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Abstract: Ozone is a kind of hazardous gas in indoor areas and needs to be removed in order to
protect the human respiratory system. Previous methods include physical adsorption, thermal
treatment, electromagnetic radiation removal, catalysis and photocatalysis. However, they all have
limited effects. This research introduced a novel milestone to remove indoor ozone by utilizing
visible light photocatalysis technique under ambient condition. The modified sol–gel method was
applied to prepare photocatalysts, strontium titanate (SrTiO3) and rhodium-doped strontium titanate
(SrTiO3:Rh). In addition, the SrTiO3:Rh was further immersed in N3 dye to improve its photocatalytic
performance. Batch system and continuous-flow system were used to quantify the removal rate of
ozone and to measure the conversions of ozone, respectively. The results showed that SrTiO3:Rh
possessed a higher ozone removal rate under a visible light condition compared with a commercial
P25 TiO2 catalyst. In addition, SrTiO3:Rh based catalysts can also successfully perform visible
light ozone photodecomposition in the continuous ozone flow system. Note that current ozone
converters in aircraft utilize thermal-catalysts, which can only be operated at high temperature. This
research reveals a promising catalysts and photo process, which can possibly replace the current
aircraft ozone converters with visible-light driven converters, and boast higher performance under
ambient condition.

Keywords: photocatalysis; ozone decomposition; strontium titanate; visible-light converter

1. Introduction

Ozone has been a controversial gas in the atmosphere. While the role of ozone in
the stratosphere is to prevent our Earth from excess ultraviolet-light radiation, ozone can
also act as a kind of greenhouse gas and photochemical smog pollutant. Ozone in the
troposphere is mainly produced by the oxidation of carbon monoxide and hydrocarbons.
However, ozone concentration in open areas can seldom exceed the regulated amount of
ozone concentration except for highly polluted areas [1–8].

According to regulations from Environmental Protection Agency (EPA), Taiwan, the
average ozone concentration should not exceed 0.12 ppm within 1-hour exposure. Yet,
in indoor areas, especially in some factories, ozone can easily accumulate to a higher
concentration, which is extremely harmful to human respiratory systems [9–12]. For
example, in semiconductor factories, silicon wafers usually go through the etching process
with UV light sources in most cases. Therefore, ozone is possibly produced by dissociating
the bond between oxygen atoms under radiation. Furthermore, the environment is not
ventilated well in most printing factories, and ozone will eventually accumulate to a
high concentration and jeopardize workers’ health. In addition, aircraft cabins may also
face this problem. Airplanes mainly fly at a high altitude so that a high concentration
ozone may enter the cabin with bleed air, which frequently result in an odorous smell [13].
Several companies have realized this issue and start developing ozone converters to remove
indoor ozone. Thus, an ozone converter is potentially a high profit product, which may be
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commercialized and sold to every airline company. However, the current patent on ozone
converters for aircrafts mainly used manganese dioxide as the catalyst. This kind of catalyst
suffers from a significant decrease in activity under high relative humidity [14,15]. As a
result, our goal is to explore a novel material, which can work under ambient conditions to
remove indoor ozone, and can potentially replace the current commercial catalyst.

Previous research have utilized several different methods to remove indoor ozone
besides manganese dioxide. One way is to use activated carbon as the adsorption substrate
for ozone removal. However, only a limited amount of ozone can be adsorbed on this
material, which also needs to be replaced regularly [16–18]. Another way to remove
indoor ozone is by thermal treatment, but this method results in high energy consumption
and is not efficient [19–21]. Further investigation also shows the possibility of using
electromagnetic radiation to remove ozone. Nevertheless, radiation of short wavelength
might activate the bond between oxygen molecules and produce even more ozone [22–24].
Thus, scientists have come up with a promising way to remove indoor ozone, that is,
catalytic decomposition [25–33].

