Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = photo-Fenton-like reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 309
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Figure 1

28 pages, 6457 KiB  
Article
Photocatalytic and Photo-Fenton-like Degradation of Cationic Dyes Using SnFe2O4/g-C3N4 Under LED Irradiation: Optimization by RSM-BBD and Artificial Neural Networks (ANNs)
by Yassine Elkahoui, Fatima-Zahra Abahdou, Majda Ben Ali, Said Alahiane, Mohamed Elhabacha, Youssef Boutarba and Souad El Hajjaji
Reactions 2025, 6(2), 23; https://doi.org/10.3390/reactions6020023 - 28 Mar 2025
Viewed by 1271
Abstract
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3 [...] Read more.
The development of heterostructures incorporating photocatalysts optimized for visible-light activity represents a major breakthrough in the field of environmental remediation research, offering innovative and sustainable solutions for environmental purification. This study explores the photocatalytic capabilities of a SnFe2O4/g-C3N4 heterojunction nanocomposite, successfully synthesized from graphitic carbon nitride (g-C3N4) and tin ferrate (SnFe2O4) and applied to the degradation of the cationic dye brilliant cresyl blue (BCB) in an aqueous solution. These two components are particularly attractive due to their low cost and ease of fabrication. Various characterization techniques, including XRD, FTIR, SEM, and TEM, were used to confirm the successful integration of SnFe2O4 and g-C3N4 phases in the synthesized catalysts. The photocatalytic and photo-Fenton-like activity of the heterojunction composites was evaluated by the degradation of brilliant cresyl blue under visible LED illumination. Compared to the pure components SnFe2O4 and g-C3N4, the SnFe2O4/g-C3N4 nanocomposite demonstrated a superior photocatalytic performance. Furthermore, the photo-Fenton-like performance of the composites is much higher than the photocatalytic performances. The significant improvement in photo-Fenton activity is attributed to the synergistic effect between SnFe2O4 and g-C3N4, as well as the efficient separation of photoexcited electron/hole pairs. The recyclability of the SnFe2O4/g-C3N4 composite toward BCB photo-Fenton like degradation was also shown. This study aimed to assess the modeling and optimization of photo-Fenton-like removal BCB using the SnFe2O4/g-C3N4 nanomaterial. The main parameters (photocatalyst dose, initial dye concentration, H2O2 volume, and reaction time) affecting this system were modeled by two approaches: a response surface methodology (RSM) based on a Box–Behnken design and artificial neural network (ANN). A comparison was made between the predictive accuracy of RSM for brilliant cresyl blue (BCB) removal and that of the artificial neural network (ANN) approach. Both methodologies provided satisfactory and comparable predictions, achieving R2 values of 0.97 for RSM and 0.99 for ANN. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Figure 1

23 pages, 4220 KiB  
Review
Utilization of Natural Mineral Materials in Environmental Remediation: Processes and Applications
by Di Xu, Yongkui Yang and Lingqun Gan
Minerals 2025, 15(3), 318; https://doi.org/10.3390/min15030318 - 19 Mar 2025
Viewed by 744
Abstract
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. [...] Read more.
The discharge of wastewater containing persistent organic pollutants presents significant ecological and health challenges due to their toxicity and resilience. Recent advances in advanced oxidation processes (AOPs) and other remediation mechanisms, notably utilizing natural mineral materials (NMMs), offer promising solutions to these challenges. NMMs, with their cost-effectiveness, accessibility, eco-friendly nature, non-toxicity, and unique structural properties, have shown significant promise in environmental remediation and could effectively replace conventional catalysts in related applications. These minerals enable the activation of oxidants, generating reactive oxygen species crucial for the degradation of pollutants. This article reviews the mechanisms of NMMs in various AOPs, including photocatalysis, Fenton-like reactions, and persulfate-activation-based processes, and discusses the potential of these materials in enhancing pollutant degradation efficiency, with a focus on the activation of persulfates and the photo-induced redox processes. The synergy between photocatalytic properties and catalytic activation provided by NMMs offers a robust approach to managing water pollution without the drawbacks of secondary waste production, thus supporting sustainable remediation efforts. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

