
ground-based measurements. To commence, the measure of differences between the
ground-based data measurements and the four satellite-derived databases under investi-
gation was determined by calculating the normalised Root Mean Square Error (nRMSE),
normalised by the mean of inputs.
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4.2.1. nRMSE of the Four GHI Satellite Databaes

Looking at the highest temporal resolution data first, the only possible comparison was
between CAMS and McClear (the clear sky model) because these are the only databases
(of those investigated) for which one-minute interval data are available. The average
value per minute was calculated for this purpose from the ground-based data. As would
be expected, CAMS performs better than the clear sky model at this level, because it
accounts for cloud fields, although both deliver a suitable nRMSE (Table 3), considering the
time interval.

Table 3. nRMSE of Satellite model and clear sky model at Lemolo, one-, five- and fifteen-minute
interval data.

Time Interval (min) Satellite Model No. Values Lemolo nRMSE % Lemolo

1 CAMS 1143 76
1 McClear 1143 162
5 CAMS 72,611 166
5 Solcast 72,611 47
15 CAMS 45,487 125
15 Solcast 45,487 45

Moving up to five-minute interval data, CAMS and Solcast data were compared. The
CAMS values and ground-based measurements were calculated as the average of the
period. The Solcast data were downloaded directly at this temporal resolution. It may be
seen from Table 3 that Solcast is more accurate than CAMS at this timing. The same may
be observed for 15-min interval data, which are directly available at this resolution from
both CAMS and Solcast (Table 3). Solcast has almost the same value of nRMSE for 15-min
data as for 5-min data, whereas CAMS has a different value. This suggests that the method
of aggregation is having an impact.

Juxtaposition of more GHI satellite databases and another Song site (Echareria) was
possible for hourly data, because of greater data availability at this resolution. The results
are illustrated in Figure 7. The ground measurements were averaged to 60-min intervals,
but all the other datasets were available ready-prepared at this granularity. It is evident
that the SARAH database performs poorly, being no better (Echareria) or worse (Lemolo)
than the clear sky model. At Lemolo, next best is Solcast, with CMSAF and CAMS being
the most accurate, with little between them (within the range of pyranometer uncertainty).
At Echareria, CMSAF is third best, Solcast second and CAMS slightly outperforms Solcast,
to give overall best accuracy. nRMSE values are lower for all databases at Lemolo due to
its semi-arid climate. CAMS would be anticipated to deliver good results because it is a
modern model. However, outperforming Solcast is surprising, because CAMS has lower
temporal resolution input data. The small improvement in nRMSE must be due to the
higher spatial resolution of CAMS input data.

The raw numbers upon which Figure 7 is based are given in Appendix B. Figure 7
is based on 2016 data only because this is the last year for which SARAH and CMSAF
are currently available. However, the same pattern is observable between Solcast and
CAMS if 2017 data are included to take advantage of the remaining ground measurements
(Appendix B, Table A4). Comparison of the same hours for both Song sites also gives the
same order of performance (Appendix B, Table A4).

Normalised mean bias error (nMBE) values for the two sites additionally reveal
virtually the same pattern of accuracy between databases (Table 4). Positive nMBE re-
sults demonstrate (on average) under-estimation in all cases. All nMBEs are low due to
cancellation (mitigation of positive and negative values).
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Table 4. nMBE of Satellite models at Lemolo and Echareria, 60-min interval data.

HOURLY No. Values
Lemolo

nMBE %
Lemolo

No. Values
Echareria

nMBE %
Echareria

PVGIS-SARAH 2016 3489 0.35 715 0.47
Solcast 2016 3489 0.16 715 0.34

PVGIS_CMSAF 2016 3489 0.18 715 0.39
CAMS 2016 3489 0.16 715 0.31

Moving on to daily data granularity allowed the inclusion of two more Kenyan lo-
cations, Galu and Munje (Upgro project). Figure 8 shows that SARAH fares the worst at
this interval at Lemolo and Echareria. There is little to choose between the other databases
at Lemolo and Echareria. Having said that, Solcast performs well at this timescale, be-
ing best at three of four sites. Note that this graph was based on 235 days of 2016 data
only, because this was all that matched in the GHI satellite dataset and the ground-based
measurement records from the logger at Lemolo, Echareria and Galu. Thus, observa-
tions may be subject to anomaly caused by the low quantity of data. (Only 2017 data
were only available for Munje (182 days), obviating the use of SARAH and CAMS data).
The raw numbers upon which Figure 8 is based are given in Appendix B (Table A5). Galu
and Munje are at sea level, whereas Lemolo and Echareria are situated at 1961 m and
1594 m, respectively.

