Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = photolesions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1269 KiB  
Article
Variable Inhibition of DNA Unwinding Rates Catalyzed by the SARS-CoV-2 Helicase Nsp13 by Structurally Distinct Single DNA Lesions
by Ana H. Sales, Iwen Fu, Alexander Durandin, Sam Ciervo, Tania J. Lupoli, Vladimir Shafirovich, Suse Broyde and Nicholas E. Geacintov
Int. J. Mol. Sci. 2024, 25(14), 7930; https://doi.org/10.3390/ijms25147930 - 19 Jul 2024
Viewed by 3200
Abstract
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5′ → 3′ direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected [...] Read more.
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5′ → 3′ direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6–4) pyrimidone (6–4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2–5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions’ inhibitory effects than unwinding rate constants. Full article
(This article belongs to the Special Issue Protein and DNA Interactions: 2nd Edition)
Show Figures

Figure 1

25 pages, 41269 KiB  
Article
The Over-Irradiation Metabolite Derivative, 24-Hydroxylumister-ol3, Reduces UV-Induced Damage in Skin
by Warusavithana Gunawardena Manori De Silva, Bianca Yuko McCarthy, Jeremy Han, Chen Yang, Andrew J. A. Holland, Harvey Stern, Katie Marie Dixon, Edith Kai Yan Tang, Robert Charles Tuckey, Mark Stephen Rybchyn and Rebecca Sara Mason
Metabolites 2023, 13(7), 775; https://doi.org/10.3390/metabo13070775 - 21 Jun 2023
Cited by 8 | Viewed by 2397
Abstract
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce “over-irradiation products” such as lumisterol3 [...] Read more.
The hormonal form of vitamin D3, 1,25(OH)2D3, reduces UV-induced DNA damage. UV exposure initiates pre-vitamin D3 production in the skin, and continued UV exposure photoisomerizes pre-vitamin D3 to produce “over-irradiation products” such as lumisterol3 (L3). Cytochrome P450 side-chain cleavage enzyme (CYP11A1) in skin catalyzes the conversion of L3 to produce three main derivatives: 24-hydroxy-L3 [24(OH)L3], 22-hydroxy-L3 [22(OH)L3], and 20,22-dihydroxy-L3 [20,22(OH)L3]. The current study investigated the photoprotective properties of the major over-irradiation metabolite, 24(OH)L3, in human primary keratinocytes and human skin explants. The results indicated that treatment immediately after UV with either 24(OH)L3 or 1,25(OH)2D3 reduced UV-induced cyclobutane pyrimidine dimers and oxidative DNA damage, with similar concentration response curves in keratinocytes, although in skin explants, 1,25(OH)2D3 was more potent. The reductions in DNA damage by both compounds were, at least in part, the result of increased DNA repair through increased energy availability via increased glycolysis, as well as increased DNA damage recognition proteins in the nucleotide excision repair pathway. Reductions in UV-induced DNA photolesions by either compound occurred in the presence of lower reactive oxygen species. The results indicated that under in vitro and ex vivo conditions, 24(OH)L3 provided photoprotection against UV damage similar to that of 1,25(OH)2D3. Full article
Show Figures

Figure 1

19 pages, 6872 KiB  
Article
Short-Term UVB Irradiation Leads to Persistent DNA Damage in Limbal Epithelial Stem Cells, Partially Reversed by DNA Repairing Enzymes
by Thomas Volatier, Björn Schumacher, Berbang Meshko, Karina Hadrian, Claus Cursiefen and Maria Notara
Biology 2023, 12(2), 265; https://doi.org/10.3390/biology12020265 - 7 Feb 2023
Cited by 7 | Viewed by 3145
Abstract
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage [...] Read more.
The cornea is frequently exposed to ultraviolet (UV) radiation and absorbs a portion of this radiation. UVB in particular is absorbed by the cornea and will principally damage the topmost layer of the cornea, the epithelium. Epidemiological research shows that the UV damage of DNA is a contributing factor to corneal diseases such as pterygium. There are two main DNA photolesions of UV: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6–4) photoproducts (6-4PPs). Both involve the abnormal linking of adjacent pyrimide bases. In particular, CPD lesions, which account for the vast majority of UV-induced lesions, are inefficiently repaired by nucleotide excision repair (NER) and are thus mutagenic and linked to cancer development in humans. Here, we apply two exogenous enzymes: CPD photolyase (CPDPL) and T4 endonuclease V (T4N5). The efficacy of these enzymes was assayed by the proteomic and immunofluorescence measurements of UVB-induced CPDs before and after treatment. The results showed that CPDs can be rapidly repaired by T4N5 in cell cultures. The usage of CPDPL and T4N5 in ex vivo eyes revealed that CPD lesions persist in the corneal limbus. The proteomic analysis of the T4N5-treated cells shows increases in the components of the angiogenic and inflammatory systems. We conclude that T4N5 and CPDPL show great promise in the treatment of CPD lesions, but the complete clearance of CPDs from the limbus remains a challenge. Full article
(This article belongs to the Special Issue Limbal Stem Cell Biology and Contribution to Cornea Homeostasis)
Show Figures