However, among all the materials used in catalytic decomposition, multiple disadvan-
tages exist. The first known thermal catalyst used for ozone decomposition is manganese
dioxide, but the active sites on the surface of the catalyst are occupied by water vapor
and cause the catalyst to lose its catalytic ability [14,15,30,34–36]. Some groups tried
doping noble metals or synthesized composite materials to support manganese dioxide,
but they can only show a high catalytic removal rate at a high initial concentration of
ozone under suitable temperature and humidity conditions [14,26,37–40]. Another recent
research utilized ZnO based material for ozone catalytic decomposition [41]. Although
the material shows a moderate ozone degradation rate, the reaction is operated under
high initial ozone concentration, i.e., 20 ppm, and the fabrication process requires delicate
defect engineering [41]. Therefore, some researchers turn their target to investigate the
potential of using photocatalysis to remove indoor ozone. The most common material,
which has been proved to possess high photocatalytic activity is titanium dioxide [42–50].
Although titanium dioxide does have a good ozone photocatalytic decomposition rate, it
only absorbs UV irradiation, so it can not be widely utilized in factories or aircraft cabins
since these areas are mainly under visible light condition. Consequently, it is important to
find a material, which has good photocatalytic activity under visible light and also able to
remove ozone at a diluted concentration. Gong et al. [46] utilized nitrogen-doped TiO2,
hydrogenated TiO2 and commercial P25 for visible-light photoreaction. Additionally, they
have conducted the experiment with a low power white LED and with a shorter irradiation
time to show the total ozone removal efficiency (including adsorption and photocatalysis).
However, it is still important to distinguish the ozone removal between adsorption and real
photocatalysis. Furthermore, the system should be operated for prolonged time interval to
rule out the ozone removal ability by adsorption in TiO2-based material.

Photocatalysts possess semiconductor properties, when light irradiates on photocat-
alysts, holes and electrons are generated. In addition, the photogenerated electrons can
react with ozone and reduce it to ozone radical (O−

3 ) as shown in Figure 1. Ozone radical
is a highly active reactant and can be easily decomposed into oxygen and oxygen radical
under light irradiation [44].

The photocatalysts used in this research were a well-known perovskite structure
material, strontium titanate (SrTiO3) and rhodium-doped strontium titanate (SrTiO3:Rh).
Additionally, commercial catalyst P25 is used to compare the photocatalytic activity. Ac-
cording to Dvoranova et al. [51] and Konta et al. [52], the bandgap of strontium titanate
is 3.2 eV, and it is possible to lower the bandgap to 2.3 eV by doping rhodium into the
structure. The lowered band gap of rhodium-doped strontium titanate enables visible light
absorption, paving the way for the ultimate goal of this research, which is to demonstrate
the ozone photodecomposition effect under visible light condition. A previous study has
shown that modifying the Rh dopant concentration could influence the light absorption effi-
ciency, the density of electron traps, and the internal quantum yield [53]. In addition, when
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SrTiO3:Rh is immersed in N3 dye, the catalyst surface might have a certain amount of dye
physically adsorbed on it. Additionally, this process can further increase the visible-light
absorption of photocatalysts.

Figure 1. Mechanism of ozone photodecomposition.

The outcome of this research showed that our catalyst can effectively remove ozone at
a diluted concentration to meet EPA regulations, and we achieved photocatalytic decompo-
sition of ozone under the visible light condition. Furthermore, we developed a modified
sol–gel method to synthesize strontium titanate based catalysts and showed the potential
to commercialize these materials since the production process is straightforward in the
solution phase.

2. Results and Discussion
2.1. Batch System
2.1.1. Background Test

A background test is conducted without a catalyst or light irradiation as a base for
comparison among the results of batch system. From Figure S3, we can see that the ozone
concentration undergoes a natural decay after the ozone generator is switched off due to
the high reactivity of ozone.

2.1.2. Batch System—UV Irradiation

For the following results, with the same catalyst, three repeated tests will be shown on
the same figure and the initial concentration are manipulated to be identical by controlling
the ozone production period. Catalyst amount in each test is 0.1 g.