Thus, it appears that accuracy of satellite-derived databases is dependent on climate,
temporal resolution, height above sea level and method of deriving one-minute, five-minute
and hourly data from the original fifteen-minute satellite interval.

4.2.2. Instantaneous Accuracy of the GHI Satellite Databases

The data in GHI satellite databases are generally taken as representative of the whole
time period of its resolution, e.g., 15 min. However, satellite images are taken at an instant
in time and, in fact, only reflect that instant. Therefore, a further comparison was made
between the satellite values and the ground-based one-second value closest to the end
time of those values, rather than with the average of ground-based readings for the whole
period, as detailed above. The end time of the satellite 15-min interval was used as the best
compromise. In fact, the satellite image may be taken any time in the 15-min interval, but
for prepared GHI values, this time is not stored.
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The results of this analysis are given in Table 5 below. At the hourly resolution, there
is little to choose between databases, except for SARAH. Solcast outperforms CAMS for
15-min data.
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Table 5. Instantaneous nRMSE of Satellite models and clear sky model at Lemolo, 15- and 60-min
interval data.

Time Interval
(min)

GHI Satellite
Database/Clearsky Model No. Values Lemolo nRMSE % Lemolo

15 Solcast 4916 52
15 CAMS 4916 130
60 CAMS 1161 47
60 Solcast 1161 47
60 PVGIS_CMSAF 364 53
60 McClear 1161 60
60 PVGIS-SARAH 364 295

Although the foregoing discussion demonstrates that selection of the most accurate
satellite model is not clear-cut, depending on location, resolution and method of ascertain-
ing accuracy, the CAMS model would seem to be a good choice for most Kenyan sites. It is
free to download and current.

4.2.3. Managing Changing Uncertainties and Preserving the Temporal Pattern of the Data

The nRMSE and nMBE measures employed above utilise the sum of squared residuals,
which assumes that the size of the error term does not differ across values. This is does
not hold true for the GHI satellite databases under investigation, as is obvious from the
frequency charts (see later). Additionally, these methods consider each data value at each
time separately. They lose any pattern which may exist between previous and subsequent
values. A performance metric capable of respecting the relationship between data points is
the Pearson Product-Moment Correlation Coefficient (PMCC) [30].

PMCC draws a trendline through a scatterplot of two data variables. Its value, r,
is an indication of how well the data match the line of best fit. r ranges between 0 (no
relationship between the two datasets) and 1 (a perfect relationship) [31].

The PMCC values for hourly GHI data for Lemolo and Echareria are shown in Table 6.
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Table 6. PMCC values for hourly GHI satellite data (2016) for Lemolo and Echareria.

Database Lemolo PMCC Echareria PMCC

SARAH 0.875 0.877
CMSAF 0.978 0.905
CAMS 0.978 0.946
Solcast 0.971 0.907

According to this metric, CAMS and CMSAF jointly have the best accuracy at Lemolo,
followed by Solcast, with SARAH last. (That is, the same as the nRMSE ranking). At
Echareria, CAMS is best, followed by Solcast, then CMSAF, with SARAH coming last—
again, the same as nRMSE comparison.

4.2.4. Statistics for the Ground-Based Measurements and GHI Satellite Databases

Having determined the accuracy of the four GHI satellite databases under investiga-
tion in this research, the effect on solar irradiation values is explored. Table 7 details the
findings. For Lemolo, SARAH is closest in terms of overall solar radiation sum and hourly
average to the logger measurements, due to its smaller standard deviation. Compensating
errors are occurring more frequently than for the other GHI satellite databases. CMSAF and
CAMS are remarkably different, considering their similar nRMSE values. All the databases
tend to over-estimate, using this measure, with CMSAF being the worst at this. However,
they perform this over-estimation in just one-third of daylight hours, under-estimating
for most of the time. Analysis of values for Echareria generates a contrasting set of ob-
servations (Table 7). Solcast has the most accurate overall solar radiation sum and hourly
average with the smallest standard deviation, and SARAH has the greatest mismatch at
this site. Again, all the databases tend to under-estimate in most hours.

