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Abstract: By considering the Moore–Gibson–Thompson (MGT) equation, the current work introduces
a modified fractional photothermal model. The construction model is based on the proportional
Caputo fractional derivative, which is a new definition of the fractional derivative that is simple
and works well. In addition, the theory of heat transfer in semiconductor materials was used in
the context of optical excitation transfer and plasma processes. The proposed model was used to
investigate the interaction of light and heat within a magnetized semiconductor sphere rotating at a
constant angular speed. The Laplace transform was used to obtain solutions for optical excitation
induced by physical field variables. Using a numerical method, Laplace transforms can be reversed.
The figures show the effects of carrier lifetime, conformable fractional operator, and rotation on
thermal and mechanical plasma waves, which are shown in the graphs. The theory’s predictions
were compared and extensively tested against other existing models.

Keywords: proportional Caputo derivative; semiconductors; rotation; photothermal MGT model;
singularities; rotation
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1. Introduction

Fractional calculus is the subfield of mathematical modeling that investigates and
applies integrals and derivatives of non-integer order. The term “fractional” is erroneous,
although it continues to be used since it is the most common term [1]. Over the past
30 years or more, several scientists have demonstrated a significant deal of interest in
the topic of fractional calculus, which tackles derivatives and integrals of any order. In
actuality, this interest was sparked by the significant results these experts gained when
they applied this calculus’s tools to the analysis of real-world models [2–4]. Because not
all real-world occurrences can be described using basic calculus operators, researchers
attempted generalizations of these operators. It was discovered that fractional operators
are good instruments for simulating long-memory processes as well as many phenomena
seen in physical sciences, chemical engineering, electrical and mechanical design, as well
as many other areas [5,6].

There are several derivatives and integrals in traditional fractional calculus, which
is one of its strengths. However, there has always been a desire to refine calculus further
and uncover new derivatives to comprehend the cosmos better. In addition, investigators
required fractional operators other than Riemann–Liouville fractional operators to gain the
best understanding and most accurate modeling of real-world issues. A few recently sug-
gested fractional operators have non-singular kernels [7–11]. Studies previously suggested

Mathematics 2022, 10, 3087. https://doi.org/10.3390/math10173087 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173087
https://doi.org/10.3390/math10173087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3363-7924
https://doi.org/10.3390/math10173087
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173087?type=check_update&version=1


Mathematics 2022, 10, 3087 2 of 21

novel non-singular fractional operators because of the singularities found in standard
fractional operators, which are expected to cause certain challenges in the modeling im-
provement. Exponentiation and the Mittag–Leffler functions appear in a number of these
operators. Caputo and Fabrizio [7] developed a new non-singular fractional operator.
Atangana and Baleanu [8] made their ideas work for a wider range of complex phenomena,
including biological influences. Katugampola [12] presented what he termed extended
fractional operators in order to combine the Riemann–Liouville and Hadamard fractional
operators. The fractional derivatives of Caputo and Caputo–Hadamard were added to the
generalized derivatives. Local derivatives allow differentiation and integration of orders
that are not integers in other ways.

Jarad et al. [13] developed generalized RL and Caputo fractional derivatives with
exponential functions in their kernels. In 2021, Baleanu et al. [14] presented new fractional
operators mixing proportional and conventional integrals. Akgül and Baleanu [15] also
looked into the analysis and testing of stabilization of the proportional Caputo derivative.
Laplace transforms were utilized in these situations to explain how the symmetrical frac-
tional derivatives were related in Riemann–Liouville and Caputo situations. The novel
fractional operator in the Caputo sense is a generalization of the classical proportional
derivative presented in [15], which has significant applications in control theory. In terms
of control theory application processes, the proposed fractional operator provides im-
provements. In this work, we concentrated on the Caputo fractional generalization due
to the physical significance of the beginning circumstances. More details about these new
proportional fractional operators can be found in [5,16–21].

Many advancements have been made in the field of ultrafast carrier patterns and
processes in semiconductor materials over the past 50 years. In addition to fundamen-
tal physical objectives, the work was motivated by semiconductor optical and electrical
properties and electronic device technologies, as well as the increasing demand for faster
response and processing of information. In order to continuously improve and improve
microelectromechanical semiconductor devices, it is necessary to comprehend the vari-
ous dynamical mechanisms in semiconductor materials. Therefore, the non-equilibrium
excitation of semiconductors and the following processes must be studied in detail [22].

Optically modulated or non-radioactively modulated materials can both be used
to detect and record the PA signal (the so-called heat transfer configuration). Thermal
diffusion mechanisms in materials can be evaluated using the heat transport detection
system [23]. When this technology is applied to semiconductors, further information
on carrier recombination characteristics can be gleaned. Because of the semiconductor’s
periodic creation of surplus carriers, thermal transformation and recombination operations
generate heat waves [24]. During the formation of electron–hole pairs, the semiconductor
materials are mechanically compressed. In order to create a sound wave, photo-induced
free carriers generate periodic elastic stress in the sample. Free carrier density has a small
influence on the physical properties of semiconductors [25].

It is possible to exploit a wide range of physical properties, such as those found in
semiconductors, for study. Only thermoelasticity enables semiconductor materials to be
classed as elastic materials. An experiment demonstrating semiconductors’ importance
in modern technology was published recently [26], using them in conjunction with laser
pulses to generate electrical energy from sunshine. Electro-mechanical systems extensively
use nano particulates referred to as “semiconductors.” Transistors, screens, and solar cells
are just a few modern-day applications for these materials [22].

Renewed energy technology is being developed using photothermal theory and semi-
conductors. Different theoretical concepts were used to analyze photothermal and thermoe-
lasticity equation interactions. Elastic semiconductor materials’ physical features can be
better understood with the use of novel systems that include revised phase-lag approaches.
The improved technique employs methods for modifying heat-transfer characteristics from
diffusive to wave kinds. Microelement structural changes occur in the elastic medium
during heat transfer (excitation) operations [27].
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In recent years, the photothermal framework was applied to semiconductor materials
in an effort to produce sustainable energy solutions. Numerous theories were studied
in order to identify the interaction between both the photothermal and thermoelasticity
formulas. Gordon et al. [28] applied photothermal spectroscopic analysis to electronic
elastic deformation for the first time. Photoacoustic spectroscopy was used to detect
the sound velocity of certain semiconductor materials using a laser source [29] within
the context of sensitive analytical procedures. During electro-deformations of flexible
semiconducting in photothermal processing procedures, wave propagation is currently
utilized in several advanced applications [30]. Abouelregal [31] investigated the effects of
time-dependent heat flow in a spinning semiconductor silicon solid body. By utilizing Green
and Naghdi theories, Abouelregal et al. [32–34] examined the impact of an additional carrier
on a semiconducting semi-infinite structure subjected to an applied load and spinning
semiconductor materials.