According to Figures S4–S6, the red lines are all a blank test, which indicates the
experiment without adding a catalyst but applied with a light source. The other three
lines show the photocatalytic decomposition of ozone under UV (365 nm) irradiation by
using the same catalyst for three times. The results show that by removing ozone from
the same initial concentration, the less time requires, the faster the ozone removal rate
is. In Figures S4 and S5, several decay lines were above the red blank decay, these were
suspected to be experimental errors. Furthermore, it was observed that P25 could provide
the highest ozone removal rate under UV light. However, it is difficult to separate the
ozone decomposition contribution between adsorption and photocatalysis in the batch
system. Therefore, the continuous flow system was also applied to show the contribution
of both factors respectively.
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2.1.3. Batch System—Visible Light Irradiation

Generally, P25 and SrTiO3 mainly absorb light and show photocatalytic ability in
the UV region while SrTiO3:Rh can absorb visible light to perform photocatalytic ability.
Therefore, three kinds of different catalysts were tested in both light sources in order to
compare the results. In this section, visible light photocatalytic decomposition results for
batch system are shown.

From the visible light irradiation results (Figures S7–S9), we can observe that ev-
ery test with the catalyst will result in a higher ozone removal rate than the blank test,
which shows that with catalyst addition, it is truly able to remove ozone at a higher rate.
However, there are several aspects, which still have to be investigated. Since P25 and
SrTiO3 only absorb a little amount of visible light, maybe the ozone removal is mostly
contributed by catalyst adsorption. Therefore, the operation on the continuous flow system
will start the photocatalytic decomposition reaction after the catalyst reaches a saturated
adsorption amount.

2.1.4. Ozone Removal Rate in the Batch System

The ozone removal rate for P25, SrTiO3 and SrTiO3:Rh under UV (365 nm) irradiation
and visible light irradiation (with AM 1.5G filter) are listed systematically in Table 1.

Table 1. The ozone removal rate for three catalysts in a batch system under two different light sources.

Light Source Catalyst (Type-Cycle) Ozone Removal Rate ( µmol
gcat·min )

Visible light

SrTiO3:Rh-1 8.1 × 10−3

SrTiO3:Rh 2 2 × 10−3

SrTiO3:Rh-3 1.77 × 10−2

SrTiO3-1 6.6 × 10−3

SrTiO3-2 4.9 × 10−3

SrTiO3-3 5.6 × 10−3

P25-1 6.6 × 10−3

P25-2 1.0 × 10−2

P25-3 8.1 × 10−3

UV light

SrTiO3:Rh-1 1.5 × 10−3

SrTiO3:Rh-2 1.0 × 10−4

SrTiO3:Rh-3 0
SrTiO3-1 5.1 × 10−3

SrTiO3-2 5.1 × 10−3

SrTiO3-3 1.5 × 10−3

P25-1 1.05 × 10−2

P25-2 1.17 × 10−2

P25-3 1.05 × 10−2

As we average the ozone removal rate for the same catalyst, the results can be easier
as shown in Figure 2. From Figure 2, in the UV light region, P25 possesses the high
ozone removal rate 0.011 (µmol/gcat/min) while SrTiO3:Rh only has a much slower ozone
removal rate. In Figures S4 and S5, the difference of the blank test curves and the sample
test curves are narrow, which indicates that SrTiO3 and SrTiO3:Rh are efficient under UV
irradiation comparing to the ozone natural decay. In contrast, in the visible light region,
SrTiO3:Rh possesses a higher ozone removal rate than commercial catalyst P25, and the
rate was nearly 9.3 × 10−3 (µmol/gcat/min). Although P25 can perform quite well in both
light sources, SrTiO3:Rh still has the potential to be the favorable material to remove indoor
ozone since most of the indoor illumination comes from visible light. In addition, SrTiO3
does have a moderate amount of ozone removal rate in both light sources. However, in the
batch system, it is difficult to distinguish the contribution between catalyst adsorption and
photocatalytic decomposition. Random errors may exist including, whether the gas in the
reactor is well mixed, whether the catalyst is uniformly distributed for light illumination,
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whether the ambient light from the environment is blocked well. Therefore, by utilizing
continuous flow system, saturation of catalyst adsorption can be reached before applying
light irradiation to observe photocatalytic performance.

Figure 2. The averaged ozone removal rate in the batch system.

2.2. Continuous Flow System
2.2.1. Pre-Experiment Setup

In the continuous flow system, the system requires over two hours to reach the
steady state first. During this process, the catalyst is already placed inside the reactor for
adsorption. When the adsorption/desorption has reached the equilibrium state, the ozone
concentration maintains at a steady-state value, and the light is then turned on.