13 pages, 4639 KiB  
Article
Copper-Copper Oxide Heterostructural Nanocrystals Anchored on g-C3N4 Nanosheets for Efficient Visible-Light-Driven Photo-Fenton-like Catalysis
by Guangying Zhou, Fan Yang, Ximiao Zhu, Weihua Feng, Dongdong Chen and Jianzhang Fang
Molecules 2025, 30(1), 144; https://doi.org/10.3390/molecules30010144 - 2 Jan 2025
Cited by 1 | Viewed by 1074
Abstract
The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-Cu2O/g-C3N4, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-C3N4 [...] Read more.
The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-Cu2O/g-C3N4, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-C3N4 nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of Cu2O, the high stability of g-C3N4, and the surface plasmon resonance (SPR) effect of Cu nanoparticles. The photocatalytic performance was evaluated through the degradation of Rhodamine B (RhB) in a photo-Fenton-like reaction system under visible light irradiation. Among the catalysts tested, the 30 wt% Cu-Cu2O/g-C3N4 composite exhibited the highest catalytic efficiency, achieving a reaction rate constant approximately 3 times and 1.5 times higher than those of Cu-Cu2O and g-C3N4, respectively. Mechanistic studies suggest that the heterostructure facilitates efficient charge separation and promotes the reduction of Cu2+ to Cu+, thereby enhancing ∙OH radical generation. The catalyst also demonstrated excellent stability and reusability across a wide pH range. These findings provide a new strategy for designing highly efficient photocatalysts for organic pollutant degradation, contributing to the advancement of advanced oxidation processes for environmental applications. Full article
(This article belongs to the Special Issue Progress of Photocatalysis and Photodegradation in Photochemistry)
Show Figures

Figure 1

11 pages, 2975 KiB  
Article
The Construction of Iodine-Doped Carbon Nitride as a Metal-Free Nanozyme for Antibacterial and Water Treatment
by Xinru Cai, Tongtong Xie, Linshan Luo and Xiting Li
Nanomaterials 2024, 14(16), 1369; https://doi.org/10.3390/nano14161369 - 21 Aug 2024
Cited by 1 | Viewed by 1290
Abstract
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic [...] Read more.
Metal-free photocatalysis that produces reactive oxygen species (ROS) shows significant promising applications for environmental remediation. Herein, we constructed iodine-doped carbon nitride (I-CN) for applications in the photocatalytic inactivation of bacteria and the heterogeneous Fenton reaction. Our findings revealed that I-CN demonstrates superior photocatalytic activity compared to pure CN, due to enhanced light adsorption and a narrowed band gap. Antibacterial tests confirmed that I-CN exhibits exceptional antibacterial activity against both Escherichia coli and Staphylococcus aureus. The results showed that I-CN effectively generates superoxide radicals and hydroxyl radicals under light irradiation, resulting in enhanced antibacterial activity. In addition, I-CN can also be applied for a heterogeneous photo-Fenton-like reaction, achieving a high performance for the degradation of sulfamethoxazole (SMX), a typical antibiotic, via the photocatalytic activation of peroxymonosulfate (PMS). These results shed new light on the fabrication of metal-free nanozymes and their applications for disinfection and water decontamination. Full article
(This article belongs to the Special Issue Nanocatalysts for Environmental Remediation)
Show Figures