Currently, models of enhanced thermoelasticity are becoming more prominent due to
more accurate predictions from uncoupled or coupled thermoelasticity models. In order to
deal with the phenomenon of unbounded heat transport rate inherent in the conventional
coupled thermoelasticity notion, modified generalized theories [35–38] were constructed
throughout the preceding five decades. The literature proposed that Green–Naghdi theories
of type II or III [39–41] could be used to explain thermoelasticity, depending on whether or
not energy is dissipated. Consequently, the type-II theory is considered a subset of type-III
theory, which allows for energy dissipation. Several investigators undertook investigations
on thermoelasticity employing Green–Naghdi theories (e.g., [42,43]). Another type of
material is multiferroic, which has electric and ferromagnetic properties in one molecule.

The Moore–Gibson–Thompson equation was developed to simulate high-amplitude
sound vibrations. With so many potential uses for high-intensity ultrasound in medicine
and industry, including lithotripsy, heat therapy, ultrasound cleaning, and more, it is no
surprise that much research has been conducted [44]. The Moore–Gibson–Thompson
(MGT) equation has been the subject of numerous scientific studies in recent years. The
theory was developed by using a third-order differential equation, which is too much fluid
mechanics. An innovative thermoelastic MGT heat transport theory is being developed
by Quintanilla [45,46]. Abouelregal et al. [31,47–49] used the energy equation to add a
relaxation factor to GN-III for the proposed new heat equation.

A survey of the literature revealed that there is no research on the transient evaluation
of semiconductor materials exposed to thermal and optical plasma applied load as well
as the temperature-dependent characteristics of materials. The main objective of this
manuscript was to present and analyze the time-fractional photothermal MGT formulas
(FMGTPT) that result from substituting the fractional Fourier law for the usual heat-flux
law in the mathematical model. The proposed model presents more general types of
integrals and proportional fractional derivatives. The presence of the thermal relaxation
parameter in front of the third-order time derivative makes it possible for the FMGTPT
concept to accommodate the concept of limited velocity transmission. To the best of the
researcher’s knowledge, this is the first publication to deal with the mathematical modeling
of time-fractional MGT systems.

In addition, several researchers who considered their applications and problems when
used as a spherical medium concluded that semiconductor materials with a spherical cavity
are not in the same state as the center of the sphere. Tibault et al. [50] applied L’Hôpital’s
rule to provide a solution to the singularity problem that existed in the optical rubber
solid sphere. In the present work, L’Hôpital’s rule was applied to remove any individual
points that might be at the center of the material analyzed. Surface waves in semiconductor
materials have numerous applications, including atomic theory, systems engineering, solar
power plants, submarine development, compressed gases, airplanes, chemical pipelines,
and metalworking, to highlight a few.

The fractional FMGTPT photovoltaic heat transfer equation is applied to examine the
effects of photovoltaic mechanisms in an isotropic, thermoelastic, rigid isotropic sphere that
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is homogenous. The system of equations, which comprise associated plasmas, thermal con-
duction, and elastic vibrations, is provided in the field of Laplace transforms, and numerical
inversion techniques find the computational solution. Aspects of the studied physical areas
are illustrated and represented graphically using analytic techniques. Comparisons were
made between the findings and the conclusions of the scholars’ studies.

2. Mathematical Modeling Formulation

Both thermoelastic and electronic deformation processes can be used to derive the
following motion equation when an external force is present:

σij,j + Fi = $
..
ui. (1)

It can be seen that the comma notation stands for the partial differential with respect
to the coordinates.

The constitutive relations, as well as the strain–displacement relationships, are given
by [31,33]:

σij = Cijklekl −
(

βijθ + dnijN
)
,

eij =
1
2
(
ui,j + uj,i

)
, ui,j 6= uj,i for i 6= j.

(2)

Assuming the solid material rotates uniformly about the axis of rotation with an

angular speed of
→
Ω = Ω

→
n, where

→
n is the axis direction of the rotation vector, the motion

Equation (1) adds two additional forces (terms) in the rotating reference frame. The first

term represents the centripetal acceleration force ($
→
Ω× (

→
Ω×→u)), which is related to time-

varying motion, while the second term refers to Corioli’s acceleration (2$(
→
Ω×

→.
u)). Based

on the preceding, the equation of motion can be written as [51]:

σij,j + Fi = $
..
ui + $

→
Ω× (

→
Ω×→u)i + 2$(

→
Ω×

→.
u)i

= $
..
ui + 2ρ(

→
Ω×

→.
u)i + $[(

→
Ω·→u)

→
Ω−Ω2→u ]i.

(3)

The increase in carrier density N can be explained by the plasma–thermal–elastic wave
equation that can be expressed as [52,53]:

(
DEijN,j

)
,i = $

∂N
∂t

+
1
τ

N + κθ + G. (4)

According to the classical Fourier law, the increase in thermal diffusion rate can reach
infinity. It was also shown from previous studies that even a small change in the starting
data might affect the entire solution over the entire area, so it was necessary to improve
this law. In this context, the modified Fourier law was represented as follows by including
a time lag τ0 in the heat flow vector [35]:(

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ. (5)

This time delay τ0 can be seen in many different models and applications, such as
those used to study lithotripsy; heat therapy for cancer cells; processes that use ultrasound,
such as cleaning; and high-frequency ultrasound chemistry.