2.2.2. Continuous Flow System—UV irradiation

For the test in continuous flow system under UV irradiation, the space velocity is
adjusted by a rotameter to be 168 L g−1 h−1. The results for three different catalysts (P25,
SrTiO3 and SrTiO3:Rh) are shown in Figures S10–S12. Additionally, the blue background
color in the figures indicates the time interval in which the light is on.

The photocatalytic decomposition of ozone is performed for three continuous cycles
as shown in Figures S10 and S11. The concentration has a dramatic decrease when the light
is turned on and remains at a relatively lower ozone concentration for ten minutes, then
the light is turned off in order to observe how the concentration rises back. Additionally,
this process is repeatedly carried out for three times throughout the test for each material.
As shown in Figure S11, the horizontal line for the light off condition has a gradually
decreasing trend because the adsorption/desorption rate of ozone on SrTiO3 is slower
than P25. So, that the concentration of the light off condition will gradually decrease as
the fixed parameter is the time length between each cycle. Additionally, by comparing the
difference of ozone concentration between light-on and light-off conditions among three
catalysts, the results show that P25 had the largest photocatalytic ability to remove ozone
while SrTiO3:Rh had nearly no photocatalytic ability to remove ozone under UV irradiation.
Tests under a higher flow rate, 7250 L g−1 h−1, were also conducted, and the results are
shown in Table 2. Due to a higher flow rate, the effect of P25 in the ozone removal was the
only one significant enough to be detected.
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Table 2. Ozone removal rate in a flow system under two different light sources (SV = 7250 L
g−1 h−1 UV light: 365 nm pen light, OmniCure; visible light: Halogen lamp, 50 W, broad band,
OSRAM, Germany).

Light Source Catalyst Ozone Conversion (%)

Visible light
N3-SrTiO3:Rh 7.3

SrTiO3:Rh 5.6
P25 3.2

UV light
SrTiO3:Rh 0.0

SrTiO3 0.0
P25 6.3

2.2.3. Continuous Flow System—Visible Light Irradiation

For the test in the continuous flow system under visible light irradiation, the space
velocity was settled at a higher flow rate, which was 7250 L g−1 h−1. The results for three
different catalysts (P25, SrTiO3:Rh and N3 dye sensitized SrTiO3:Rh) will be shown in
Figures 3–5. The blue background color in the figures also indicates the time interval in
which the light is on.

Figure 3. Photocatalytic decomposition of ozone in the continuous flow system by P25 under the
halogen lamp (OSRAM, 50 W, broad band, with 400–500 nm bandpass filter).

Figure 4. Photocatalytic decomposition of ozone in the continuous flow system by SrTiO3:Rh under
the halogen lamp (OSRAM, 50 W, broad band, with 400–500 nm bandpass filter).
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Figure 5. Photocatalytic decomposition of ozone in the continuous flow system by N3-SrTiO3:Rh (N3
dye sensitized rhodium-doped strontium titanate) under the halogen lamp (OSRAM, 50 W, broad
band, with 400–500 nm bandpass filter).

From Figure 3, there is an interesting phenomenon observed by using P25 under the
visible light condition. In general, P25 can only absorb a little amount of visible light
so it is expected to have poor ozone conversion. However, due to the large amount of
hydroxyl groups on the surface of P25, when visible light is irradiated on the surface
of P25, it will promote photoadsorption, which causes the ozone concentration decrease
by enhanced adsorption on the surface [54–58]. Additionally, rutile crystallites among
mixed phase P25 can lead to catalytic spots on the interface of rutile/anatase under visible
light irradiation [59]. When the light remained on for a few hours, P25 reached the full
adsorption capacity of ozone. Therefore, we can observe the concentration rise back when
the light is still on, after that, the difference of ozone concentration between the final steady
state value and the initial concentration is believed to be the contribution by photocatalysis.
As for Figure 4, the ozone concentration only has a slight decrease when the light is turned
on, which suggests that SrTiO3:Rh has a mere photocatalytic activity on removing ozone
under the visible light condition. This result may seem somehow contradictory to the
results in the batch system. Yet, the ozone removal rate in the batch system shows the
combined effect of adsorption and photocatalysis. On the other hand, in the continuous
flow system, the adsorption/desorption will first reach a steady state before turning on
the light, and the ozone concentration decrease will be totally caused by photocatalysis
except the photoadsorption observed in Figure 3. Consequently, the result in Figure 4 can
be reasonably explained that SrTiO3:Rh has a relatively well ozone removal performance
by the combination of adsorption and photocatalysis. However, the results in Figure 4
showed that it could still be further improved to have better ozone conversion. As a result,
the N3 dye loaded SrTiO3:Rh is prepared to enhance the photocatalytic ability of pure
SrTiO3:Rh. We expect that by immersing the photocatalyst into the dye so that N3 dye is
physical adsorbed on the surface, it is able to increase the light absorption within the visible
light region. In Figure 5, although there are some fluctuations on ozone concentration,
N3-SrTiO3:Rh can decrease the ozone concentration to an even lower extent.

