Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = photo-driven catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1987 KB  
Review
Data-Driven Perovskite Design via High-Throughput Simulation and Machine Learning
by Yidi Wang, Dan Sun, Bei Zhao, Tianyu Zhu, Chengcheng Liu, Zixuan Xu, Tianhang Zhou and Chunming Xu
Processes 2025, 13(10), 3049; https://doi.org/10.3390/pr13103049 - 24 Sep 2025
Viewed by 1369
Abstract
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning [...] Read more.
Perovskites (ABX3) exhibit remarkable potential in optoelectronic conversion, catalysis, and diverse energy-related fields. However, the tunability of A, B, and X-site compositions renders conventional screening methods labor-intensive and inefficient. This review systematically synthesizes the roles of physical simulations and machine learning (ML) in accelerating perovskite discovery. By harnessing existing experimental datasets and high-throughput computational results, ML models elucidate structure-property relationships and predict performance metrics for solar cells, (photo)electrocatalysts, oxygen carriers, and energy-storage materials, with experimental validation confirming their predictive reliability. While data scarcity and heterogeneity inherently limit ML-based prediction of material property, integrating high-throughput computational methods as external mechanistic constraints—supplementing standardized, large-scale training data and imposing loss penalties—can improve accuracy and efficiency in bandgap prediction and defect engineering. Moreover, although embedding high-throughput simulations into ML architectures remains nascent, physics-embedded approaches (e.g., symmetry-aware networks) show increasing promise for enhancing physical consistency. This dual-driven paradigm, integrating data and physics, provides a versatile framework for perovskite design, achieving both high predictive accuracy and interpretability—key milestones toward a rational design strategy for functional materials discovery. Full article
Show Figures

Figure 1

10 pages, 5309 KB  
Article
Photo-Induced Hydrogen Production from Formic Acid Using a Palladium Catalyst
by Tarek M. Abdel-Fattah, Erik Biehler, Michelle A. Smeaton, Thomas Gennett and Noemi Leick
Catalysts 2025, 15(3), 213; https://doi.org/10.3390/catal15030213 - 24 Feb 2025
Cited by 1 | Viewed by 1407
Abstract
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 [...] Read more.
Liquid organic hydrogen carriers (LOHCs) are recognized as promising sustainable hydrogen (H2) carriers due to their high volumetric capacity and ability to store H2 at ambient conditions, eliminating the need for energy-intensive liquefaction or compression processes associated with H2 or ammonia gas. One of the main current drawbacks, however, is LOHCs’ high energy demand for H2 release. This work presents the photo-induced liberation of H2 from formic acid (FA) as a liquid H2 carrier, using visible light and well-established 5 wt% palladium nanoparticles supported over carbon (Pd/C). We show that low-power light-emitting diodes (LEDs) produced higher gas flow than their thermal baseline (35 °C), with 27.2 mL/min and 7.72 mL/min, respectively. Further, the rate of gas evolved with light intensity, catalyst loading, and the concentration of FA. Light-induced dehydrogenation shows similar deactivation as the known thermal mechanisms, such as the decreased Pd2+/Pd0 ratio and Pd nanoparticle agglomeration. Hence, these observations suggest a photothermal mechanism, whereby the LED provides heat efficiently absorbed by the Pd/C catalyst and enhanced by Pd’s ability to absorb light, thereby driving the FA dehydrogenation reaction at ambient conditions. Full article
(This article belongs to the Special Issue Novel Catalytic Materials for Hydrogen Storage and Generation)
Show Figures