Green and Naghdi introduced a new set of thermal models to study how heat is
transferred through a solid body in the mid-1990s [39–41]. According to its theoretical
model, heat waves can travel at a finite flow rate. According to the Green and Naghdi
(GN-III) model, the improved Fourier law can be expressed as [40]

→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ. (6)
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In the above equation case, the function ϑ is a thermal variable of the state, here referred
to as thermal displacement, and can be defined as θ(x, t) =

∫ t
0 ϑ(x, χ)dχ. Moreover, the

values of the parameter K∗ij indicate the rates of heat conductivity.
The equation for determining the energy balance can be stated as [35,42]

$CE
∂θ

∂t
+ T0

∂

∂t
(

βijeij
)
= −

→
∇·→q + Q. (7)

By combining Equations (6) and (7), we obtain an equation for thermal conductivity
that has the same defect as in the traditional Fourier theory, which predicts that heat waves
will propagate at an infinite speed. Quintanilla [45,46] and Abouelregal et al. [47–49]
provided a modification of the heat equation after including the relaxation coefficient in the
GN-III model [40]. Based on this improvement, Fourier’s law should be of the following
form [45,46] (

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ. (8)

In the case when the elastic semiconductor medium is subjected to light pulses, the
exciting free electrons form a carrier-free charge density with the energy Eg of the semi-
conductor gap. As a result, the absorbed light energy causes a change in the electronic
deformation of the medium as well as a change in the elastic vibrations. In this scenario,
the thermal flexible plasma vibrations affect the overall shape of the medium as well as
the heat equation. Some of the optical energy collected is thermalized when electron–hole
pairs are considered. The extended Fourier law can be written in the following form for
semiconducting with a plasma influence [31]:(

1 + τ0
∂

∂t

)
→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ−

∫ Eg

τ
Nd
→
x . (9)

The last term in R.H.S. of Equation (9) represents the impact of heat generation from
carrier volume and surface de-excitation in the material.

Non-classical thermoelasticity models have been suggested during the past few
decades, replacing Equation (9) with more generic and applicable formulations. Many
conceptions for the derivative of a non-integer order have yielded many conceptions for
the derivative of fractional order. The fundamental benefit of fractional calculus is that
fractional derivatives are non-local, unlike traditional derivatives, which by definition
are highly local. The use of fractional calculus has been crucial in many fields, includ-
ing physics, machine design, systems engineering, technology, and economics. Not all
derivatives of non-integer orders have the unique features of these fractional derivatives.

This paper is an attempt to establish a generalized framework for thermal elasticity
with a fractional derivative. This change depends on substituting a fractional derivative for
the time derivative in the modified Equation (9). The result is a general equation for the
flow of heat that takes the following form [54]:

(1 + τ0 Dα
t )
→
q = −Kij

→
∇θ − K∗ij

→
∇ϑ−

∫ Eg

τ
Nd
→
x . (10)

In the above equation, Dα
t denotes the order α ∈ (0, 1) fractional derivative operator.

One can identify a number of fractional derivatives, including the Riemann–Liouville;
Caputo–Hadamard; and Marchaud, Riesz, Weyl, and Erdélyi–Kober, as well as many
others [55]. It is possible to derive the Riemann–Liouville and Caputo definitions by means
of a fractional integral. Non-local phenomena such as past memory and future dependency
can be found in the two fractional derivatives [56]. With the help of the previous research,
a new class of generalized Caputo–Riemann–Liouville proportional fractional derivatives
that incorporate exponential functions into their kernels has developed [13]. The semi-
group property of the newly defined derivatives is what makes them stand out, and they
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generalize the previous Caputo and Riemann–Liouville fractional derivatives and integrals
in a manner that does not change [1].

Akgül and Baleanu [15] examined the analysis of the freshly produced proportional
Caputo derivative and derived several interesting relationships between this new derivative
and the beta function. This new derivative is discretized. In addition, stability was explored,
and a stability criterion was derived for the novel derivative. The modified conformable
differential operator Dα

t of order α has the definition [18]:

Dα
t [ f (t)] = k1(α, t) f (t) + k0(α, t) f ′(t), (11)

where k1(α, t) 6= 0, α ∈ [0, 1), k0(α, t) 6= 0, α ∈ (0, 1] and

lim
α→0+

k1(α, t) = 1, lim
α→0+

k0(α, t) = 0, lim
α→1−

k1(α, t) = 0, lim
α→1−

k0(α, t) = 1. (12)

The derivative given in (11) is called a proportional derivative and is prevalent in
control theory and relates to the expansive and expanding notion of conformable deriva-
tives. Baleanu et al. [14] developed a new form of the fractional operator by beginning with
the Caputo fractional derivative, which is stated as an integral formula, and substituting
(11) for t in the integrand of this formula. By combining the concepts of proportional and
Caputo, they arrive at a hybrid fractional operator:

PCDα
t f (t) =

1
Γ(1− α)

∫ t

0

[
k1(α, ξ) f (ξ) + k0(α, ξ) f ′(ξ)

]
(t− ξ)−αdξ. (13)

As a special case, an interesting, specific case can be obtained when both k1 and k0 are
unaffected by t (independent of t) in the case of the PCDα

t f (t) operator.
It can be noted that

lim
α→0+

Dα
t f (t) = f (t), lim

α→1−
Dα

t f (t) = f ′(t). (14)

It is clear that the conformable derivative (11) is a generalization of the conformable
derivative, which does not return the original function as it approaches zero.

We considered only the situation of constant proportional in which k1(α, t) = k1(α)
and k0(α, t) = k0(α). In this particular scenario, the proportional–Caputo hybrid operator
can be defined as follows:

PCDα
t f (t) = 1

Γ(1−α)

∫ t
0 [k1(α) f (ξ) + k0(α) f ′(ξ)](t− ξ)−αdξ

= k1(α)
RLDα

t f (t) + k0(α)
CDα

t f (t).
(15)

The Riemann–Liouville integral and the Caputo derivative are combined in the
above formula.

Applying the Laplace transform to Equation (15), we can obtain:

L{Dα
t f (t)} =

[
k1(α)

s
+ k0(α)

]
sαL{ f (t)} − αsα−1 f (0). (16)

After differentiating Equation (10) concerning the location vector,
→
x yields

(1 + τ0 Dα
t )

(→
∇·→q

)
= −

→
∇·
(

Kij
→
∇θ

)
−
→
∇·
(

K∗ij
→
∇ϑ

)
−

Eg

τ
N. (17)

Inserting Equation (17) into Equation (7) yields an altered heat transfer equation that
describes the interplay of thermal, plasmatic, and elastic waves as

(1 + τ0 Dα
t )

[
$CE

∂2θ

∂t2 + T0
∂2

∂t2

(
βijui,j

)
− $

∂Q
∂t

]
=
(

Kij
.
θ,j

)
,i
+
(

K∗ijθ,j

)
,i
+

Eg

τ

∂N
∂t

. (18)
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It was supposed that the surrounding free space has an initial magnetic field
→
H that

permeates it. In order to meet the magnetic equations of Maxwell, as well as slow-moving

medium, this generates a generated electro-field
→
E and a generated magnetic field

→
h.