The addition of the N3 dye further improved the photocatalytic reaction under the
visible-light condition. Furthermore, since the reaction in this study occurred at the
gas/solid interface, the degradation of the dye was found negligible under our exper-
imental conditions.

A recent review arranged the existing literature of ozone decomposition [60]. Firstly,
one technique using activated carbon based filters had high ozone conversion, i.e., >90%,
but the filters were highly dependent on the activation carbon grade, the ozone concentra-
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tion, the relative humidity and the residence time. Additionally, they would need to be
replaced after a certain time of usage. Secondly, catalytic decomposition was the promising
method to remove ozone. MnOx based catalysts and other noble metal based catalysts were
reported to possess the ozone decomposition efficiency from <20% to 100% depending
on the different reaction temperature, the relative humidity, the reaction time, and the
ozone concentration. Most studies were conducted at a high ozone concentration, e.g.,
range from 20 to 20,000 ppm, which was far apart from the actual scenario. In addition, the
reaction mechanism might be different due to the difference of the concentration gradient.
Third, the photocatalytic decomposition was another technique introduced to remove
ozone. TiO2 based photocatalysts were the extensively studied material. The reported
ozone decomposition efficiency ranged between <5% and >95% dependent on the structure
of the material, gas flow rate, relative humidity, reaction temperature, etc. In our study,
we proposed a novel idea on using a visible light photocatalyst on removing ozone under
ambient condition. Furthermore, the testing concentration was controlled at a low concen-
tration range, which was much similar to the real world situation. Although the conversion
level is relatively low compared with the commercially available filters and catalysts, it has
the advantages of the ability to function under room temperature, functions under visible
light, and possess a certain amount of photoadsorption.

2.2.4. Conversion of Ozone in the Continuous Flow System

The conversion of ozone in the continuous flow system is calculated by applying the
following Equation (1).

Ozone conversion =
Cdark − Clight

Cdark
× 100% (1)

where:

Cdark: initial ozone concentration when light is off (ppm);
Clight: the lowest ozone concentration when the light is on (ppm).

The calculated conversion results for continuous flow system under UV light and
visible light were combined together in Table 2. From Table 2, under UV irradiation, P25
possessed 6.3% conversion of ozone, which is the highest conversion among the three cata-
lysts used in continuous flow system UV tests. Under visible light irradiation, subtracting
the photoadsorption removal of ozone of P25, both in-house sensitized SrTiO3:Rh based
catalysts possess higher conversion than that of commercial catalyst P25. Especially, N3
dye sensitized SrTiO3:Rh has the highest conversion among the three catalysts used under
visible light irradiation. To sum up, due to the lowering of the band gap by doping rhodium
into the pristine SrTiO3 structure, SrTiO3:Rh could absorb visible light, and immersing
SrTiO3:Rh into N3 dye can enhance its visible light absorption by dye physical adsorption,
which gives improved photocatalytic removal of ozone under visible light and ambient
condition. Although most of the tests shown in the work were conducted under a high
flow rate, 7250 L g−1 h−1, we recommend operating the system with a lower flow rate in
order to optimize the performance of the ozone removal system.