Table 7. General statistics for Lemolo and Echareria.

Location and
No. Hours GHI Wh/m2 Logger SARAH CMSAF CAMS Solcast

Lemolo
3489 h

Sum 842,684 835,475 910,815 888,160 881,534
Hourly average 242 240 261 255 253

% difference sum/avg to Logger −1 8 5 5
Hourly Std dev 322 337 358 345 347

% difference std dev to Logger 5 11 7 8
% of hours under-estimating 70 63 69 68

Echareria
715 h

Sum 157,929 189,617 172,963 179,699 167,135
Hourly avg 221 266 242 252 234

% difference sum/avg to Logger 20 10 14 6
Hourly Std dev 314 360 354 350 335

% difference std dev to Logger 15 13 11 7
% of hours under-estimating 65 67 67 64

Thus, the accuracy and usefulness of GHI satellite database appear to vary from
location to location in the same African country, despite the same quality control procedures
being applied. Suitable performance at one site cannot be taken as a guide for the country
as a whole.

The data are now decomposed for closer examination. In the case of percentage
difference of satellite value to logger per hour, Solcast shows the greatest similarity at
Lemolo. The other databases cluster closely together, further away from the logger and
Solcast. Figure 9 demonstrates this observation in the form of trendlines. The busy
data series plots are hidden for clarity. At Echareria, CMSAF and CAMS are jointly
closest to the logger, with the trendlines of Solcast and SARAH being at greater distances
(Appendix B, Figure A1).
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Figure 9. Trendlines of percentage difference to logger for four satellite-derived databases of average
hourly GHI at Lemolo.

Looking at the average hourly GHI value for each discrete daylight hour from each
data source for Lemolo (Figure 10), compared to the logger, all datasets over-estimate,
except SARAH, which tracks the logger closely at midday. (Note: this observation is not
the consequence of incorrect time stamps. This has been tested and all databases aligned to
the nearest hour (nn:00): 60 min CAMS reports at nn:00, as does Solcast (PVSyst version),
SARAH at nn:06 and CMSAF at nn:51).
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In the case of Echareria, all databases over-estimate, noticeably at noon. Solcast tracks
the logger the closest (Appendix B, Figure A2).

However, looked at in terms of percentage differences, all the GHI satellite databases
are only around 10% different from the ground data value in the early afternoon hours at
Lemolo, i.e., the most productive hours for PV (Figure 11), although using this measure,
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CAMS is frequently most accurate. This suggests that any of them may function well for
the purpose of PV performance simulation. All databases also have similar comparative
hourly differences to logger readings at Echareria (Appendix B, Figure A3).
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Figure 11. Absolute percentage differences in average GHI per discrete hour between four satellite-
derived GHI databases and ground measurements for Lemolo (2016–2017 data).

On a daily basis, SARAH has the most similar values to the ground measurement
at Lemolo on average (Table 8). (Solcast has the nearest value at Echareria). At Lemolo,
SARAH under-estimates in summer and over-estimates in winter (Appendix B,
Figure A4). The other databases are only inclined to this trend to a minimal degree
(Figure 12). The average values in Table 8 hide the observation that Solcast really has the
closest daily values to the ground measurements, with CAMS and CMSAF also performing
well, and SARAH less so (Figure 12).

Table 8. Average daily GHI difference for both Song sites.

% Avg Daily Difference to Logger No. Days SARAHGHI CMSAFGHI CAMSGHI SolcastGHI

Lemolo 152 0 8 6 4
Echareria 22 22 12 16 4

A study of the frequency distribution of GHI at Lemolo shows that SARAH has too
many low values as compared to the logger, and CAMS has too few. All the databases
mirror the logger reasonably well between 100 Wh/m2 and 1000 Wh/m2. SARAH tracks it
the best, then Solcast and CMSAF, with CAMS coming last. All have too many very high
values (Figure 13). There are also too many high values in all GHI satellite databases at
Echareria (Appendix B, Figure A5).