Maxwell’s equations are given by

→
J = ∇×

→
h , ∇×

→
E = −µ0

∂
→
h

∂t
,
→
E = −µ0

∂
→
h

∂t
×
→
H

, ∇ ·
→
h = 0, (19)

τij = µ0
[
Hihj + Hjhi − Hkhkδij

]
. (20)

→
J is the current density, the Maxwell stress tensor is represented by τij, while the magnetic

permeability is represented by µ0.

3. Statement of the Problem

This article presents an application of a physical problem to illustrate the fractional
mathematical model of photo-thermoelasticity derived in the previous section. An ideal,
homogeneous, isotropic spherical solid semiconductor medium with a radius of R was
considered. Its outer surface was assumed to be traction-free and exposed to a time-
dependent variable temperature. In addition, we assumed that the body is free from
any external sources of heat or light. The spherical coordinate system (r, ϑ, φ) was taken
into account in which r ∈ [0, R], ϑ ∈ [0, 2π], and φ ∈ [0, 2π]. It is possible to write the
Laplace operator, often known as the Laplacian, for any function f (r, ϑ, φ) using spherical
coordinates as:

∇2 f (r, ϑ, φ) =
1
r2

∂

∂r

(
r2 f
)
+

1
r2 sin(ϑ)

∂

∂ϑ

(
sin(ϑ)

∂ f
∂ϑ

)
+

1
r2 sin2(ϑ)

∂2 f
∂φ2 . (21)

Regarding solving basic equations, we can see that each term on the Laplace operator’s
right-hand side presents its unique set of obstacles [50]. At the point where r is zero, the
expression 1

r2
∂
∂r
(
r2 f
)

displays a singularity in the radial direction. On the other hand, if
symmetry constraints continue to hold, L’Hôpital’s rule could easily reduce singularity [50,57].
In addition, when r is equal to zero and ϑ is equal to zero and π, the second component of the
Laplace operator, which indicates the longitudinal direction, is singular. If symmetry prevails
at ϑ = 0 and ϑ = π, it is possible to solve for singularities using L’Hôpital’s approach. When
we apply L’Hôpital’s rule to the first and second terms in Equation (21), we obtain [50,54]:

lim
r→0

[
1
r2

∂

∂r

(
r2 f
)]

= lim
r→0

[
∂2 f
∂r2 +

2
r

∂ f
∂r

]
=

∂2 f
∂r2 + 2

∂2 f
∂r2 = 3

∂2 f
∂r2 , (22)

lim
ϑ→0,π

[
1

r2 sin(ϑ)
∂

∂ϑ

(
sin(ϑ) ∂ f

∂ϑ

)]
= lim

ϑ→0

[
1
r2

∂2 f
∂ϑ2 +

cos(ϑ)
r2 sin(ϑ)

∂ f
∂ϑ

]
= 1

r2
∂2 f
∂ϑ2 +

1
r2

∂2 f
∂ϑ2 = 2

r2
∂2 f
∂ϑ2 .

(23)

where lim
r→0

[
1
r

∂ f
∂r

]
= ∂2 f

∂r2 and lim
ϑ→0

[
cos(ϑ)

r2 sin(ϑ)
∂ f
∂ϑ

]
= 1

r2
∂2 f
∂ϑ2 .

Singularities at ϑ = 0 and ϑ = π are addressed in Equation (23), but the singularity
at r = 0 cannot be eliminated. For the third term, L’Hôpital’s rule cannot be applied to
remove the singularities at r = 0, ϑ = 0. Due to symmetry, it is presumed that all of the
analyzed fields rely on distance r and time t. In this particular instance, we obtain

∇2 f = 3
∂2 f
∂r2 . (24)
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The following set of equations can be deduced from the assumptions mentioned above
of the 1D situation:

uρ = u(r, t), uφ(r, t) = 0 = uϑ(r, t),
err =

u
r , eφφ = eϑϑ = ∂u

∂r ,
(25)

e = err + eφφ + eϑϑ =
∂u
∂r

+
2u
r

=
1
r2

∂
(
r2u
)

∂r
, (26)

σrr = (λ + 2µ) ∂u
∂r + 2λ u

r − (3λ + 2µ)(αtθ + δnN),
σϑϑ = σφφ = λ ∂u

∂r + 2(µ + λ) u
r − (3λ + 2µ)(αtθ + δnN),

(27)

where αt represents the linear thermal expansion coefficient, δn represents the electronic
displacement coefficient, and λ and µ represent Lame’s constants. If the rotation about

the sphere axis is fixed, i.e.,
→
Ω = (0, 0, Ω), then the following equation of motion can be

derived: the influence of the magnetic force Fr and the force due to body rotation $Ω2u. In
this instance, Equation (3) can be expressed as follows:

∂σrr

∂r
+

2
r
(σrr − σϑϑ) + Fr = $

∂2u
∂t2 − $Ω2u. (28)

In this example, suppose that a magnetic field of uniform intensity surrounds the

sphere’s boundary
→
H0 = (0, 0, H0). Then, Equation (19) leads to the following result:

→
E =

(
0, µ0H0

∂u
∂t

, 0
)

,
→
J =

(
0,

∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
, 0

)
,
→
h =

(
0, 0,

1
r2

∂
(
r2u
)

∂r

)
. (29)

The component of the Lorentz force, denoted by Fr and Maxwell’s stress τrr caused by

the magnetic field
→
H0 and can be expressed as

Fr = µ0

(→
J ×

→
H0

)
r
= µ0H2

0
∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
, τrr =

µ0H2
0

r2
∂
(
r2u
)

∂r
(30)

When Equations (27) and (30) are substituted into Equation (28), we obtain the following:

(
λ + 2µ + µ0H2

0

) ∂

∂r

(
1
r2

∂
(
r2u
)