Figure 1

14 pages, 1950 KiB  
Article
One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction
by Amr A. Essawy, Tamer H. A. Hasanin, Modather. F. Hussein, Emam F. El Agammy and Abd El-Naby I. Essawy
Catalysts 2024, 14(7), 466; https://doi.org/10.3390/catal14070466 - 20 Jul 2024
Cited by 4 | Viewed by 1918
Abstract
A binary Fe2O3/Fe3O4 mixed nanocomposite was prepared by phyto-mediated avenue to be suited in the photo-Fenton photodegradation of methylene blue (MB) in the presence of H2O2. XRD and SEM analyses illustrated that [...] Read more.
A binary Fe2O3/Fe3O4 mixed nanocomposite was prepared by phyto-mediated avenue to be suited in the photo-Fenton photodegradation of methylene blue (MB) in the presence of H2O2. XRD and SEM analyses illustrated that Fe2O3 nanoparticles of average crystallite size 8.43 nm were successfully mixed with plate-like aggregates of Fe3O4 with a 15.1 nm average crystallite size. Moreover, SEM images showed a porous morphology for the binary Fe2O3/Fe3O4 mixed nanocomposite that is favorable for a photocatalyst. EDX and elemental mapping showed intense iron and oxygen peaks, confirming composite purity and symmetrical distribution. FTIR analysis displayed the distinct Fe-O assignments. Moreover, the isotherm of the developed nanocomposite showed slit-shaped pores in loose particulates within plate-like aggregates and a mesoporous pore-size distribution. Thermal gravimetric analysis (TGA) indicated the high thermal stability of the prepared Fe2O3/Fe3O4 binary nanocomposite. The optical properties illustrated a narrowing in the band gab (Eg = 2.92 eV) that enabled considerable absorption in the visible region of solar light. Suiting the developed binary Fe2O3/Fe3O4 nanocomposite in the photo-Fenton reaction along with H2O2 supplied higher productivity of active oxidizing species and accordingly a higher degradation efficacy of MB. The solar-driven photodegradation reactions were conducted and the estimated rate constants were 0.002, 0.0047, and 0.0143 min−1 when using the Fe2O3/Fe3O4 nanocomposite, pure H2O2, and the Fe2O3/Fe3O4/H2O2 hybrid catalyst, respectively. Therefore, suiting the developed binary Fe2O3/Fe3O4 nanocomposite and H2O2 in photo-Fenton reaction supplied higher productivity of active oxidizing species and accordingly a higher degradation efficacy of MB. After being subjected to four photo-Fenton degradation cycles, the Fe2O3/Fe3O4 nanocomposite catalyst still functioned admirably. Further evaluation of Fe2O3/Fe3O4 nanocomposite in photocatalytic remediation of contaminated water using a mixture of MB and pyronine Y (PY) dyestuffs revealed substantial dye photodegradation efficiencies. Full article
(This article belongs to the Special Issue Novel Nanocatalysts for Sustainable and Green Chemistry)
Show Figures

Figure 1

20 pages, 6382 KiB  
Article
Oxalic Acid-Assisted Photo-Fenton Catalysis Using Magnetic Fe3O4 Nanoparticles for Complete Removal of Textile Dye
by Sunil Bhavsar, Pravin Dudhagara, Anjana Ghelani, I Nengah Wirajana, Quyet-Tien Phi, Yih-Yuan Chen and Douglas J. H. Shyu
ChemEngineering 2024, 8(4), 67; https://doi.org/10.3390/chemengineering8040067 - 28 Jun 2024
Cited by 2 | Viewed by 2082
Abstract
Textile industry effluents contain several hazardous substances, such as dye-containing effluents, which pose environmental and aesthetic challenges. Presently, the microbial-based remediation process is in use. This study investigated the application of ferrous–ferric oxide (Fe3O4) nanoparticles, a readily formulated nanoadsorbent, [...] Read more.
Textile industry effluents contain several hazardous substances, such as dye-containing effluents, which pose environmental and aesthetic challenges. Presently, the microbial-based remediation process is in use. This study investigated the application of ferrous–ferric oxide (Fe3O4) nanoparticles, a readily formulated nanoadsorbent, to remove scattered dye molecules from industrial effluents. The ferrous–ferric oxide nanoparticles were prepared using a chemical co-precipitation method. The nanoparticles had 26.93 emu g−1 magnetization, with sizes smaller than 20 nm, and possessed a highly purified cubic spinel crystallite structure. The catalytic activity of the iron oxide depended on the dose, photocatalytic enhancer, i.e., H2O2 level, pH of the reaction medium, and dye concentration. We optimized the Fenton-like reaction to work best using 1.0 g/L of ferrous–ferric oxide nanoparticles, 60 mM oxalic acid at pH 7.0, and 60 ppm of dye. Iron oxides act as photocatalysts, and oxalic acid generates electron–hole pairs. Consequently, higher amounts of super-radicals cause the rapid degradation of dye and pseudo-first-order reactions. Liquid chromatography–mass spectrometry (LC-MS) analysis revealed the ferrous–ferric oxide nanoparticles decolorized and destroyed Disperse Red 277 in 180 min under visible light. Hence, complete demineralization is observed using a photo-Fenton-like reaction within 3 h under visible light. These high-capacity, easy-to-separate next-generation adsorption systems are suggested to be suitable for industrial-scale use. Ferrous–ferric oxide nanoparticles with increased adsorption and magnetic properties could be utilized to clean environmental pollution. Full article
Show Figures