Figure 1

11 pages, 953 KiB  
Review
Circadian Rhythm of NER and ATR Pathways
by Tae-Hong Kang
Biomolecules 2021, 11(5), 715; https://doi.org/10.3390/biom11050715 - 11 May 2021
Cited by 19 | Viewed by 4539
Abstract
Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen [...] Read more.
Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint, and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia–telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of UV-induced DNA damage responses in mammalian cells will be discussed. Full article
Show Figures

Figure 1

17 pages, 3374 KiB  
Article
Inhibitors of Nucleotide Excision Repair Decrease UVB-Induced Mutagenesis—An In Vitro Study
by Eszter Fidrus, Csaba Hegedűs, Eszter Anna Janka, György Paragh, Gabriella Emri and Éva Remenyik
Int. J. Mol. Sci. 2021, 22(4), 1638; https://doi.org/10.3390/ijms22041638 - 6 Feb 2021
Cited by 5 | Viewed by 4223
Abstract
The high incidence of skin cancers in the Caucasian population is primarily due to the accumulation of DNA damage in epidermal cells induced by chronic ultraviolet B (UVB) exposure. UVB-induced DNA photolesions, including cyclobutane–pyrimidine dimers (CPDs), promote mutations in skin cancer driver genes. [...] Read more.
The high incidence of skin cancers in the Caucasian population is primarily due to the accumulation of DNA damage in epidermal cells induced by chronic ultraviolet B (UVB) exposure. UVB-induced DNA photolesions, including cyclobutane–pyrimidine dimers (CPDs), promote mutations in skin cancer driver genes. In humans, CPDs are repaired by nucleotide excision repair (NER). Several commonly used and investigational medications negatively influence NER in experimental systems. Despite these molecules’ ability to decrease NER activity in vitro, the role of these drugs in enhancing skin cancer risk is unclear. In this study, we investigated four molecules (veliparib, resveratrol, spironolactone, and arsenic trioxide) with well-known NER-inhibitory potential in vitro, using UVB-irradiated CHO epithelial and HaCaT immortalized keratinocyte cell lines. Relative CPD levels, hypoxanthine phosphoribosyltransferase gene mutation frequency, cell viability, cell cycle progression, and protein expression were assessed. All four molecules significantly elevated CPD levels in the genome 24 h after UVB irradiation. However, veliparib, spironolactone, and arsenic trioxide reduced the mutagenic potential of UVB, while resveratrol did not alter UVB-induced mutation formation. UVB-induced apoptosis was enhanced by spironolactone and arsenic-trioxide treatment, while veliparib caused significantly prolonged cell cycle arrest and increased autophagy. Spironolactone also enhanced the phosphorylation level of mammalian target of rapamycin (mTOR), while arsenic trioxide modified UVB-driven mitochondrial fission. Resveratrol induced only mild changes in the cellular UVB response. Our results show that chemically inhibited NER does not result in increased mutagenic effects. Furthermore, the UVB-induced mutagenic potential can be paradoxically mitigated by NER-inhibitor molecules. We identified molecular changes in the cellular UVB response after NER-inhibitor treatment, which may compensate for the mitigated DNA repair. Our findings show that metabolic cellular response pathways are essential to consider in evaluating the skin cancer risk–modifying effects of pharmacological compounds. Full article
Show Figures