∂r

)
− γ

∂θ

∂r
− dn

∂N
∂r

= $
∂2u
∂t2 − $Ω2u. (31)

where {γ, dn} = (3λ + 2µ){αt, δn}.
It is possible to rewrite Equation (31) as

(
λ + 2µ + µ0H2

0

)
∇2e− γ∇2θ − dn∇2N = $

∂2e
∂t2 − $Ω2e. (32)

The extended fractional FMGTPT heat transfer Equation (18) can be expressed as
(Q = 0):

(1 + τ0 Dα
t )

[
$CE

∂2θ

∂t2 + γT0
∂2e
∂t2

]
= K∇2

.
θ + K∗∇2θ +

Eg

τ

∂N
∂t

. (33)

DE∇2N = $
∂N
∂t

+
1
τ

N + κθ + G, (34)

By substituting formulas (24) into expressions (32)–(34), the following result is obtained:

3
(

λ + 2µ + µ0H2
0

)∂2e
∂r2 − 3γ

∂2θ

∂r2 − dn
∂2N
∂r2 = $

∂2e
∂t2 − $Ω2e. (35)

(1 + τ0 Dα
t )

[
$CE

∂2θ

∂t2 + γT0
∂2e
∂t2

]
= 3

(
K

∂

∂t
+ K∗

)(
∂2θ

∂r2

)
+

Eg

τ

∂N
∂t

. (36)
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3DE
∂2N
∂r2 = $

∂N
∂t

+
1
τ

N + κθ + G, (37)

The system of equations is simply converted into dimensionless formulations. Then,
the non-dimensional quantities indicated below can be expressed:

{r′, u′} = v0η{r, u},
{

t′, τ′0, τ′
}
= v2

0η{t, τ0, τ}, {θ′, N′} = 1
$v2

0
{γθ, dnn},

Ω′ = Ω
c2

0η
,
{

σ′ij, τ′rr

}
= 1

$v2
0

{
σij, τrr

}
, η = ρCE

K , v2
0 = v2

1 + v2
a,

(38)

where v1 =
√

λ+2µ
$ and va =

√
µ0 H2

0
$ .

If the primes are omitted, the system of equations can be reformulated in the follow-
ing manner:

(1 + τ0 Dα
t )

[
∂2θ

∂t2 + ε1
∂2e
∂t2

]
= 3

(
∂

∂t
+ ω∗

)
∂2θ

∂r2 + ε2
∂N
∂t

, (39)

3
∂2e
∂r2 − 3

∂2θ

∂r2 − 3
∂2N
∂r2 =

∂2e
∂t2 −Ω2e, (40)

3
∂2N
∂r2 = g1

∂N
∂t

+ g2N + g3θ, (41)

σrr = β2 ∂u
∂r +

(
1− β2)e− θ − N,

σϑϑ = 2β2 u
r +

(
1− β2)e− θ − N,

(42)

where
β2 = 2µ

λ+2µ , ε1 = γ2T0
$2CEc2

0
, ω∗ = K∗

v2
0ηK

, ε2 =
γEgv2

0
τdnK ,

g1 = $
DEη , g2 = 1

DEητ1
, g3 = κdn

γη2DEc2
0
.

(43)

For the previous explanation, we assumed that the medium was at rest at the be-
ginning, which means that at time t = 0, the displacement u, carrier density N, and
temperature θ, as well as their derivatives with respect to t, were both zero. Therefore, the
initial conditions are as follows:

u(r, 0) = 0 = ∂u(r,0)
∂r , N(r, 0) = 0 = ∂N(r,0)

∂r ,
θ(r, 0) = 0 = ∂θ(r,0)

∂r .
(44)

Furthermore, it was assumed that the following boundary requirements are met:

θ(a, t) = θ0H(t), t > 0, (45)

σrr(R, t) = 0, (46)

where H(t) stands for the Heaviside function and θ0 is a constant.
During the photo-diffusion phase, carriers can reach the sample surface, but there is

still a chance for recombination. As a result, the state of the carrier density boundary can
be expressed in the following way [34]:

DE
∂N
∂r

= svN at r = R, (47)

where sv represents the speed of recombination at the external boundary.

4. Solution Technique

With the Laplace transform, mathematicians can translate functions between time and
space by transforming their integrals. Some linear differential equations with known initial
conditions can be solved by means of the Laplace transform. The transform can specifically
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convert a differential equation into an algebraic equation. If the algebraic problem can be
solved, the required solution is found by performing the inverse transform.

The Laplace transformation of any function g(t) is defined as follows:

L[g(t)] = g(s) =
∫ ∞

0
g(t)e−stdt, s > 0. (48)

The following is the result of applying the Laplace transform to Equations (39)–(42),
taking into account the initial conditions (44):(

3
d2

dr2 − ψ

)
θ = ψε1e− ε2sN, (49)

(
3

d2

dr2 − s2 + Ω2
)

e = 3
d2θ

dr2 + 3
d2N
dr2 , (50)(

3
d2

dr2 − g4

)
N = g3θ, (51)

σrr = β2 du
dr

+
(

1− β2
)

e− θ − N, (52)

σϑϑ = β2 u
r
+
(

1− β2
)

e− θ − N, (53)

where ψ = s2
(

1 + τ0

[
k1(α)

s + k0(α)
]
sα
)

/(s + ω∗).
When Equations (49)–(51) are decoupled, yield(

d6

dr6 − α2
d4

dr4 + α1
d2

dr2 − α0

){
θ, N, e

}
= 0, (54)

where α2, α1 and α0 are defined as follows:

α2 = 9g6+3g5+g3g9
27 , α1 = 3 g6+g8g5+g3g10

27 , α0 = g8g6
27 ,

g4 = sg1 + g2, g5 = 3(g3 + ψ), g7 = g3ψε1,
g6 = g4ψ + sg3ε2, g8 = s2 −Ω2g9 = 9

g3
, g10 = 3g4

g3
+ 3.