Graphical abstract

13 pages, 4639 KB  
Article
Copper-Copper Oxide Heterostructural Nanocrystals Anchored on g-C3N4 Nanosheets for Efficient Visible-Light-Driven Photo-Fenton-like Catalysis
by Guangying Zhou, Fan Yang, Ximiao Zhu, Weihua Feng, Dongdong Chen and Jianzhang Fang
Molecules 2025, 30(1), 144; https://doi.org/10.3390/molecules30010144 - 2 Jan 2025
Cited by 2 | Viewed by 1427
Abstract
The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-Cu2O/g-C3N4, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-C3N4 [...] Read more.
The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-Cu2O/g-C3N4, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-C3N4 nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of Cu2O, the high stability of g-C3N4, and the surface plasmon resonance (SPR) effect of Cu nanoparticles. The photocatalytic performance was evaluated through the degradation of Rhodamine B (RhB) in a photo-Fenton-like reaction system under visible light irradiation. Among the catalysts tested, the 30 wt% Cu-Cu2O/g-C3N4 composite exhibited the highest catalytic efficiency, achieving a reaction rate constant approximately 3 times and 1.5 times higher than those of Cu-Cu2O and g-C3N4, respectively. Mechanistic studies suggest that the heterostructure facilitates efficient charge separation and promotes the reduction of Cu2+ to Cu+, thereby enhancing ∙OH radical generation. The catalyst also demonstrated excellent stability and reusability across a wide pH range. These findings provide a new strategy for designing highly efficient photocatalysts for organic pollutant degradation, contributing to the advancement of advanced oxidation processes for environmental applications. Full article
(This article belongs to the Special Issue Progress of Photocatalysis and Photodegradation in Photochemistry)
Show Figures

Figure 1

10 pages, 2158 KB  
Article
Viologen-Directed Silver-Thiocyanate-Based Photocatalyst for Rhodamine B Degradation in Artificial Seawater
by Xueqiang Zhuang, Xihe Huang, Haohong Li, Tianjin Lin and Yali Gao
Materials 2024, 17(21), 5289; https://doi.org/10.3390/ma17215289 - 30 Oct 2024
Cited by 1 | Viewed by 993
Abstract
Photocatalytic degradation is a leading technology for complete mineralization of organic dyes in the ocean. In this work, a new viologen-bearing silver-thiocyanate-based photocatalyst, i.e., {(i-PrV)[Ag2(SCN)4]}n (i-PrV2+ = isopropyl viologen) has been synthesized and [...] Read more.
Photocatalytic degradation is a leading technology for complete mineralization of organic dyes in the ocean. In this work, a new viologen-bearing silver-thiocyanate-based photocatalyst, i.e., {(i-PrV)[Ag2(SCN)4]}n (i-PrV2+ = isopropyl viologen) has been synthesized and structurally determined, with results showing that it can exhibit excellent degradation performance on rhodamine B (RhB) in artificial seawater. The planar i-PrV2+ dications are confined in the free voids of the [Ag2(SCN)4]n2n layer with a two-dimensional (6,3) mesh, and strong C-H···S hydrogen bonds contribute to its structural stabilization. This photocatalyst was further characterized by powder X-ray diffraction (PXRD), UV-Vis, fluorescence, and photo/electrical responsive measurements, pointing to its application in visible-light-driven catalysis. Interestingly, using this photocatalyst, good photocatalytic degradation performance on rhodamine B in artificial seawater could be observed. The dye pollutant could be degraded with a high degradation ratio of 87.82% in 220 min. This work provides a promising catalyst for organic dye-type ocean pollutant treatments. Full article
Show Figures

Figure 1

17 pages, 1551 KB  
Review
Light-Driven H2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis
by Michael Hippler and Fatemeh Khosravitabar
Plants 2024, 13(15), 2114; https://doi.org/10.3390/plants13152114 - 30 Jul 2024
Cited by 10 | Viewed by 3959
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so [...] Read more.
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