Study of further statistics does not clarify the issue of choice of satellite GHI database
to any extent. CAMS has some of the best nRMSE and nMBE values but SARAH has the
most realistic frequency distribution. SARAH can have either the best or worst accuracy in
respect of sums and averages depending on location. Solcast has trendlines of percentage
difference to logger closest to zero (i.e., best match) for hourly and daily values at both
Lemolo and Echareria. Solcast also does well on a daily basis. All databases are likely to
overestimate in the middle of the day by around 10% when most PV production occurs, so
in this regard, they are evenly matched.
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5. Discussion

Photovoltaic system designers, including those with electric cooking loads, need to
consider the accuracy of solar databases and not take them verbatim. For example, it might
be prudent to consider a 10% buffer in the design of a photovoltaic domestic cooking
system to account for the variation and uncertainty in the results. Whilst in the past, this
might have added to system costs, the rapid fall in the price of photovoltaic modules means
that this should not be an additional economic burden and has the potential to ensure
greater end-user service satisfaction. However, further investigation is needed with more
ground stations in other parts of Africa.

Which database performs best is site-dependent. In the case of all the databases, it
is a matter of how well equal and opposite errors balance, rather than few errors. Some
have many small errors, others have fewer large ones, and this varies from location to
location, season to season and time of day. Modelled databases exhibit long-range power
law correlations, whereas the trend for measured values is white noise behaviour [32].
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Looking at the resolution of the atmospheric inputs (Table 1), it would be expected
that SARAH would have the worst performance. A review of the different analytical tests
and four Kenyan sites investigated here shows that it sometimes does, but not always.
Occasionally, it can exhibit the best accuracy of the GHI satellite databases examined. From
the inputs table (Table 1), Solcast should be best. It is at Echareria, but not at Lemolo.
The accuracy of the GHI satellite databases is thus influenced rather complexly by both
resolution of atmospheric inputs, performance of the clear sky model utilised and usage of
cloud properties model. It depends how well the clear sky model performs in the particular
climate zone (or percentage of clear, almost clear, partly clear, totally cloudy days) at the
site of interest. That is, it is site-dependent. In addition to this, it has been found that some
clear sky models are more sensitive to uncertainties in inputs than others [33].

To clarify the findings of this paper, Appendix B, Table A6 summarises the accuracy
ranking of each database in relation to the other three for each performance metric for
).each temporal resolution for each site. Looking at the hourly and daily data at Lemolo,
SARAH achieves the best accuracy most times, but it also achieves the worst accuracy most
times. At Echareria, Solcast has the highest number of best scores, with SARAH having
the highest number of worst scores. Taking both sites together, CAMS and Solcast jointly
perform the best and SARAH the worst. An alternative is to calculate the average rank
(Appendix B, Table A7). (Lowest score is best). Looking at hourly data only, CAMS is
best at both Lemolo and Echareria. Taking both sites together, CAMS scores the highest
accuracy followed by Solcast in second place, then CMSAF, and lastly, SARAH.

6. Conclusions

It is not feasible to verify a satellite-derived GHI model without ground measurements,
although an informed guess as to which model is likely to perform satisfactorily may be
made via comparison with knowledge of local seasons and climate and/or clear sky data.

The comparative accuracy, and, therefore, the selection of satellite-derived GHI
databases, has been shown to be site-dependent. Therefore, the datasets which by chance
have been fitted to ground measurements close to the site of interest, or datasets which
employ greater numbers of ground stations data in their construction, are likely to display
superior performance. Performance is evidently influenced by climate and height above
sea level, although the role these factors play is not clear from the analysis carried out
here. Temporal resolution and methods of deriving 1-min, 5-min and hourly data from
the original 15-min satellite interval are also playing a part. Additional factors are the
compatibility of the clear sky model to the climate zone of the site of interest, spatial and
temporal resolution of clear sky model input parameters and the susceptibility of the clear
sky model to imperfections in input, as well as inclusion of cloud properties model.

Based on the preceding analysis, the CAMS model, as a publicly available, up-to-
date and fairly accurate resource, appears to be an appropriate option for PV simulation
in East Africa. However, in general, all the databases deliver figures around 10% of
the ground measurement values in the middle of the day (little more than pyranometer
uncertainty). This contrasts with findings in the U.K., where one database clearly outranked
the others [34]. Whether this level of accuracy is sufficient to model the provision of energy
for pressure cookers, hotplates, etc., has yet to be determined in a subsequent publication.
A simple investigation, using the PVGIS Performance of Off-Grid PV Systems tool to model
the type of solar cooking system usage envisaged by the MECS project (300 W solar panel,
battery 24 V/75 Ah, 1.0 kWh daily consumption for two meals) at Lemolo, revealed some
difference between databases. SARAH models 25 days per year with an empty battery,
and 283 days with a full one. CMSAF predicts 11 days per year with an empty battery,
and 304 days with a full one. SARAH generally anticipated a lower state of battery charge,
suggesting longer cooking times.