Figure 1

27 pages, 3862 KiB  
Review
Recent Advances in the Development of Novel Iron–Copper Bimetallic Photo Fenton Catalysts
by Gabriela N. Bosio, Fernando S. García Einschlag, Luciano Carlos and Daniel O. Mártire
Catalysts 2023, 13(1), 159; https://doi.org/10.3390/catal13010159 - 10 Jan 2023
Cited by 17 | Viewed by 3736
Abstract
Advanced oxidation processes (AOPs) have been postulated as viable, innovative, and efficient technologies for the removal of pollutants from water bodies. Among AOPs, photo-Fenton processes have been shown to be effective for the degradation of various types of organic compounds in industrial wastewater. [...] Read more.
Advanced oxidation processes (AOPs) have been postulated as viable, innovative, and efficient technologies for the removal of pollutants from water bodies. Among AOPs, photo-Fenton processes have been shown to be effective for the degradation of various types of organic compounds in industrial wastewater. Monometallic iron catalysts are limited in practical applications due to their low catalytic activity, poor stability, and recyclability. On the other hand, the development of catalysts based on copper oxides has become a current research topic due to their advantages such as strong light absorption, high mobility of charge carriers, low environmental toxicity, long-term stability, and low production cost. For these reasons, great efforts have been made to improve the practical applications of heterogeneous catalysts, and the bimetallic iron–copper materials have become a focus of research. In this context, this review focuses on the compilation of the most relevant studies on the recent progress in the application of bimetallic iron–copper materials in heterogeneous photo–Fenton-like reactions for the degradation of pollutants in wastewater. Special attention is paid to the removal efficiencies obtained and the reaction mechanisms involved in the photo–Fenton treatments with the different catalysts. Full article
Show Figures

Graphical abstract

15 pages, 2916 KiB  
Article
Photo-Fenton Catalyzed by Cu2O/Al2O3: Bisphenol (BPA) Mineralization Driven by UV and Visible Light
by Oscar Olea-Mejia, Sharon Brewer, Kingsley Donkor, Deysi Amado-Piña and Reyna Natividad
Water 2022, 14(22), 3626; https://doi.org/10.3390/w14223626 - 10 Nov 2022
Cited by 4 | Viewed by 2992
Abstract
This work aimed to demonstrate Cu2O/Al2O3 as a catalyst of the photo-Fenton process in the UV and visible spectra. Cu2O nanoparticles were synthesized by laser ablation in liquid and supported on Al2O3. [...] Read more.
This work aimed to demonstrate Cu2O/Al2O3 as a catalyst of the photo-Fenton process in the UV and visible spectra. Cu2O nanoparticles were synthesized by laser ablation in liquid and supported on Al2O3. The catalytic activity of the resulting solid was assessed in the mineralization of bisphenol A (BPA). The studied variables were type of Al2O3α and γ, Cu content (0.5 and 1%), and H2O2 concentration (1, 5, and 10 times the stoichiometric amount). The response variables were BPA concentration and total organic carbon (TOC) removal percentage. The presence of Cu2O nanoparticles (11 nm) with an irregular sphere-like shape was confirmed by transmission electron microscopy (TEM) and their dispersion over the catalytic surface was verified by energy-dispersed spectroscopy (EDS). These particles improve ·OH radical production, and thus a 100% removal of BPA is achieved along with ca. 91% mineralization in 60 min. The BPA oxidation rate is increased one order of magnitude compared to photolysis and doubles that for H2O2 + UV. An increase of 40% in the initial oxidation rate of BPA was observed when switching from α-Al2O3 to γ-Al2O3. 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, acetaldehyde, and acetic acid are the BPA oxidation by-products identified using LC/MS and based on this a reaction pathway was proposed. Finally, it was also concluded that the synthesized catalyst exhibits catalytic activity not only in the UV spectrum but also in the visible one under circumneutral pH. Therefore, Cu2O/Al2O3 can be recommended to conduct a solar photo-Fenton reaction that can degrade other types of molecules. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Emerging Contaminant Removal)
Show Figures