14 pages, 2784 KB  
Article
A Continuous-Wave EPR Investigation into the Photochemical Transformations of the Chromium(I) Carbonyl Complex [Cr(CO)4bis(diphenylphosphino)]+ and Reactivity with 1-hexene
by David Fioco, Andrea Folli, James Platts, Mario Chiesa and Damien M. Murphy
Molecules 2024, 29(2), 392; https://doi.org/10.3390/molecules29020392 - 12 Jan 2024
Viewed by 1778
Abstract
Chromium complexes containing a bis(diphenylphosphino) ligand have attracted significant interest over many years due to their potential as active catalysts for ethylene oligomerisation when combined with suitable co-catalysts such as triethylaluminium (TEA) or methylaluminoxane (MAO). While there has been considerable attention devoted to [...] Read more.
Chromium complexes containing a bis(diphenylphosphino) ligand have attracted significant interest over many years due to their potential as active catalysts for ethylene oligomerisation when combined with suitable co-catalysts such as triethylaluminium (TEA) or methylaluminoxane (MAO). While there has been considerable attention devoted to the possible reaction intermediates and the nature of the Cr oxidation states involved, the potential UV photoactivity of the Cr(I) complexes has so far been overlooked. Therefore, to explore the photoinduced transformations of bis(diphenylphosphino) stabilized Cr(I) complexes, we used continuous-wave (CW) EPR to study the effects of UV radiation on a cationic [Cr(CO)4(dppp)]+[Al(OC(CF3)3)4] complex (1), where dppp represents the 1,3 bis-(diphenylphosphino)propane ligand, Ph2P(C3H6)PPh2. Our preliminary investigations into the photochemistry of this complex revealed that [Cr(CO)4(dppp)]+ (1) can be readily photo-converted into an intermediate mer-[Cr(CO)3(κ1-dppp)(κ2-dppp)]+ complex (2) and eventually into a trans-[Cr(CO)2(dppp)2]+ complex (3) in solution at room temperature under UV-A light. Here, we show that the intermediate species (2) involved in this transformation can be identified by EPR at much lower temperature (140 K) and at a specific wavelength (highlighting the wavelength dependency of the reaction). In addition, small amounts of a ‘piano-stool’-type complex, namely [Cr(CO)2(dppp-η6-arene)]+ (4), can also be formed during the photoconversion of [Cr(CO)4(dppp)]+ using UV-A light. There was no evidence for the formation of the [Cr(L-bis-η6-arene)]+ complex (5) in these UV irradiation experiments. For the first time, we also evidence the formation of a 1-hexene coordinated [Cr(CO)3(dppp)(1-hexene)]+ complex (6) following UV irradiation of [Cr(CO)4(dppp)]+ in the presence of 1-hexene; this result demonstrates the unprecedented opportunity for exploiting light activation during Cr-driven olefin oligomerisation catalysis, instead of expensive, difficult-to-handle, and hazardous chemical activators. Full article
Show Figures

Figure 1

14 pages, 2065 KB  
Review
Alternative Electron Sources for Cytochrome P450s Catalytic Cycle: Biosensing and Biosynthetic Application
by Victoria V. Shumyantseva, Polina I. Koroleva, Tatiana V. Bulko and Lyubov E. Agafonova
Processes 2023, 11(6), 1801; https://doi.org/10.3390/pr11061801 - 13 Jun 2023
Cited by 6 | Viewed by 2805
Abstract
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome [...] Read more.
The functional significance of cytochrome P450s (CYP) enzymes is their ability to catalyze the biotransformation of xenobiotics and endogenous compounds. P450 enzymes catalyze regio- and stereoselective oxidations of C-C and C-H bonds in the presence of oxygen as a cosubstrate. Initiation of cytochrome P450 catalytic cycle needs an electron donor (NADPH, NADH cofactor) in nature or alternative artificial electron donors such as electrodes, peroxides, photo reduction, and construction of enzymatic “galvanic couple”. In our review paper, we described alternative “handmade” electron sources to support cytochrome P450 catalysis. Physical-chemical methods in relation to biomolecules are possible to convert from laboratory to industry and construct P450-bioreactors for practical application. We analyzed electrochemical reactions using modified electrodes as electron donors. Electrode/P450 systems are the most analyzed in terms of the mechanisms underlying P450-catalyzed reactions. Comparative analysis of flat 2D and nanopore 3D electrode modifiers is discussed. Solar-powered photobiocatalysis for CYP systems with photocurrents providing electrons to heme iron of CYP and photoelectrochemical biosensors are also promising alternative light-driven systems. Several examples of artificial “galvanic element” construction using Zn as an electron source for the reduction of Fe3+ ion of heme demonstrated potential application. The characteristics, performance, and potential applications of P450 electrochemical systems are also discussed. Full article
Show Figures