Impression of accuracy is determined by which mathematical measure is employed.
Solar radiation publications commonly use average hourly/daily nRMSE or nMBE but
these aggregate values can cover trends. Equal and opposite errors may counterbalance.



Sustainability 2021, 13, 11852 17 of 24

Hourly trendlines of percentage differences and nRMSE values rank the GHI satellite
databases in the same order of accuracy at Echareria (Appendix B, Figures 7 and A1), but
not at Lemolo (Figure 7; Figure 9).

Although making up the difference over the long term is acceptable for calculating
the profitability of a solar farm, it is of little use when investigating if an individual solar
panel can power a cooking device at a specific time. If a battery is used in the cooking
system, daily data become applicable. Viewed on an hour of day (Figure 11) or daily basis
(Figure 8), none of the satellite-derived GHI databases largely outperform the others. In
any one hour, one will be more accurate than the others, but there is no consistency as to
which one this is.

The location dependence of GHI databases’ accuracy means that superior precision
at one site (or a small number of sites) cannot be taken as a guide for East Africa or one
country there as a whole. Ground-based measurements (e.g., for one year) are necessary
to select the more accurate GHI satellite database at each specific location. It is hoped the
next steps in the MECS project will include setting up a ground station in the region.

If it was known which clear sky model performs best in each climate, it would be
possible to select a satellite GHI database appropriately. This would overcome the problem
that GHI satellite databases are used where there are no ground measurements, but ground
measurements are needed to choose the most accurate GHI satellite database. Only one
study has investigated this [35]. However, here, the 29 Köppen zones are simplified into
five. This is not enough because Kenya is arid and REST2 is reported as the best, but this
has not been found to be so at all sites in this study.

Our specific recommendations are as follows. (1) The CAMS model generally gives
suitable results in East Africa; (2) nevertheless, some leeway (e.g., 10%) should be al-
lowed for variation and uncertainty in the results. (3) PMCC and other trendline analyses
which maintain the relationship between successive values have proved to be helpful in
interpreting solar time series.

Finally, the goal of this research was to establish which satellite-derived solar irradi-
ance dataset is the most suitable for simulating PV yield in East Africa. The initial findings
presented here suggest that all four databases reviewed are suitable for this task. Future
work will include comparing modelled PV output based on GHI satellite datasets to actual
output. This may further enhance our understanding of suitability.
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Glossary
Abbreviation Definition
BSRN Baseline Surface Radiation Network
CAMS Copernicus Atmosphere Monitoring Service
CMSAF Climate Monitoring Satellite Application Facility
ETR Extraterrestrial irradiation
EUMETSAT European Organisation For the Exploitation of Meteorological Satellites
GHI Global horizontal irradiation
h Solar Elevation
JRC Joint Research Centre
MECS Modern Energy Cooking Services Programme
nMBE Normalised Mean Bias Error
MERRA-2 Modern Era Retrospective Analysis for Research and Applications, Version 2
MVIRI Meteosat Visible Infra-Red Imager
nRMSE normalised Root Mean Error
PMCC Pearson Product-Moment Correlation Coefficient
PV Photovoltaic
PVGIS Photovoltaic Geographical Information System
QC Quality Control
SARAH Surface Solar Radiation Dataset-Heliosat
SEVIRI Spinning Enhanced Visible and Infrared Imager
SoNG Solar Nano Grids
SPECMAGIC SPECtral Mesoscale Atmospheric Global Irradiance Code
SPECtral Shuttle Radar Topography Mission
SRTM Shuttle Radar Topography Mission
WRMC World Radiation Monitoring Centre

Appendix A

Quality Control of Lemolo and Echareria Data

Data quality control checks summarised in Table A1 were applied. The chosen tests
were selected from Journée and Bertrand (2011) [35] and Laitia et al. (2014) [36]. These are
based on guidance from Baseline Surface Radiation Network (BSRN) from the World Radi-
ation Monitoring Centre (WRMC). The procedures were chosen with regard to availability
of data (i.e., no beam or diffuse irradiation data were available).

