Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = photothermal MGT model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5001 KB  
Article
Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material
by Osama Moaaz, Ahmed E. Abouelregal and Meshari Alesemi
Mathematics 2022, 10(17), 3087; https://doi.org/10.3390/math10173087 - 27 Aug 2022
Cited by 6 | Viewed by 2130
Abstract
By considering the Moore–Gibson–Thompson (MGT) equation, the current work introduces a modified fractional photothermal model. The construction model is based on the proportional Caputo fractional derivative, which is a new definition of the fractional derivative that is simple and works well. In addition, [...] Read more.
By considering the Moore–Gibson–Thompson (MGT) equation, the current work introduces a modified fractional photothermal model. The construction model is based on the proportional Caputo fractional derivative, which is a new definition of the fractional derivative that is simple and works well. In addition, the theory of heat transfer in semiconductor materials was used in the context of optical excitation transfer and plasma processes. The proposed model was used to investigate the interaction of light and heat within a magnetized semiconductor sphere rotating at a constant angular speed. The Laplace transform was used to obtain solutions for optical excitation induced by physical field variables. Using a numerical method, Laplace transforms can be reversed. The figures show the effects of carrier lifetime, conformable fractional operator, and rotation on thermal and mechanical plasma waves, which are shown in the graphs. The theory’s predictions were compared and extensively tested against other existing models. Full article
Show Figures

Figure 1

16 pages, 2985 KB  
Article
A Mathematical Study of a Semiconducting Thermoelastic Rotating Solid Cylinder with Modified Moore–Gibson–Thompson Heat Transfer under the Hall Effect
by Iqbal Kaur, Kulvinder Singh and Eduard-Marius Craciun
Mathematics 2022, 10(14), 2386; https://doi.org/10.3390/math10142386 - 7 Jul 2022
Cited by 25 | Viewed by 2107
Abstract
This research aims to investigate photo-thermoelastic interactions in a rotating infinite semiconducting solid cylinder under a high magnetic field acting along its axis with the Hall current effect. The boundary surface is subjected to a variable heat flux generated by an exponential laser [...] Read more.
This research aims to investigate photo-thermoelastic interactions in a rotating infinite semiconducting solid cylinder under a high magnetic field acting along its axis with the Hall current effect. The boundary surface is subjected to a variable heat flux generated by an exponential laser pulse. The governing equations are expressed using a new photo-thermoelastic model generalized in the Moore–Gibson–Thompson photo-thermal (MGTPT) heat transfer model for a semiconducting medium. The Moore–Gibson–Thompson (MGT) equation is obtained by introducing a thermal relaxation parameter into the Green–Naghdi (GN III) model. The Laplace transform is utilized to determine the mathematical expressions for the components of displacement, carrier density, temperature field, and thermal stresses in the transformed domain. The numerical inversion technique is used to obtain the expressions in the physical domain. The impacts of thermal relaxations, different theories of thermoelasticity, the Hall current, and rotation on the displacement, temperature, thermal stresses, and carrier density are represented graphically using MATLAB software. Full article
(This article belongs to the Special Issue Applied Mathematics and Continuum Mechanics)
Show Figures

Figure 1

20 pages, 2840 KB  
Article
Thermo-Optical Mechanical Waves in a Rotating Solid Semiconductor Sphere Using the Improved Green–Naghdi III Model
by Ahmed E. Abouelregal, Marin Marin and Sameh Askar
Mathematics 2021, 9(22), 2902; https://doi.org/10.3390/math9222902 - 15 Nov 2021
Cited by 22 | Viewed by 2371
Abstract
The current study investigates thermophotovoltaic interactions using a new mathematical model of thermoelasticity established on a modification of the Green–Naghdi model of type III (GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–Thompson (MGT) equation, are [...] Read more.
The current study investigates thermophotovoltaic interactions using a new mathematical model of thermoelasticity established on a modification of the Green–Naghdi model of type III (GN-III). The basic equations, in which the heat transfer is in the form of the Moore–Gibson–Thompson (MGT) equation, are derived by adding a single delay factor to the GN-III model. The impact of temperature and electrical elastic displacement of semiconductors throughout the excited thermoelectric mechanism can be studied theoretically using this model. The proposed model was used to investigate the interactions between the processes of thermoelastic plasma in a rotating semiconductor solid sphere that was subjected to a thermal shock and crossed to an externally applied magnetic field. The influence of rotation parameters on various photothermal characteristics of silicon solid was presented and explored using the Laplace technique. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

Back to TopTop