Figure 1

21 pages, 3619 KB  
Review
Plasmon-Induced Semiconductor-Based Photo-Thermal Catalysis: Fundamentals, Critical Aspects, Design, and Applications
by Atif Sial, Afzal Ahmed Dar, Yifan Li and Chuanyi Wang
Photochem 2022, 2(4), 810-830; https://doi.org/10.3390/photochem2040052 - 2 Oct 2022
Cited by 11 | Viewed by 3911
Abstract
Photo-thermal catalysis is among the most effective alternative pathways used to perform chemical reactions under solar irradiation. The synergistic contributions of heat and light during photo-thermal catalytic processes can effectively improve reaction efficiency and alter design selectivity, even under operational instability. The present [...] Read more.
Photo-thermal catalysis is among the most effective alternative pathways used to perform chemical reactions under solar irradiation. The synergistic contributions of heat and light during photo-thermal catalytic processes can effectively improve reaction efficiency and alter design selectivity, even under operational instability. The present review focuses on the recent advances in photo-thermal-driven chemical reactions, basic physics behind the localized surface plasmon resonance (LSPR) formation and enhancement, pathways of charge carrier generation and transfer between plasmonic nanostructures and photo-thermal conversion, critical aspects influencing photo-thermal catalytic performance, tailored symmetry, and morphology engineering used to design efficient photo-thermal catalytic systems. By highlighting the multifield coupling benefits of plasmonic nanomaterials and semiconductor oxides, we summarized and discussed several recently developed photo-thermal catalysts and their catalytic performance in energy production (CO2 conversion and H2 dissociation), environmental protection (VOCs and dyes degradation), and organic compound synthesis (Olefins). Finally, the difficulties and future endeavors related to the design and engineering of photo-thermal catalysts were pointed out to draw the attention of researchers to this sustainable technology used for maximum solar energy utilization. Full article
(This article belongs to the Special Issue Advance in Photocatalysis in Asia)
Show Figures

Graphical abstract

16 pages, 2483 KB  
Article
Visible-Light Photocatalyst to Remove Indoor Ozone under Ambient Condition
by Jia Quan Su, Yi-Chun Chang and Jeffrey C. S. Wu
Catalysts 2021, 11(3), 383; https://doi.org/10.3390/catal11030383 - 16 Mar 2021
Cited by 3 | Viewed by 3389
Abstract
Ozone is a kind of hazardous gas in indoor areas and needs to be removed in order to protect the human respiratory system. Previous methods include physical adsorption, thermal treatment, electromagnetic radiation removal, catalysis and photocatalysis. However, they all have limited effects. This [...] Read more.
Ozone is a kind of hazardous gas in indoor areas and needs to be removed in order to protect the human respiratory system. Previous methods include physical adsorption, thermal treatment, electromagnetic radiation removal, catalysis and photocatalysis. However, they all have limited effects. This research introduced a novel milestone to remove indoor ozone by utilizing visible light photocatalysis technique under ambient condition. The modified sol–gel method was applied to prepare photocatalysts, strontium titanate (SrTiO3) and rhodium-doped strontium titanate (SrTiO3:Rh). In addition, the SrTiO3:Rh was further immersed in N3 dye to improve its photocatalytic performance. Batch system and continuous-flow system were used to quantify the removal rate of ozone and to measure the conversions of ozone, respectively. The results showed that SrTiO3:Rh possessed a higher ozone removal rate under a visible light condition compared with a commercial P25 TiO2 catalyst. In addition, SrTiO3:Rh based catalysts can also successfully perform visible light ozone photodecomposition in the continuous ozone flow system. Note that current ozone converters in aircraft utilize thermal-catalysts, which can only be operated at high temperature. This research reveals a promising catalysts and photo process, which can possibly replace the current aircraft ozone converters with visible-light driven converters, and boast higher performance under ambient condition. Full article
Show Figures

Figure 1

17 pages, 3011 KB  
Article
Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires
by Daniel R. Marzolf, Aidan M. McKenzie, Matthew C. O’Malley, Nina S. Ponomarenko, Coleman M. Swaim, Tyler J. Brittain, Natalie L. Simmons, Phani Raj Pokkuluri, Karen L. Mulfort, David M. Tiede and Oleksandr Kokhan
Nanomaterials 2020, 10(11), 2143; https://doi.org/10.3390/nano10112143 - 28 Oct 2020
Cited by 4 | Viewed by 3724
Abstract
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme [...] Read more.
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4–8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies. Full article
(This article belongs to the Special Issue Hybrid Nanosystems for Artificial Photosynthesis)
Show Figures

Figure 1

Back to TopTop