Photo-Fenton-Like Treatment of Municipal Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Regression Model Based on ANOVA
2.2. ANOVA Analysis
2.3. Three-Dimensional Plots for the RSM Regression Model
2.4. Effective Parameters on the Photo-Fenton Like Process
2.4.1. Effect of Reaction Time
2.4.2. Effect of pH
2.4.3. Effect of K2S2O8 Concentration and K2S2O8/Fe2+ Molar Ratio
2.5. Modeling of TC, TOC, and TN Removal by ANN
2.6. Optimization and Validation
3. Materials and Methods
3.1. Wastewater Source and Characteristics
3.2. Reagents and Supplies
3.3. Experimental Setup and Procedure
3.4. Analytical Methods
3.5. Modelling Using RSM
3.6. Modelling Using ANN
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fane, A.G.; Tang, C.Y.; Wang, R. Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis. In Treatise on Water Science; Newnes Books-Elsevier: Amsterdam, The Netherlands, 2011; Volume 4, pp. 301–335. ISBN 9780444531933. [Google Scholar]
- Pereira, L.S.; Duarte, E.; Fragoso, R. Water Use: Recycling and Desalination for Agriculture. In Encyclopedia of Agriculture and Food Systems; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Nemerow, N.L. Industrial collaborative solutions. In Environmental Solutions; Academic Press: Cambridge, MA, USA, 2005; pp. 249–295. ISBN 9780120884414. [Google Scholar]
- Stasinakis, A.S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment—A mini review. Glob. NEST J. 2008, 10, 376–385. [Google Scholar] [CrossRef]
- Kanafin, Y.N.; Kakimov, Y.; Adamov, A.; Makhatova, A.; Yeshmuratov, A.; Poulopoulos, S.G.; Inglezakis, V.J.; Arkhangelsky, E. The effect of caffeine, metronidazole and ibuprofen on continuous flow activated sludge process. J. Chem. Technol. Biotechnol. 2021, 96, 1370–1380. [Google Scholar] [CrossRef]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture—FAO Irrigation and Drainage; FAO: Rome, Italy, 1992; Volume 47, ISBN 9253042192. [Google Scholar]
- Ternes, T.; Joss, A. Human Pharmaceuticals, Hormones and Fragrances—The Challenge of Micropollutants in Urban Water Management; IWA Publ: London, UK, 2006; ISBN 9781780402468. [Google Scholar]
- Stathoulopoulos, A.; Mantzavinos, D.; Frontistis, Z. Coupling persulfate-based AOPs: A novel approach for piroxicam degradation in aqueous matrices. Water 2020, 12, 1530. [Google Scholar] [CrossRef]
- Lee, Y.; Zimmermann, S.G.; Kieu, A.T.; Von Gunten, U. Ferrate (Fe(VI)) application for municipal wastewater treatment: A novel process for simultaneous micropollutant oxidation and phosphate removal. Environ. Sci. Technol. 2009, 43, 3831–3838. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Huling, S.G.; Pivetz, B.E. Engineering Issue Paper: In-Situ Chemical Oxidation; United States Environmental Protection Agency: Washington, DC, USA, 2006; pp. 1–60.
- Kolthoff, I.M.; Miller, I.K. The Chemistry of Persulfate. II. The Reaction of Persulfate with Mercaptans Solubilized in Solutions of Saturated Fatty Acid Soaps. J. Am. Chem. Soc. 1951, 73, 5118–5122. [Google Scholar] [CrossRef]
- House, D.A. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 1962, 62, 185–203. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbk, H.; Siegrist, R.L.; Bjerg, P.L. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R.W. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. J. Am. Chem. Soc. 1977, 99, 163–164. [Google Scholar] [CrossRef]
- Waldemer, R.H.; Tratnyek, P.G.; Johnson, R.L.; Nurmi, J.T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ. Sci. Technol. 2007, 41, 1010–1015. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination? Environ. Sci. Technol. 2018, 52, 11276–11284. [Google Scholar] [CrossRef]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV, K2S2O8/UV. Chem. Eng. J. 2014, 241, 504–512. [Google Scholar] [CrossRef]
- Lee, J.; Von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- PubChem Potassium Persulfate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Potassium-persulfate (accessed on 2 October 2021).