For the temporal drift test, there is no evidence of incorrect timestamp values. The
results of most of the other tests are presented in Table 2. Mostly, these are very good, with
only a few errors around sunrise and sunset.

Proceeding to the spatial consistency test, both villages achieved similar values, allow-
ing for the difference in climate. There is a high level of completeness of data for Lemolo
on an hourly basis. Echareria data are fragmentary but available.

https://metadata.bgs.ac.uk/geonetwork/srv/eng/catalog.search#/metadata/5cfd5112-e0c0-41cb-e054-002128a47908
https://metadata.bgs.ac.uk/geonetwork/srv/eng/catalog.search#/metadata/5cfd5112-e0c0-41cb-e054-002128a47908


Sustainability 2021, 13, 11852 19 of 24

Table A1. Quality criteria of GHI data used in temporal drift tests (TD), physical threshold tests (PT), step tests (S),
persistence tests (P) and spatial consistency tests (SC).

Type
of Test Test Name Test Description Quality Criteria

TD Temporal Drift Clock drift detection

i. Comparative hourly plots
between datasets

ii. Comparative hourly plots between
datasets and clear sky values 1.

PT Upper Limit
Upper bound when comparing surface solar

radiation data against the extraterrestrial
solar radiation 2.

GHI/ETR < 1 if h > 2◦

PT Upper Clear
sky Limit

Upper bound when comparing surface solar
radiation data against the clear sky solar radiation 1. GHI/Clear sky irradiance <= 1.1 if h > 2◦

PT Lower Limit Lower bound for heavily overcast conditions with
low atmospheric transparency. GHI ≥ 0.03 × ETR

PT Clear sky hours Number of clear sky hours 3.

PT Daily
Lower Limit

Lower bounds for GHI in heavily overcast
conditions with low atmospheric transparency. The
daily mean µ is calculated from data when the sun is

above the horizon (daylight hours).

µ (GHI/ETR) ≥ 0.03

S Step Plausible rate of change between
two successive timestamps.

(
GHI(t)
ETR (t) −

GHI(t−1)
ETR (t−1)

)
< 0.75

If h > 2◦

S Shadow Shadow contamination: rapid drop of values
followed by sudden increase.

(
GHI(t)
ETR (t) −

GHI(t−1)
ETR (t−1)

)
> 0.1

If h > 2◦

P Persistence

Check for variability of measurements/sensor
failure. The daily mean µ and standard deviation σ

are calculated from data when the sun is above the
horizon (daylight hours).

(
1
8

)
.µ

(
GHI
ETR

)
≤ σ

(
GHI
ETR

)
≤ 0.35

SC Spatial Consis-
tency/Sum

Comparison of the sum of GHI for 990 h in the
period under review when both weather

instruments report data.

SC Completeness
of data

Percentage of hours in the measurement period for
which data exists.

1 The McClear clear sky model was used because of its easy accessibility (download from http://www.soda-pro.com/web-services/
radiation/cams-mcclear (accessed on 26 October 2021)). It is a physical model and employs a look-up table on satellite-derived aerosols,
water vapour and ozone data. 2 Extraterrestrial irradiation and solar elevation angle were obtained from the solaR package in R software
(Perpiñán 2012). 3 Clearsky periods were identified from the simple model of Collares-Pereira and Rabi (1979) (GHI/ETR > 0.6) due to lack
of measured diffuse irradiance.

Table A2. Percentage of hours containing data which failed QC limit, step, shadow and persistence
tests for Lemolo and Echareria.

Test Name Lemolo B Echareria

Upper Limit 22 15
Upper Clear sky Limit 0.9 7

Lower Limit 9 9
Daily Lower Limit 0 4

Step 0.1 0
Shadow 2.7 7

Persistence 0 0

In general, the results of the tests indicate that Lemolo B and Echareria data loggers
have produced data of good quality. There are few outliers, little shading and nothing to
suggest instrument failure.

On the other hand, the loggers at Lemolo and Echareria may or may not be absolutely
vertical. However, there is no way of obtaining any further information. The measurement

http://www.soda-pro.com/web-services/radiation/cams-mcclear
http://www.soda-pro.com/web-services/radiation/cams-mcclear
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is in millivolts, so a tiny difference will have a large impact at low values, i.e., morning and
evening hours.

Table A3. Results of spatial consistency tests.