(55)

If the parameter λ2
1, λ2

2 and λ2
3 are the roots of the characteristic equation

λ6 − α2λ3 + α1λ2 − α0 = 0, (56)

then the differential Equation (54) can be rewritten in the following form(
d2

dr2 − λ2
1

)(
d2

dr2 − λ2
2

)(
d2

dr2 − λ2
3

){
e, θ, N

}
= 0. (57)

It is possible to calculate the roots of Equation (56) as

λ2
1 = 1

3 [2β0 sin(γ0) + α2],
λ2

2 = − 1
3 β0

[
sin(γ0) +

√
3 cos(γ0)

]
+ 1

3 α2,

λ2
2 = 1

3 β0

[√
3 cos(γ0)− sin(γ0)

]
+ 1

3 α2,

(58)

with

β0 =
√

α22 − 3α1, γ0 =
1
3

sin−1

(
−

2α3
2 − 9α2α1 + 27α0

2β3
0

)
. (59)
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Equation (57) has a general solution that may be expressed in bounded form as follows:{
e, θ, N

}
(r, s) = ∑3

i=1{1, Li, Hi}Ai cosh(λir). (60)

It is generally recognized that the three integral parameters Ai, (i = 1, 2, 3) are dependent
on the Laplace parameter s. In addition, when linking Equation (60) with Equations (49)–(51),
the following relationships can be obtained

Hi =
g3
(
λ2

i − s2)
λ4

i − g5λ2
i

, Li =

(
λ2

i − s2)(λ2
i − g4

)
λ4

i − g5λ2
i

, i = 1, 2, 3. (61)

Applying Equations (25) and (60) with the restriction that lim
r→0

(u) = 0 allows us to

calculate the displacement that occurs in the field of the Laplace transform. In this particular
case, we have

u =
1
4 ∑3

i=1 Aie−(
λ2

i
4 +r2)

√
π[Erfi(r− λi/2) + Erfi(r + λi/2)]. (62)

The imaginary error function is denoted by the symbol Erfi(.) in Equation (62), which
has the following definition:

Erfi(x) = −V Erf(ix), (63)

where V is the imaginary unit, and Erf(.) is the Gaussian integral, which is defined by

Erfi(x) =
2√
π

∫ x

0
e−t2

dt. (64)

It is possible to calculate the thermal stresses by putting Equation (60) into
Equations (52) and (53) as follows:

σrr =
β2

2

3
∑

i=1
Aie−(

λ2
i

4 +r2)

[
e(

λi
2 −r)

2(
1 + e2λir

)
+
√

πr
(

Erfi
(

λi
2 − r

)
− Erfi

(
λi
2 + r

))]
+

3
∑

i=1

(
1− β2 − Li − Hi

)
Ai cosh(λir),

(65)

σrr = − 2β2

2

3
∑

i=1
Aie−(

λ2
i

4 +r2)

[
e(

λi
2 −r)

2(
1 + e2λir

)
+
√

πr
(

Erfi
(

λi
2 − r

)
− Erfi

(
λi
2 + r

))]
+

3
∑

i=1

(
1− β2

2 − Li − Hi

)
Ai cosh(λir).

(66)
The following are the forms that the boundary conditions (45)–(47) take after the

application of the Laplace transform:

θ = θ0
s , at r = R,

σrr = 0, at r = R,
DE

∂N
∂r = s f N at r = R.

(67)

When Equations (60) and (65) are substituted for Equation (67), the result is

∑3
i=1 Li Ai cosh(λiR) =

θ0

s
, (68)

∑3
i=1 Hi Ai

(
DEλisinh(λiR)− s f cosh(λiR)

)
= 0, (69)

β2

2 ∑3
i=1 Aie−(

λ2
i

4 +R2)

[
e(

λi
2 −R)

2(
1 + e2λi R

)
+
√

πR
(

Erfi
(

λi
2 − R

)
− Erfi

(
λi
2 + R

))]
+∑3

i=1
(
1− β2 − Li − Hi

)
Ai cosh(λiR) = 0.

(70)
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The Honig and Hirdes [58] approach for the inversion of the Laplace Transform was
used to obtain the final solution for temperature change, displacement, and thermal stress
distribution in the time domain. This numerical technique was used to invert the Laplace
Transform. In order to reverse any function from the Laplace domain to the time domain,
the following procedure may be utilized:

Γ(r, t) =
ect

t

(
1
2

Γ(r, c) + Re ∑
N f
j=1 Γ

(
r, c +
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The Honig and Hirdes [58] approach for the inversion of the Laplace Transform was 
used to obtain the final solution for temperature change, displacement, and thermal stress 
distribution in the time domain. This numerical technique was used to invert the Laplace 
Transform. In order to reverse any function from the Laplace domain to the time domain, 
the following procedure may be utilized: 𝛤(𝑟, 𝑡) = ௘೎೟௧ ቀଵଶ 𝛤ത(𝑟, 𝑐) + 𝑅𝑒 ∑ 𝛤ത ቀ𝑟, 𝑐 + 𝒾௝గ௧ ቁ (−1)௝ே೑௝ୀଵ ቁ,  (71)𝑁௙ = the number of terms, 𝑅𝑒 = real portion, 𝒾 = imaginary number unit. This descrip-
tion is important because it shows that Honig and Hirdes’s algorithm works very well for 
systems with little or no hyper-damping. 

5. Numerical Results and Discussion 
For the sake of this analysis, a solid sphere was explored using a modified version of 

the Moore–Gibson–Thompson photo-thermoelasticity theory (FMGTPT) that includes a 
new fractional operator in the sense of Caputo termed the proportional Caputo derivative. 
The inverse Laplace transform method (71) was applied to reach the numerical results of 
the studied fields. For this reason, a computer program was made to calculate the numer-
ical results with the help of the Mathematica package. These results were shown graph-
ically to compare and show how rotation and the fractional-order factor affect how differ-
ent distributions behave. In this mathematical analysis, silicon (Si) material was employed 
as a semiconductor solid. The following values of the different physical constants were 
taken into consideration at 𝑇଴ = 300 K [52]: 𝜆 = 3.64 × 10ଵ଴ kg mିଵsିଶ, 𝜇 = 5.46 × 10ଵ଴ kg mିଵsିଶ, 𝜌 = 2330 kg mିଷ,𝐾 = 1.51 W mିଵKିଵ, 𝐶ா = 6.95 × 10ଶ J kg Kିଵ, 𝑑௡ = −9 × 10ିଷଵ mଷ,𝐸௚ = 1.11 eV, 𝐷ா = 2.5 × 10ିଷ mଶ sିଵ, 𝑠௙ = 2 m sିଵ, 𝜏 = 5 × 10ିହ s.  (72)

jπ
t

)
(−1)j

)
, (71)

N f = the number of terms, Re = real portion,
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= imaginary number unit. This
description is important because it shows that Honig and Hirdes’s algorithm works very
well for systems with little or no hyper-damping.