- Yang, S.; Cheng, J.; Sun, J.; Hu, Y.; Liang, X. Defluorination of Aqueous Perfluorooctanesulfonate by Activated Persulfate Oxidation. PLoS ONE 2013, 8, e74877. [Google Scholar] [CrossRef]
- Dbira, S.; Bensalah, N.; Zagho, M.M.; Ennahaoui, M.; Bedoui, A. Oxidative degradation of tannic acid in aqueous solution by UV/S2O82- and UV/H2O2/Fe2+ processes: A comparative study. Appl. Sci. 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Pervez, M.N.; He, W.; Zarra, T.; Naddeo, V.; Zhao, Y. New sustainable approach for the production of Fe3O4/Graphene oxide-activated persulfate system for dye removal in real wastewater. Water 2020, 12, 733. [Google Scholar] [CrossRef] [Green Version]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Ioannidi, A.; Arvaniti, O.S.; Nika, M.-C.; Aalizadeh, R.; Thomaidis, N.S.; Mantzavinos, D.; Frontistis, Z. Removal of drug losartan in environmental aquatic matrices by heat-activated persulfate: Kinetics, transformation products and synergistic effects. Chemosphere 2022, 287, 131952. [Google Scholar] [CrossRef]
- Davarnejad, R.; Nasiri, S. Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study. Environ. Pollut. 2017, 223, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bello, M.M.; Abdul Raman, A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process. Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Li, R.; Kong, J.; Liu, H.; Chen, P.; Liu, G.; Li, F.; Lv, W. A sulfate radical based ferrous-peroxydisulfate oxidative system for indomethacin degradation in aqueous solutions. RSC Adv. 2017, 7, 22802–22809. [Google Scholar] [CrossRef] [Green Version]
- Saber, W.E.I.A.; El-Naggar, N.E.A.; El-Hersh, M.S.; El-khateeb, A.Y.; Elsayed, A.; Eldadamony, N.M.; Ghoniem, A.A. Rotatable central composite design versus artificial neural network for modeling biosorption of Cr6+ by the immobilized Pseudomonas alcaliphila NEWG-2. Sci. Rep. 2021, 11, 1717. [Google Scholar] [CrossRef] [PubMed]
- Alves da Rocha, R.; Paiva, I.M.; Anjos, V.; Furtado, M.A.M.; Bell, M.J.V. Quantification of whey in fluid milk using confocal Raman microscopy and artificial neural network. J. Dairy Sci. 2015, 98, 3559–3567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Run | Independent Variables | Response (Y, %) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Actual | Predicted by RSM | Predicted by ANN | |||||||
Time | pH | K2S2O8, mM | Molar Ratio K2S2O8/Fe2+ | TC | TOC | TN | TC | TOC | TN | TC | TOC | TN | |
1 | 60 | 5.35 | 30 | 10 | 56.35 | 45.79 | 9.42 | 54.77 | 46.43 | 34.86 | 56.33 | 46.19 | 9.43 |
2 | 100 | 3 | 30 | 10 | 50.80 | 27.98 | 10.87 | 48.18 | 34.35 | 15.79 | 50.73 | 27.75 | 11.37 |