Figure 1

16 pages, 3470 KiB  
Article
Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation
by Victoria Duarte-Alvarado, Lucas Santos-Juanes, Antonio Arques and Ana María Amat
Catalysts 2022, 12(11), 1390; https://doi.org/10.3390/catal12111390 - 9 Nov 2022
Cited by 4 | Viewed by 1945
Abstract
The degradation of various preservatives used in the cosmetics industry, including five parabens and their most employed substitute, methylisothiazolinone (MIT), was investigated. A mild photo-Fenton process was applied using low iron concentrations (5 mg/L) at a pH of five, instead of the traditional [...] Read more.
The degradation of various preservatives used in the cosmetics industry, including five parabens and their most employed substitute, methylisothiazolinone (MIT), was investigated. A mild photo-Fenton process was applied using low iron concentrations (5 mg/L) at a pH of five, instead of the traditional acidic value of three. At these conditions, the paraben degradation was very low after one hour of reaction and it was necessary to present humic-like substances (HLS) acting as iron chelators to improve the process. Values obtained when MIT was treated were very low, also in the presence of HLS, indicating that their complexing effect was not acting properly. When MIT was added to the mixture of parabens an inhibitory effect was found in the presence of HLS. A possible complex between iron and MIT was suggested and the studies of hydrogen peroxide consumption and Job’s plot technique confirmed this hypothesis. Evidence of the formation of this inactive complex, so far never reported, will be essential in future work when dealing with this compound using Fenton processes. Furthermore, this fact points out the importance of using mixtures of model contaminants instead of a single one or a group of the same family, since their ability to form active or inactive complexes with iron can strongly change the behavior of the whole system. Full article
(This article belongs to the Special Issue Solar Chemistry and Photocatalysis: Environmental Applications)
Show Figures