5. Numerical Results and Discussion

For the sake of this analysis, a solid sphere was explored using a modified version of
the Moore–Gibson–Thompson photo-thermoelasticity theory (FMGTPT) that includes a
new fractional operator in the sense of Caputo termed the proportional Caputo derivative.
The inverse Laplace transform method (71) was applied to reach the numerical results of the
studied fields. For this reason, a computer program was made to calculate the numerical
results with the help of the Mathematica package. These results were shown graphically
to compare and show how rotation and the fractional-order factor affect how different
distributions behave. In this mathematical analysis, silicon (Si) material was employed as a
semiconductor solid. The following values of the different physical constants were taken
into consideration at T0 = 300 K [52]:

λ = 3.64× 1010 kg m−1s−2, µ = 5.46× 1010 kg m−1s−2, ρ = 2330 kg m−3,
K = 1.51 W m−1K−1, CE = 6.95× 102 J kg K−1, dn = −9× 10−31 m3,
Eg = 1.11 eV, DE = 2.5× 10−3 m2 s−1, s f = 2 m s−1, τ = 5× 10−5 s.

(72)

Non-dimensional temperature change, radial deformation, radially and circumferen-
tial thermal stresses, electromagnetic Maxwell’s stress, and absolute carrier density were
calculated numerically in the radial spherical direction. The results were presented. In the
case of t = 0.12 s, we achieved numerical findings with R = 1. Every one of the studied
field variables investigated can be examined in three categories.

5.1. Comparative Analysis of Conventional and Proportional Caputo Derivative

Regarding integral and differential operators of variable orders, fractional calculus has
been around for just as long as conceptional calculus, which works with non-negative inte-
gers. Researchers examined the possibility of modifications of classical calculus operators
because not all real occurrences could be described using them. Fractional operators proved
to be effective tools for simulating long-memory processes and various other processes
found in the physical sciences, chemical engineering, electromagnetism, mechanical design,
and other fields. An operator based on the proportional derivatives of a function relative
to another function is introduced in this paper, which can be developed in tandem with
the formulations in [14]. For the fractional operators, a new kernel that is built from an
exponential function and depends on it was suggested.

This section compared the Moore–Gibson–Thompson fractional photothermal model
(FPC-MGTPE) with a constant proportional Caputo type fractional derivative and the
fractional photothermal model using the conventional Caputo operator (FC-MGTPE). If
the initial condition is set to zero, the conventional fractional Caputo operator’s Laplace
transform will be in the following form:

L
[
D(α)

t f(t)
]
= sαL[f(t)]− f(0) = sαF(s). (73)
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Two cases of constant proportionality can be taken into account in which [59]

k1(α, t) = 1− α and k0(α, t) = α,
k1(α, t) = 1− α2 and k0(α, t) = α2

As the distance r increases, Figures 1–5 show how the studied fields vary over time.
In order to calculate the effects of the fractional-order coefficients, we used α = 0.8 and
α = 0.6 in the numerical calculations and estimates. Moreover, to check and validate the
numerical results, a comparison was made with the conventional case where α = 1.
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The results show that there is a need for operators and fractal derivatives that reduce
the patterns of different physical fields in accordance with the physical qualitative and
experimental results. It can also be seen that the decay rate is faster in the case of using
modified fractional models than in the case of the classical model. This clearly occurs in the
case of the study of viscous and non-viscous materials. The figures show that when the
fractional order factor decreases, the maximum amplitude of the studied physical fields
also decreases.

Figure 1 displays the changes in the temperature increase in the opposite direction of
the radius increase, and it can be seen that all the heat graphs start at the surface r = 1,
with their largest value, which represents the thermal shock on the surface of the sphere
boundary, and then gradually decrease again until it vanishes. As illustrated in Figure 1,
fractional derivatives have only a minor impact on the temperature distribution; in some
cases, they are completely absent. Through the numerical results, we can take advantage of
the advanced MGTPE fractal model, through which we are able to classify some materials
according to the properties of the fractal order they possess. As a direct result of this, the
fractal parameter represented by the symbol α becomes an increasingly important way
to measure how well a substance transfers heat. At the terminus of the sphere’s radius,
the FC-MGTPE and FPC-MGTPE model graphs converge to a point where they have zero
value. It shows that the thermal wave has moved at a limited rate in the FC-MGTPE and
FPC-MGTPE theories but not in the traditional MGTPE theory.

Figure 2 illustrates how different types of fractional derivatives change the amount of
deformation u in a radial direction. L’Hôpital’s rule was applied to reduce singularities
in the domain center of the analyzed functions. The graph shows that the fractional
differential greatly impacts how the deformation changes over time. In order to meet the
regularity requirement, all displacement curves in the case of all the different models always



Mathematics 2022, 10, 3087 15 of 21

converge and tend towards zero inside the sphere because there are no singular points. The
numerical data and graphs illustrate that the displacement u starts with negative values,
rapidly increases to a maximum of positive values, and then gradually decreases to zero.
In addition, it can be demonstrated that, despite the disparities in values, the displacement
diagrams of each model converge. Thus, it may be concluded that thermal parameters have
little effect on displacement changes. The FC-MGTPE concept has a significantly greater
displacement variation than the FPC-MGTPE theory, and the constant proportional Caputo
fractional operator significantly affects displacement.

Radial and hoop stress are indicated in the radial direction in Figures 3 and 4, re-
spectively. Regarding fractional-order characteristics, the radial stress is obviously tensile,
while the hoop stress is compressive. In the FPC-MGTPE concept, the thermomechanical
wave action is smoother than it is in the FC-MGTPE version and in the normal scenario in
which there is no fractional derivative, which is one of the most remarkable conclusions
that can be derived from the evaluation of the various field patterns. It follows from these
figures that the decrease in the order of the fractional derivative α leads to an increase in
the amplitude of stresses. In order to be consistent with the boundary conditions, it is
important to remember that the radial stress always begins at zero. After that, it gradually
lowers until it approaches the lowest value at the sphere’s surface, progressively rising
until it approaches zero again.