Test Name Lemolo B Echareria

Percentage of Clearsky hours in test period 54 50
Average GHI of clear sky hours Wh/m2 700 500

Sum of GHI for 990 h when both data loggers
report data kWh/m2 237 219

Percentage completeness of data 2016–2017 93 11
Percentage completeness of data 2017 only 100 6

Appendix B

Table A4. nRMSE of satellite models and clear sky models at Lemolo and Echareria, 60-min interval data.

HOURLY No. Values
Lemolo nRMSE % Lemolo No. Values

Echareria
nRMSE %
Echareria

nRMSE % Lemolo
715 Values

PVGIS-SARAH 2016 3489 82.3 715 80.8 65.7
Solcast 2016 3489 37.5 715 57.8 50.2

PVGIS_CMSAF 2016 3489 34 715 68.6 35.4
CAMS 2016 3489 31.1 715 53.6 33.3
Solcast 2017 8102 38.6 386 68.5

Solcast 2016, 17 11,590 37.5 1100 61.6
CAMS 2017 8102 38.6 386 65.7

CAMS 2016, 17 11,590 36.5 1100 57.9
McClear 2016 3489 65.9 715 99.8 77.5
McClear 2017 8102 73.7 386 100.6

McClear 2016, 17 11,590 71.3 1100 100.1

Table A5. nRMSE of satellite models four Kenyan sites, daily data.

DAILY nRMSE % Lemolo
(365 Days)

nRMSE % Echareria
(365 Days)

nRMSE % Galu
(235 Days)

nRMSE % Munje
(182 Days)

PVGIS-SARAH 2016 22.3 26.9 22.9
PVGIS_CMSAF 2016 10.5 12.3 15.6

CAMS 10.6 15.7 24.6 52.2
Solcast 9.2 11.4 27.5 53.2
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Table A6. Accuracy ranking of each database for each performance metric for each temporal resolution for each site.

Lemolo Echareria Galu

Time
Interval Test Best 2nd

Best
3rd
Best

Worst
of 4

Worst
of 5 Best 2nd

Best
3rd
Best

Worst
of 4

Worst
of 5 Best 2nd

Best
3rd
Best

Worst
of 4 Best 2nd

Best

One min nRMSE CAMS McClear
5 min nRMSE Solcast CAMS

15 min nRMSE Solcast CAMS
15 min Instant nRMSE Solcast CAMS
60 min nRMSE CAMS CMSAF Solcast McClear SARAH CAMS Solcast CMSAF SARAH McClear
60 min Instant nRMSE CAMS Solcast CMSAF McClear SARAH
60 min nMBE CAMS CMSAF Solcast SARAH CAMS Solcast CMSAF SARAH
60 min Hourly average SARAH Solcast CAMS CMSAF Solcast CMSAF CAMS SARAH
60 min Hourly Std Dev SARAH CAMS Solcast CMSAF Solcast CAMS CMSAF SARAH
60 min Trend closest to

Logger Solcast CAMS CMSAF SARAH CAMS CMSAF Solcast SARAH
60 min Pearson CAMS CMSAF Solcast SARAH CAMS Solcast CMSAF SARAH

60 min Average GHI
per hour of day SARAH CAMS Solcast CMSAF Solcast CAMS CMSAF SARAH

Daily nRMSE Solcast CAMS CMSAF SARAH Solcast CMSAF CAMS SARAH CMSAF SARAH CAMS Solcast CAMS Solcast
Daily Daily average SARAH Solcast CAMS CMSAF Solcast CMSAF CAMS SARAH

Daily Average GHI
per Day of Year Solcast CAMS CMSAF SARAH

Frequency
Distribution SARAH Solcast CMSAF CAMS

Table A7. Calculation of average rank of each database across all performance metrics for hourly data.

Lemolo Echareria Both

Rank 1 2 3 4 Mean 1 2 3 4 Mean Mean

CAMS 4 × 1 3 × 2 1 × 3 0 3.25 4 × 1 2 × 2 1 × 3 0 2.75 3
CMSAF 1 × 1 3 × 2 2 × 3 3 × 4 6.25 0 2 × 2 5 × 3 0 4.75 5.5
Solcast 1 × 1 2 × 2 5 × 3 0 5 3 × 1 3 × 2 1 × 3 0 3 4
SARAH 2 × 1 0 0 5 × 4 5.5 0 0 0 7 × 4 7 6.25
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