Figure 1

18 pages, 4106 KiB  
Article
Photo-Fenton Degradation of Ciprofloxacin by Novel Graphene Quantum Dots/α-FeOOH Nanocomposites for the Production of Safe Drinking Water from Surface Water
by Md. Nahid Pervez, Shengjia Ma, Siqi Huang, Vincenzo Naddeo and Yaping Zhao
Water 2022, 14(14), 2260; https://doi.org/10.3390/w14142260 - 20 Jul 2022
Cited by 10 | Viewed by 4323
Abstract
In the current work, novel graphene quantum dots (GQDs)-doped goethite (α-FeOOH) nanocomposites (GQDs/α-FeOOH) were prepared by following a feasible hydrolysis method and applied for ciprofloxacin (CIP) removal. Results showed that the CIP degradation efficiency was significant (93.73%, 0.0566 min−1) in the [...] Read more.
In the current work, novel graphene quantum dots (GQDs)-doped goethite (α-FeOOH) nanocomposites (GQDs/α-FeOOH) were prepared by following a feasible hydrolysis method and applied for ciprofloxacin (CIP) removal. Results showed that the CIP degradation efficiency was significant (93.73%, 0.0566 min−1) in the GQDs/α-FeOOH + H2O2 + Vis system using much lower amounts of H2O2 (0.50 mM), which is 3.9 times the α-FeOOH + H2O2 + Vis system. It was found that •OH, O2, and 1O2 were mainly responsible for CIP degradation in the GQDs/α-FeOOH photo-Fenton system. GQDs/α-FeOOH demonstrated broad-spectrum UV–vis-IR responsiveness in the degradation of ciprofloxacin as a function of the doping of GQDs. Additionally, GQDs/α-FeOOH showed outstanding durability (recyclability up to 3 cycles with a lower iron leaking amount, 0.020 mg L−1), a broad range of application pH, and a pretty acceptable catalytic efficacy in a variety of surface water matrices. Overall, GQDs/α-FeOOH have been shown to be an effective photocatalyst for the remediation of emerging contaminants via the workable exploitation of solar energy. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 5597 KiB  
Article
Hollow Nanospheres Organized by Ultra-Small CuFe2O4/C Subunits with Efficient Photo-Fenton-like Performance for Antibiotic Degradation and Cr(VI) Reduction
by Dazhi Sun, Jiayi Yang, Feng Chen, Zhe Chen and Kangle Lv
Catalysts 2022, 12(7), 687; https://doi.org/10.3390/catal12070687 - 23 Jun 2022
Cited by 6 | Viewed by 2259
Abstract
Hollow transition metal oxides have important applications in the degradation of organic pollutants by a photo-Fenton-like process. Herein, uniform, highly dispersible hollow CuFe2O4/C nanospheres (denoted as CFO/C-PNSs) were prepared by a one-pot approach. Scanning electron microscope (SEM) and transmission [...] Read more.
Hollow transition metal oxides have important applications in the degradation of organic pollutants by a photo-Fenton-like process. Herein, uniform, highly dispersible hollow CuFe2O4/C nanospheres (denoted as CFO/C-PNSs) were prepared by a one-pot approach. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images verified that the CFO/C-PNS catalyst mainly presents hollow nanosphere morphology with a diameter of 250 ± 30 nm. Surprisingly, the photodegradation test results revealed that CFO/C-PNSs had an excellent photocatalytic performance in the elimination of various organic contaminants under visible light through the efficient Fenton catalytic process. Due to the unique hollow structure formed by the assembly of ultra-small CFO/C subunits, the catalyst exposes more reaction sites, improving its photocatalytic activity. More importantly, the resulting magnetically separable CFO/C-PNSs exhibited excellent stability. Finally, the possible photocatalytic reaction mechanism of the CFO/C-PNSs was proposed, which enables us to have a clearer understanding of the photo-Fenton mechanism. Through a series of characterization and analysis of degradation behavior of CFO/C-PNS samples over antibiotic degradation and Cr(VI) reduction, •OH radicals generated from H2O2 decomposition played an essential role in enhancing the reaction efficiency. The present work offered a convenient method to fabricate hollow transition metal oxides, which provided impetus for further development in environmental and energy applications. Highlights: Novel hollow CuFe2O4/C nanospheres were prepared by a facile and cost-effective method. CuFe2O4/C exhibited excellent photo-Fenton-like performance for antibiotic degradation. Outstanding photocatalytic performance was attributed to the specific hollow cavity-porous structure. A possible mechanism for H2O2 activation over hollow CuFe2O4/C nanospheres was detailed and discussed. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Graphical abstract

12 pages, 1579 KiB  
Article
Regulation of Hydrogen Peroxide Dosage in a Heterogeneous Photo-Fenton Process
by Karla Estefanía Saldaña-Flores, René Alejandro Flores-Estrella, Victor Alcaraz-Gonzalez, Elvis Carissimi, Bruna Gonçalves de Souza, Luís Augusto Martins Ruotolo and Ernesto Urquieta-Gonzalez
Processes 2021, 9(12), 2167; https://doi.org/10.3390/pr9122167 - 1 Dec 2021
Cited by 5 | Viewed by 2879
Abstract
In this work, a classical linear control approach for the peroxide (H2O2) dosage in a photo-Fenton process is presented as a suitable solution for improving the efficiency in the treatment of recalcitrant organic compounds that cannot be degraded by [...] Read more.
In this work, a classical linear control approach for the peroxide (H2O2) dosage in a photo-Fenton process is presented as a suitable solution for improving the efficiency in the treatment of recalcitrant organic compounds that cannot be degraded by classical wastewater treatment processes like anaerobic digestion. Experiments were carried out to degrade Lignin, Melanoidin, and Gallic acid, which are typical recalcitrant organic compounds present in some kinds of effluents such as vinasses from the Tequila and Cachaça industries. Experiments were carried in Open-Loop mode for obtaining the degradation model for the three compounds in the form of a Transfer Function, and in Closed-Loop mode for controlling the concentration of each compound. First-order Transfer Functions were obtained using the reaction curve method, and then, based on these models, the parameters of Proportional Integral controllers were calculated using the direct synthesis method. In the Closed-Loop experiments, the Total Organic Carbon removal was 39% for lignin, 7% for melanoidin, and 29% for Gallic acid, which were greater than those obtained in the Open-Loop experiments. Full article
Show Figures