Graphical abstract

23 pages, 3157 KiB  
Review
Formation and Recognition of UV-Induced DNA Damage within Genome Complexity
by Philippe Johann to Berens and Jean Molinier
Int. J. Mol. Sci. 2020, 21(18), 6689; https://doi.org/10.3390/ijms21186689 - 12 Sep 2020
Cited by 41 | Viewed by 8503
Abstract
Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome [...] Read more.
Ultraviolet (UV) light is a natural genotoxic agent leading to the formation of photolesions endangering the genomic integrity and thereby the survival of living organisms. To prevent the mutagenetic effect of UV, several specific DNA repair mechanisms are mobilized to accurately maintain genome integrity at photodamaged sites within the complexity of genome structures. However, a fundamental gap remains to be filled in the identification and characterization of factors at the nexus of UV-induced DNA damage, DNA repair, and epigenetics. This review brings together the impact of the epigenomic context on the susceptibility of genomic regions to form photodamage and focuses on the mechanisms of photolesions recognition through the different DNA repair pathways. Full article
(This article belongs to the Special Issue Recognition of DNA Lesions)
Show Figures

Figure 1

12 pages, 1901 KiB  
Article
Silymarin: Friend or Foe of UV Exposed Keratinocytes?
by Eszter Fidrus, Zoltán Ujhelyi, Pálma Fehér, Csaba Hegedűs, Eszter Anna Janka, György Paragh, Gábos Vasas, Ildikó Bácskay and Éva Remenyik
Molecules 2019, 24(9), 1652; https://doi.org/10.3390/molecules24091652 - 26 Apr 2019
Cited by 10 | Viewed by 4420
Abstract
The application of natural plant extracts in UV-protection is popular and intensively studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in the UV-mediated keratinocyte cell response [...] Read more.
The application of natural plant extracts in UV-protection is popular and intensively studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in the UV-mediated keratinocyte cell response is still controversial. In this study, we investigated the effects of Silibum marianum extracts with different origins and formulations on UVA-exposed HaCaT keratinocytes in vitro. Our results show, that silymarin treatment caused an inverse dose-dependent photosensitivity relationship (at higher doses, a decrease in cell viability and ROS production) after UVA exposure. The attenuation of the UVA-induced ROS generation after silymarin treatment was also observed. Moreover, silymarin pre-treatment increased the cyclobutane pyrimidine dimer photolesions in keratinocytes after UVA exposure. These results indicated the dual role of silymarin in UVA-exposed keratinocytes. It scavenges ROS but still induces phototoxicity. Based on our results dermatological applications of silymarin and related compounds should be considered very carefully. Full article
(This article belongs to the Special Issue Silymarin and Derivatives: From Biosynthesis to Health Benefits)
Show Figures

Graphical abstract

12 pages, 3339 KiB  
Review
Genome and Epigenome Surveillance Processes Underlying UV Exposure in Plants
by Jean Molinier
Genes 2017, 8(11), 316; https://doi.org/10.3390/genes8110316 - 9 Nov 2017
Cited by 22 | Viewed by 5046
Abstract
Land plants and other photosynthetic organisms (algae, bacteria) use the beneficial effect of sunlight as a source of energy for the photosynthesis and as a major source of information from the environment. However, the ultraviolet component of sunlight also produces several types of [...] Read more.
Land plants and other photosynthetic organisms (algae, bacteria) use the beneficial effect of sunlight as a source of energy for the photosynthesis and as a major source of information from the environment. However, the ultraviolet component of sunlight also produces several types of damage, which can affect cellular and integrity, interfering with growth and development. In order to reduce the deleterious effects of UV, photosynthetic organisms combine physiological adaptation and several types of DNA repair pathways to avoid dramatic changes in the structure. Therefore, plants may have obtained an evolutionary benefit from combining genome and surveillance processes, to efficiently deal with the deleterious effects of UV radiation. This review will present the different mechanisms activated upon UV exposure that contribute to maintain genome and integrity. Full article
(This article belongs to the Special Issue DNA Damage Responses in Plants)
Show Figures