3. Materials and Methods
3.1. Catalyst Synthesis

The control group commercial catalyst was P25 (99.5%, Sigma-Aldrich, St. Louis, MO,
USA). Additionally, the other two catalysts including SrTiO3 and SrTiO3:Rh were prepared
in-house. The schematic of the procedure can be seen in Figure 6. The procedure was
performed by using an advanced sol–gel method modified from the synthesize method
proposed by Xuewen et al. [61]. First, mix the precursors including citric acid (99%, Sigma-
Aldrich, St. Louis, MO, USA), strontium nitrate (99%, Showa Chemicals, Tokyo, Japan) and
rhodium chloride (99.5%, Merck, Kenilworth, NJ, USA), which provides rhodium metal
into the material structure. The number on the Figure 6 indicates the order of adding each
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chemical. Next, add tetrabutyl titanate (TBOT, Alfa Aesar, 99%, Tewksbury, MA, USA)
dropwise into the above mixture solution. Then, add a few drops of ethylene glycol to get
a better dispersion of catalyst particles and adjust the pH value of the solution with nitric
acid. Next, stir the solution for 25 h and dry it in an oven at 80 ◦C for 8 h. Last, pulverize
the dried powder plate and calcine it at 1200 ◦C for 10 hours. As a result, the catalysts had
been prepared by the modified sol–gel method to get the correct material structure and
a smaller particle size with a higher surface area. Characterization of the SrTiO3 based
photocatalyst synthesized from several methods has previously been reported by Wu’s
group [62–64]. In addition, to increase visible light absorption of the catalyst, the dried
SrTiO3:Rh will be further immersed in the N3 dye solution. The main structure of N3 dye
is shown in Figure 6. After immersing for 24 hours, the catalyst is then dried at 70 ◦C for
six hours and obtained the N3-SrTiO3:Rh (N3 dye sensitized SrTiO3:Rh) with a shallow
purple color.

1 

 

 
Figure 6. The catalyst synthesizes the procedure by using the modified sol–gel method.

3.2. Characterization
3.2.1. X-ray Diffraction (XRD)

The XRD (Rigaku, Tokyo, Japan) pattern (Figure 7) shows that each of these SrTiO3
based materials had the same characteristic peaks, which indicates that all of them had a
similar crystal structure [65]. However, due to the difference in calcination temperature
and the solution pH value, the crystal sizes still possess a mere difference. In theory, the
higher temperature results in a larger crystal size. In addition, the XRD pattern did not
show any peaks indicating the doping of rhodium, which is because the doping amount of
rhodium is too small to be observed by XRD.
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Figure 7. XRD results of the in-house synthesized catalysts. Different colors indicate different
materials and different preparation conditions. The temperature indicates the calcination temperature
of the materials and the pH value indicates the solution pH value during the sol–gel process.

3.2.2. UV–Vis Spectrometry

Our group synthesized several SrTiO3 based catalysts under different parameters.
However, in order to compare the photocatalytic ability of each catalyst under a similar
synthesis environment, SrTiO3 and SrTiO3:Rh were mainly used to conduct the photo-
catalytic decomposition test. These two catalysts were both synthesized under 1200 ◦C
calcination temperature and the pH 1.5 sol–gel solution environment.

According to Figure 8, the UV–Vis spectra (Agilent, Santa Clara, CA, USA) show an
increased absorption of visible light in SrTiO3:Rh comparing to SrTiO3. Both materials
have the ability to absorb lights in the UV region. For SrTiO3:Rh, the spectrum indicates
that rhodium has gone into the catalyst structure thus providing another donor level and
reduces the bandgap of this material. Furthermore, the spectrum shows that SrTiO3 could
only absorb light with a wavelength shorter than 400 nm. This can also be inferred by the
color change while SrTiO3 had a white color and it turned into gray when doped with
rhodium. In comparison with another widely used photocatalyst TiO2, either TiO2 in the
rutile form or anatase form only absorbs light in the UV region [66]. There are several other
possible candidate materials, which demonstrate the ability of visible light photocatalysis,
e.g., g-C3N4, TiO2 doped with other elements [67,68].