3 | 140 | 5.35 | 20 | 7.5 | 60.69 | 58.06 | 6.97 | 57.54 | 60.27 | 26.40 | 60.67 | 58.23 | 6.98 |
4 | 100 | 3 | 10 | 10 | 68.35 | 53.03 | 6.35 | 65.51 | 58.62 | 30.66 | 68.28 | 53.17 | 6.52 |
5 | 140 | 3 | 20 | 10 | 58.50 | 46.89 | 6.63 | 64.53 | 52.78 | 14.46 | 58.65 | 46.58 | 6.28 |
6 | 140 | 5.35 | 30 | 10 | 71.31 | 73.9 | 10.05 | 63.57 | 65.80 | 15.49 | 71.29 | 73.83 | 10.03 |
7 | 100 | 5.35 | 20 | 10 | 50.96 | 55.74 | 35.66 | 47.52 | 55.87 | 45.65 | 47.77 | 55.96 | 45.62 |
8 | 100 | 7.7 | 10 | 10 | 39.86 | 76.27 | 5.07 | 37.30 | 69.55 | 12.25 | 39.82 | 76.12 | 5.07 |
9 | 100 | 5.35 | 20 | 10 | 47.17 | 59.64 | 46.13 | 47.52 | 55.87 | 45.65 | 47.77 | 55.96 | 45.62 |
10 | 60 | 5.35 | 20 | 7.5 | 68.24 | 46.06 | 8.13 | 64.30 | 49.37 | 28.64 | 68.04 | 46.81 | 8.07 |
11 | 60 | 3 | 20 | 10 | 65.61 | 24.68 | 39.52 | 66.28 | 25.72 | 26.26 | 65.55 | 24.81 | 39.47 |
12 | 60 | 5.35 | 10 | 10 | 57.39 | 56.96 | 21.4 | 63.29 | 57.82 | 17.70 | 57.59 | 56.56 | 21.51 |
13 | 140 | 5.35 | 20 | 12.5 | 61.69 | 63.61 | 53.35 | 60.46 | 59.94 | 44.94 | 61.37 | 63.21 | 53.32 |
14 | 100 | 7.7 | 20 | 12.5 | 46.36 | 72.34 | 11.49 | 46.99 | 74.68 | 39.83 | 46.28 | 72.13 | 11.50 |
15 | 100 | 3 | 20 | 7.5 | 60.63 | 37.45 | 46.66 | 58.16 | 38.51 | 20.06 | 60.61 | 37.27 | 46.68 |
16 | 140 | 7.7 | 20 | 10 | 49.32 | 67.99 | 21.08 | 55.67 | 68.90 | 20.50 | 49.34 | 67.85 | 21.07 |
17 | 100 | 3 | 20 | 12.5 | 57.51 | 55.8 | 51.61 | 58.75 | 52.85 | 54.42 | 57.50 | 55.57 | 51.56 |
18 | 100 | 5.35 | 20 | 10 | 44.44 | 52.23 | 55.15 | 47.52 | 55.87 | 45.65 | 47.77 | 55.96 | 45.62 |
19 | 100 | 7.7 | 20 | 7.5 | 55.07 | 79.09 | 33.43 | 51.99 | 85.45 | 32.36 | 55.01 | 79.05 | 33.47 |
20 | 60 | 5.35 | 20 | 12.5 | 59.01 | 55.83 | 59.26 | 56.98 | 53.26 | 51.93 | 58.99 | 55.69 | 59.35 |
21 | 100 | 5.35 | 10 | 7.5 | 46.11 | 60.96 | 23.24 | 48.80 | 55.44 | 21.98 | 46.13 | 60.75 | 23.20 |
22 | 100 | 5.35 | 30 | 12.5 | 44.19 | 53.94 | 57.89 | 48.52 | 56.41 | 45.31 | 44.03 | 55.03 | 57.73 |
23 | 60 | 7.7 | 20 | 10 | 56.21 | 87.31 | 39.61 | 57.20 | 78.37 | 17.94 | 56.39 | 87.09 | 39.50 |
24 | 100 | 7.7 | 30 | 10 | 60.79 | 98.15 | 44.14 | 58.46 | 92.20 | 31.93 | 60.61 | 97.96 | 44.21 |
25 | 100 | 5.35 | 10 | 12.5 | 54.74 | 66.9 | 60.13 | 51.81 | 71.27 | 57.30 | 55.09 | 66.93 | 59.68 |
26 | 100 | 5.35 | 30 | 7.5 | 45.98 | 76.1 | 49.81 | 55.93 | 68.68 | 38.80 | 46.13 | 75.84 | 49.36 |
27 | 140 | 5.35 | 10 | 10 | 51.47 | 65.26 | 51.53 | 51.21 | 56.03 | 27.83 | 51.49 | 65.16 | 51.50 |
Removal | Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
TC | Model | 1344.37 | 14 | 96.03 | 2.84 | 0.039 |
Error | 405.90 | 12 | 33.83 | |||