Figure 1

16 pages, 3573 KiB  
Article
Photo-Fenton Oxidation of Methyl Orange Dye Using South African Ilmenite Sands as a Catalyst
by Alicia Levana Butt, John Kabangu Mpinga and Shepherd Masimba Tichapondwa
Catalysts 2021, 11(12), 1452; https://doi.org/10.3390/catal11121452 - 29 Nov 2021
Cited by 12 | Viewed by 3102
Abstract
In this study, the viability of South African ilmenite sands as a catalyst in the photo-Fenton-like degradation of methyl orange (MO) dye was investigated. The mineralogy and other properties of the material were characterized. Complete decolorization occurred under acidic conditions (pH < 4) [...] Read more.
In this study, the viability of South African ilmenite sands as a catalyst in the photo-Fenton-like degradation of methyl orange (MO) dye was investigated. The mineralogy and other properties of the material were characterized. Complete decolorization occurred under acidic conditions (pH < 4) in the presence of ilmenite and H2O2. Light irradiation accelerated the rate of reaction. Parameter optimization revealed that a pH of 2.5, UVB irradiation, 2 g/L catalyst loading, and a hydrogen peroxide concentration of 1.0 mM were required. Under these conditions, complete decolorization was observed after 45 min. Degradation kinetics were best described by the pseudo-first order (PFO) model. Rate constants of 0.095 and 0.034 min−1 were obtained for 5 and 20 mg/L MO concentrations, respectively. A 37% total organic carbon removal was observed after 60 min. This suggests a stepwise MO degradation pathway with intermediate formation rather than complete mineralization. Although iron leaching was detected, the mineralogy of the catalyst recovered after the reaction was similar to the fresh catalyst. Full article
(This article belongs to the Special Issue Application of Photocatalysts in Environmental Chemistry)
Show Figures

Figure 1

18 pages, 7781 KiB  
Article
Photo-Fenton-Like Treatment of Municipal Wastewater
by Yerkanat N. Kanafin, Ardak Makhatova, Vasilios Zarikas, Elizabeth Arkhangelsky and Stavros G. Poulopoulos
Catalysts 2021, 11(10), 1206; https://doi.org/10.3390/catal11101206 - 8 Oct 2021
Cited by 16 | Viewed by 2787
Abstract
In this work, the photochemical treatment of a real municipal wastewater using a persulfate-driven photo-Fenton-like process was studied. The wastewater treatment efficiency was evaluated in terms of total carbon (TC), total organic carbon (TOC) and total nitrogen (TN) removal. Response surface methodology (RSM) [...] Read more.
In this work, the photochemical treatment of a real municipal wastewater using a persulfate-driven photo-Fenton-like process was studied. The wastewater treatment efficiency was evaluated in terms of total carbon (TC), total organic carbon (TOC) and total nitrogen (TN) removal. Response surface methodology (RSM) in conjunction Box-Behnken design (BBD) and multilayer artificial neural network (ANN) have been utilized for the optimization of the treatment process. The effects of four independent factors such as reaction time, pH, K2S2O8 concentration and K2S2O8/Fe2+ molar ratio on the TC, TOC and TN removal have been investigated. The process significant factors have been determined implementing Analysis of Variance (ANOVA). Both RSM and ANN accurately found the optimum conditions for the maximum removal of TOC (100% and 98.7%, theoretically), which resulted in complete mineralization of TOC at the reaction time of 106.06 min, pH of 7.7, persulfate concentration of 30 mM and K2S2O8/Fe2+ molar ratio of 7.5 for RSM and at the reaction time of 104.93 min, pH of 7.7, persulfate concentration of 30 mM and K2S2O8/Fe2+ molar ratio of 9.57 for ANN. On the contrary, the attempts to find the optimal conditions for the maximum TC and TN removal using statistical, and neural network models were not successful. Full article
Show Figures

Figure 1

Back to TopTop