Figure 8. UV–Vis spectrum of strontium titanate (calcination temperature: 1200 ◦C, pH = 1.5) and
rhodium-doped strontium titanate (calcination temperature: 1200 ◦C, pH = 1.5).
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3.2.3. SEM/TEM and EDS Analysis

Figure 9 showed the morphology of photocatalyst, which was examined by the
scanning electron microscope (SEM, JEOL JSM-7600F, Tokyo, Japan)and the transmission
electron microscope (TEM, Hitachi H-7100, Tokyo, Japan). The particles are near round-
cubic shape and the sizes are around 200–300 nm. The elemental analysis was measured by
electron energy dispersive X-ray spectroscopy (EDS, JEOL JSM-7600F, Tokyo, Japan), which
is shown in Figure 10 and listed in Table 3. The atomic ratios are near the stoichiometric of
SrTiO3. The Rh cannot be detected because of a very small amount of dopant.

Figure 9. (a) SEM of SrTiO3:Rh and (b) TEM of SrTiO3:Rh.

Figure 10. EDS analysis for SrTiO3:Rh.

Table 3. Element composition ratios of SrTiO3:Rh by EDS.

Element Weight (%) Atomic (%)

O 24.6 57.8
Ti 27.5 21.6
Sr 47.9 20.6

3.2.4. BET Surface Area Analysis

The surface area of the SrTiO3 catalyst was measured with the nitrogen adsorption
method. The results showed that the catalyst possessed a surface area of 0.6598 m2/g.
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3.3. Experiment Setup
3.3.1. Batch System

The batch reactor system (Figure S1) contains the ozone producer (Ionkini, JO-6271,
Guangzhou, China), ozone detector (Dräger, X-am 5000, Lübeck, Germany) and photo-
catalysts. All of the above were put into the customized batch reactor before the ozone
started to produce. The light source was connected to the reactor through an optical fiber,
which can be illuminated from the top of the reactor. The experimental sequence was as
follows. First, the ozone producer and detector were turned on, then they were carefully
sealed in the batch reactor and started to monitor the ozone concentration rise. When the
ozone concentration exceeded 0.12 ppm, the ozone producer was turned off and the ozone
concentration decay profile was monitored by the ozone detector. An important factor is
the ozone self-decay rate since it is a highly reactive chemical. The blank test indicated in
each figure in Section 2 all contain the blank ozone decay, which shows the decay without
adding photocatalysts. Besides the blank test, light irradiation was applied to the batch re-
actor throughout the whole ozone photodecomposition experiment. The light source used
in this experiment includes a fixed-wavelength (365 nm) UV light and a broad-band Xenon
lamp. Three materials including SrTiO3, SrTiO3:Rh and P25 were tested in this experiment
under ambient condition. The powder form photocatalyst was spread uniformly with the
largest extent of area exposed to light and placed in the customized reactor.

However, the batch system has the defect that it is not similar to the continuous
ozone production environment inside the factory. Furthermore, the distance between
the detector and the producer will somehow influence the monitored concentration and
cause the misevaluation of the ozone removal rate. In addition, it is unable to distinguish
the effect of ozone removal between adsorption and photocatalysis in the batch system.
After calculating the ozone removal rate and understanding the possible behaviors of the
three materials used. The ozone photodecomposition system is further improved into the
continuous flow system for a wider range of tests.

3.3.2. Continuous Flow System

In order to distinguish the effect of ozone removal between adsorption and photo-
catalysis, the continuous flow system is applied to verify the photodecomposition of ozone
under continuous production environment and to obtain the conversion of ozone.

As shown in Figure S2, the source of the ozone is air from a gas cylinder, it will first
go through a customized chamber with an ozone producer to produce ozone by applying
voltage to decompose the oxygen molecule to trigger ozone formation, a small fan is
also settled in the chamber to act as an agitator to mix the gas well. Next, the gas flows
downstream passing through a customized plug flow reactor with a catalyst filled in it.
The light source is illuminated from the quartz window on top of the reactor. The gas
will then pass through a rotameter to measure the system’s flow rate. The concentration
of the ozone is measured by the ozone electrochemical detector, and the hygrometer and
thermometer are used to monitor the humidity and temperature of the reaction condition.
The downstream of the system is also directed towards a beaker with water, which acts as
a site of ozone discharge.