Figure 5 depicts the five curves for the carrier density N versus the radius r that were
calculated using various fractional photo-thermoelasticity models. These curves are shown
in relation to one another. As a result of charge carrier recombination, the carrier density N
increases close to the surface of the sphere and then steadily declines as the radial distance
increases until it achieves a steady state. Each of the five curves exhibits the same behavior
but at different values, and they all have a peak point.

When it comes to a wide range of flexible photothermal formulations, Maxwell’s stress
τrr against r can be shown as shown in Figure 6. Because photothermal semiconductors
behave physically, electromagnetic waves can only travel a certain distance before reaching
their destination. We can also see that the curves behave consistently across models, with
minor variations. The fractional-order parameter affects Maxwell’s stress. Because of this,
the inclusion of a fractional-order parameter is critical in this model.
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In order to make the theoretical framework of fractal thermoelasticity simpler, the links
between current models are illustrated in this study. The current model may theoretically be
reduced to a pre-existing fractional theory. When solving for the heat conduction equation,
numerical findings reveal that the order of the Caputo derivative has an important impact
on the sphere’s temperature history. There is less of an impact on the temporal history of
temperature in the sphere when comparing the Riemann–Liouville and Caputo fractional
heat transport models. When applied to control theory, this novel Caputo-style fractional
operator is a modification of the conventional proportional derivative [14,15]. Control
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theory will benefit from the new fractional operator. In light of the physical significance of
the beginning conditions, the Caputo fractional extension is the focus here.

5.2. The Rotation Influence

Solid motion can be divided into translational and rotational movements, which play
an essential role in heat and mass transfer in various engineering processes. Research into
thermal light wave propagation in a spinning medium appears to be restricted, judging
from a review of the available research on the topic. The Earth, the moon, and other planets
all move at an angle, so it makes sense to explore how planar ductile heat waves or thermally
induced magnetic waves propagate across rotating media where the temperature changes.

Various non-dimensional photothermal fields in generalized heat and mass transfer
theory are examined in this section concerning the rotation parameter (MGTPT). Everything
is better compared to what would have happened if there had been no rotation. When
it comes to comparing the angular velocity, we used three numbers to express it: With
Ω = 5, 10, the revolving case is selected, whereas the nonrotating case is chosen with a
value of Ω = 0. Results for the relevant fields of analysis are shown in Figures 7–12. A
slight effect of rotation on temperature increment θ, radial displacement u, and Maxwell’s
stress τrr can be observed in Figures 7, 8 and 12. This is in line with what was found in the
literature [60–62]. Increasing the rotation parameter Ω decreases all three field variables:
θ, u, and τrr, as can be seen in Figures 7, 8 and 12. For various rotation parameters Ω, the
temperature curve is shown in Figure 7. The temperature drops radially from the sphere’s
surface to its center, as depicted in the figure, whereas the temperature drops as the rotation
parameter Ω increases. There is a gradual decrease in the amount of radial displacement as
the rotational parameter Ω rises, as shown in Figure 8. According to the thermal stress σrr
profile, the rotational factor (Ω) has an enormous impact.
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As can be seen in Figures 9–11, the rotational parameter Ω greatly affects the carrier
density N as well as the thermal stresses σrr and σϑϑ . Figure 10 depicts the relationship
between radius and rotational parameter Ω to demonstrate how thermal stresses change
with increasing radius. With increasing rotation parameters, the radial stress σrr decreases
while the hoop stress σϑϑ rises, as seen in Figures 10 and 11, respectively. Raising rotational
factor Ω raises carrier density numerical data, as seen in Figure 10.

6. Conclusions

An expanded photothermal Moore–Gibson–Thompson heat conduction model with
various fractional proportional integrals and derivatives is suggested in this work. The frac-
tional variation impact of the new constant proportional Caputo type fractional derivative
operator is more appropriate and adaptive than that of the Caputo derivative operator. It
can be utilized to explain various real-world scenarios successfully. When using the Laplace
transform method, a combination of fractional operators with a singular kernel is used to
model the system of equations. It was found that angular velocity has two general patterns
for different values of the fractional parameter for both small and large amounts of time,
depending on the fractional parameter. Based on the proposed fractional photothermal
model, a numerical study of the problem of one-dimensional thermoelasticity of a rotating
spherical solid body was presented. The most important observations and conclusions
obtained can be summarized as follows:

• In contrast to other models, the model that was proposed allows heat-elastic light
waves to move at a measurable speed. In addition, the model analyzes how heat,
plasma, and elastic waves interact in semiconductor materials. The fractional pro-
posed model makes it possible to derive, as special cases, several thermoelastic and
photothermal models that have already been proposed;

• Some materials can be further classified based on the Caputo-type constant relative
partial derivative factor, which may be the basis for using temperature-dependent
refractory materials in terms of photothermal conductivity;

• The thermal relaxation time that was introduced in the new model had a prominent
role in the behavior of the physical fields, as it was found that its presence reduces the
propagation of mechanical and thermal optical waves within the medium. L’Hôpital’s
rule was used to remove the singular points in the functions that were looked at in the
middle of the sphere;

• The rotation speed of the medium affects the behavior of many physical fields in
addition to electro-optical mechanical waves;

• In future work, the current work can be generalized by using the fractional derivative
with time-dependent variable fractional orders. Moreover, the results obtained in
this study can be generalized to other fields such as experimental physics, thermal
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efficiency, material design, and geophysics. Finally, these theoretical results will be
very useful for scientists who are working on experimental results in the heat flow of
a second-order viscoelastic fluid and a Maxwell fluid.
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Notations and Symbols

λ, µ Lam′e′s constants
αt thermal expansion
CE specific heat
γ = (3λ + 2µ)αt thermal coupling
T0 reference temperature
θ = T − T0 temperature change
T absolute temperature
ui displacement components
e = uk,k cubical dilatation
σij stress tensor
eij strain tensor
δij Kronecker’s delta function
n0 equilibrium carrier concentration
Kij thermal conductivity tensor
G carrier photogeneration
K thermal conductivity
ρ material density
Ω angular velocity
Cijkl elastic constants
dn = (3λ + 2µ)δn diffusion coupling
N carrier density
i, j, k 1, 2, 3
Q ource of heat
Eg semiconducting energy gap
δn electronic deformation
DE diffusion
q heat flux
κ thermal activation coupling
τ ifetime of photogenerated electron
F external forces
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