Lack of fit | 384.45 | 10 | 38.45 | |||
Pure error | 21.44 | 2 | 10.72 | |||
R2 = 0.7681 | ||||||
TOC | Model | 6659.09 | 14 | 475.65 | 11.64 | <0.0001 |
Error | 490.32 | 12 | 40.86 | |||
Lack of fit | 462.84 | 10 | 46.28 | |||
Pure error | 27.48 | 2 | 13.74 | |||
R2 = 0.9314 | ||||||
TN | Model | 4664.4 | 14 | 333.17 | 0.70 | 0.739 |
Error | 5697.3 | 12 | 474.77 | |||
Lack of fit | 5507.3 | 10 | 550.70 | |||
Pure error | 190.3 | 2 | 95.14 | |||
R2 = 0.4502 |
Method | Removals, % | Reaction Time (min) | pH | K2S2O8, mM | Molar Ratio K2S2O8/Fe2+ | Actual | Predicted | Error |
---|---|---|---|---|---|---|---|---|
RSM | TC | 60 | 3 | 10 | 12.5 | 52.78 | 84.24 | 31.46 |
TOC | 106.06 | 7.7 | 30 | 7.5 | 100 | 100 | 0 | |
TN | 97.98 | 4.33 | 15.05 | 12.5 | 56.29 | 63.87 | 7.58 | |
ANN | TC | 140 | 5.21 | 30 | 10.17 | 49.56 | 71.38 | 21.82 |
TOC | 104.93 | 7.7 | 30 | 9.57 | 100 | 98.7 | 1.3 | |
TN | 71.46 | 4.2 | 17.59 | 12.5 | 45.74 | 72.83 | 27.09 |
Parameter | Unit | Value |
---|---|---|
Chemical oxygen demand (COD) | mg L−1 | 33.5 ± 1.5 |
Total carbon (TC) | mg L−1 | 118.5 ± 2.2 |
Total organic carbon (TOC) | mg L−1 | 20.77 ± 1.7 |
Total inorganic carbon (TIC) | mg L−1 | 98.03 ± 2.32 |
Total nitrogen (TN) | mg L−1 | 37.49 ± 2.55 |
pH | – | 7.75 ± 0.34 |
Symbol | Factor | Levels of Variables | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | Reaction time (min) | 60 | 100 | 140 |
B | pH | 3 | 5.35 | 7.7 |
C | K2S2O8/Fe2+ molar ratio | 7.5 | 10 | 12.5 |
D | K2S2O8 concentration (mM) | 10 | 20 | 30 |
Parameter | Value |
---|---|
Cross-validation | k-fold methods (5 groups) |
Hidden nodes | 5 to 20 |
Number of models | 200 |
Learning rate | 0.1 |
Penalty method | squared |
Number of tours | 4 |
Transfer function | Tanh () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanafin, Y.N.; Makhatova, A.; Zarikas, V.; Arkhangelsky, E.; Poulopoulos, S.G. Photo-Fenton-Like Treatment of Municipal Wastewater. Catalysts 2021, 11, 1206. https://doi.org/10.3390/catal11101206
Kanafin YN, Makhatova A, Zarikas V, Arkhangelsky E, Poulopoulos SG. Photo-Fenton-Like Treatment of Municipal Wastewater. Catalysts. 2021; 11(10):1206. https://doi.org/10.3390/catal11101206
Chicago/Turabian StyleKanafin, Yerkanat N., Ardak Makhatova, Vasilios Zarikas, Elizabeth Arkhangelsky, and Stavros G. Poulopoulos. 2021. "Photo-Fenton-Like Treatment of Municipal Wastewater" Catalysts 11, no. 10: 1206. https://doi.org/10.3390/catal11101206
APA StyleKanafin, Y. N., Makhatova, A., Zarikas, V., Arkhangelsky, E., & Poulopoulos, S. G. (2021). Photo-Fenton-Like Treatment of Municipal Wastewater. Catalysts, 11(10), 1206. https://doi.org/10.3390/catal11101206