The concept of applying this system is to let the catalyst go through a fully adsorption
process under dark condition and reach a steady state ozone concentration. Then turn on
the light source and illuminate on the catalyst through a quartz window on the top of the
reactor, which will therefore trigger the photocatalytic ability of the catalyst and decompose
the ozone. After a certain time period, the light source will be turned off in order to check
if the ozone concentration will rise back to the previous amount before light irradiation.
Additionally, the above cycle will be applied several times to test the repeatability of each
catalyst under ambient condition.
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3.4. Data Analysis
Quantitative Analysis of Ozone Removal Rate

To quantify the ozone removal rate, the following Equation (2) is applied.

dm
dt

=
ρV

(
Ci − C f

)
mcat.∆t

(2)

where:

Cf: Final ozone concentration (ppm);
Ci: Initial ozone concentration (ppm);
dm: mass of ozone removal amount (mg);
dt: time required to remove all ozone in batch reactor (s);
mcat.: catalyst amount used (g)
V: reactor volume (mL);
ρ: gas density (kg/m3).

From Equation (2), the ozone removal rate can be calculated by monitoring the initial
and final concentration, also the decay time should be recorded. In addition, with the
reactor volume of 1670 mL and gas density 1.293 kg/m3. The calculated ozone removal
rate is regarded as the ozone removal amount per unit catalyst weight per unit time.

4. Conclusions

This research aimed to remove indoor ozone under ambient condition by the pho-
tocatalytic process. The ozone removal rate of strontium titanate based catalysts were
quantified through the batch system and further compared to commercial TiO2 P25. In
the batch system under visible light irradiation, SrTiO3:Rh possessed the highest ozone
removal rate, which was nearly 9.3 × 10−3 µmol·gcat−1·min−1. In addition, to distinguish
between the effect of adsorption and photocatalysis, photoreaction was also conducted
through continuous flow system. From the results of continuous flow system, focusing on
the visible light irradiation results, commercial TiO2 P25 had the lowest ozone conversion.
Furthermore, SrTiO3:Rh made in-house with the sol–gel method had a higher ozone con-
version, and N3 dye sensitized SrTiO3:Rh possesses the highest ozone conversion under
visible light irradiation at ambient condition, which was caused by higher visible light
absorption attributed to dye physically adsorbed on the surface of the photocatalyst. To
the best of our knowledge, this is the first time for researchers to distinguish the effect of
photocatalysis under visible light and physical adsorption in removing indoor ozone under
ambient conditions. Furthermore, it also revealed that SrTiO3:Rh based materials had the
ability to remove indoor ozone by photocatalysis. The work to improve visible light ozone
conversion is still ongoing.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4344/11/3/383/s1, Figure S1: Schematic setup of the ozone photodecomposition batch system:
(a) ozone producer, (b) ozone detector and (c) photocatalyst, Figure S2: Schematic diagram of the
continuous flow system: (A) air cylinder, (B) ozone producer, (C) agitator, (D) plug flow reactor,
(E) light source, (F) rotameter, (G) ozone detector, (H) hygrometer and thermometer and (I) ozone
discharge beaker, Figure S3: Natural decay of ozone in the batch system (no catalyst, no light source),
Figure S4: Photocatalytic decomposition of ozone in the batch system by SrTiO3 under UV (365 nm)
irradiation for three repeated tests, Figure S5: Photocatalytic decomposition of ozone in the batch
system by SrTiO3:Rh under UV (365 nm) irradiation for three repeated tests, Figure S6: Photocatalytic
decomposition of ozone in the batch system by P25 under UV (365 nm) irradiation for three repeated
tests, Figure S7: Photocatalytic decomposition of ozone in the batch system by SrTiO3 under Xe lamp
(500 W, broad band, with AM 1.5 G filter) irradiation for three repeated tests, Figure S8: Photocatalytic
decomposition of ozone in the batch system by SrTiO3:Rh under Xe lamp (500 W, broad band, with
AM 1.5 G filter) irradiation for three repeated tests, Figure S9: Photocatalytic decomposition of ozone
in batch system by P25 under Xe lamp (500 W, broad band, with AM 1.5 G filter) irradiation for three
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repeated tests, Figure S10: Photocatalytic decomposition of ozone in the continuous flow system by
P25 under UV lamp (365 nm), Figure S11: Photocatalytic decomposition of ozone in the continuous
flow system by SrTiO3 under UV lamp (365 nm), Figure S12: Photocatalytic decomposition of ozone
in the continuous flow system by SrTiO3:Rh under UV lamp (365 nm).
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