Figure 1

14 pages, 1026 KiB  
Review
Transcriptional and Posttranslational Regulation of Nucleotide Excision Repair: The Guardian of the Genome against Ultraviolet Radiation
by Jeong-Min Park and Tae-Hong Kang
Int. J. Mol. Sci. 2016, 17(11), 1840; https://doi.org/10.3390/ijms17111840 - 4 Nov 2016
Cited by 34 | Viewed by 8557
Abstract
Ultraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able [...] Read more.
Ultraviolet (UV) radiation from sunlight represents a constant threat to genome stability by generating modified DNA bases such as cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). If unrepaired, these lesions can have deleterious effects, including skin cancer. Mammalian cells are able to neutralize UV-induced photolesions through nucleotide excision repair (NER). The NER pathway has multiple components including seven xeroderma pigmentosum (XP) proteins (XPA to XPG) and numerous auxiliary factors, including ataxia telangiectasia and Rad3-related (ATR) protein kinase and RCC1 like domain (RLD) and homologous to the E6-AP carboxyl terminus (HECT) domain containing E3 ubiquitin protein ligase 2 (HERC2). In this review we highlight recent data on the transcriptional and posttranslational regulation of NER activity. Full article
(This article belongs to the Collection Radiation Toxicity in Cells)
Show Figures

Graphical abstract

11 pages, 2396 KiB  
Article
Bipyrimidine Signatures as a Photoprotective Genome Strategy in G + C-rich Halophilic Archaea
by Daniel L. Jones and Bonnie K. Baxter
Life 2016, 6(3), 37; https://doi.org/10.3390/life6030037 - 2 Sep 2016
Cited by 14 | Viewed by 9011
Abstract
Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional [...] Read more.
Halophilic archaea experience high levels of ultraviolet (UV) light in their environments and demonstrate resistance to UV irradiation. DNA repair systems and carotenoids provide UV protection but do not account for the high resistance observed. Herein, we consider genomic signatures as an additional photoprotective strategy. The predominant forms of UV-induced DNA damage are cyclobutane pyrimidine dimers, most notoriously thymine dimers (T^Ts), which form at adjacent Ts. We tested whether the high G + C content seen in halophilic archaea serves a photoprotective function through limiting T nucleotides, and thus T^T lesions. However, this speculation overlooks the other bipyrimidine sequences, all of which capable of forming photolesions to varying degrees. Therefore, we designed a program to determine the frequencies of the four bipyrimidine pairs (5’ to 3’: TT, TC, CT, and CC) within genomes of halophilic archaea and four other randomized sample groups for comparison. The outputs for each sampled genome were weighted by the intrinsic photoreactivities of each dinucleotide pair. Statistical methods were employed to investigate intergroup differences. Our findings indicate that the UV-resistance seen in halophilic archaea can be attributed in part to a genomic strategy: high G + C content and the resulting bipyrimidine signature reduces the genomic photoreactivity. Full article
Show Figures

Figure 1

23 pages, 708 KiB  
Review
Chromatin Structure Following UV-Induced DNA Damage—Repair or Death?
by Andrew W. Farrell, Gary M. Halliday and James Guy Lyons
Int. J. Mol. Sci. 2011, 12(11), 8063-8085; https://doi.org/10.3390/ijms12118063 - 17 Nov 2011
Cited by 34 | Viewed by 20106
Abstract
In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, [...] Read more.
In eukaryotes, DNA is compacted into a complex structure known as chromatin. The unravelling of DNA is a crucial step in DNA repair, replication, transcription and recombination as this allows access to DNA for these processes. Failure to package DNA into the nucleosome, the individual unit of chromatin, can lead to genomic instability, driving a cell into apoptosis, senescence, or cellular proliferation. Ultraviolet (UV) radiation damage causes destabilisation of chromatin integrity. UV irradiation induces DNA damage such as photolesions and subjects the chromatin to substantial rearrangements, causing the arrest of transcription forks and cell cycle arrest. Highly conserved processes known as nucleotide and base excision repair (NER and BER) then begin to repair these lesions. However, if DNA repair fails, the cell may be forced into apoptosis. The modification of various histones as well as nucleosome remodelling via ATP-dependent chromatin remodelling complexes are required not only to repair these UV-induced DNA lesions, but also for apoptosis signalling. Histone modifications and nucleosome remodelling in response to UV also lead to the recruitment of various repair and pro-apoptotic proteins. Thus, the way in which a cell responds to UV irradiation via these modifications is important in determining its fate. Failure of these DNA damage response steps can lead to cellular proliferation and oncogenic development, causing skin cancer, hence these chromatin changes are critical for a proper response to UV-induced injury. Full article
(This article belongs to the Special Issue UV-Induced Cell Death)
Show Figures

Back to TopTop