Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = petzite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12225 KB  
Article
Mineral Characterization of Gold Ore Occurrences in the Khaptasynnakh Ore Zone, Anabar Shield, Far East Region, Russia
by Boris Gerasimov and Larisa Kondratieva
Minerals 2025, 15(8), 774; https://doi.org/10.3390/min15080774 - 24 Jul 2025
Cited by 1 | Viewed by 351
Abstract
Mineral characterization of gold-bearing metasomatites in the Khaptasynnakh ore zone of the Anabar Shield is provided in detail. The following ore formation sequence of mineral associations in the Khaptasynnakh zone was found: pyrite and pyrrhotite → gersdorffite and molybdenite → chalcopyrite, sphalerite, and [...] Read more.
Mineral characterization of gold-bearing metasomatites in the Khaptasynnakh ore zone of the Anabar Shield is provided in detail. The following ore formation sequence of mineral associations in the Khaptasynnakh zone was found: pyrite and pyrrhotite → gersdorffite and molybdenite → chalcopyrite, sphalerite, and galena → bornite and chalcocite → tellurides, native gold, stibnite, cinnabar, and native bismuth. Native gold is characterized by varying fineness (550 to 926‰) and Cu impurity (up to 7.87%) values. Most often, it forms symplectite intergrowths with Au telluride–calaverite. Native gold and Au tellurides showed inclusions of chalcocite, bornite, altaite, tellurobismuthite, rickardite, petzite, and clausthalite. A two-stage formation process of the examined gold is suggested: Low-fineness gold was introduced into the system during early potassium metasomatism, while higher-fineness gold related to silica metasomatism resulted from its additional mobilization by fluid during late-stage formation. The low-temperature gold–telluride association observed in the mineral paragenesis of ore-bearing rocks, as well as its inclusions in native gold, suggests epithermal gold–telluride mineralization. Mineral inclusions examined in placer gold validate a genetic relation between the examined ores and gold placers in the Khaptasynnakh ore zone. Full article
Show Figures

Figure 1

19 pages, 12440 KB  
Article
Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite
by Mengmeng Zhang, Junfeng Shen, Chenglu Li, M. Santosh, Kexin Xu, Gexue Zhao and Huajuan Gu
Minerals 2024, 14(10), 1014; https://doi.org/10.3390/min14101014 - 8 Oct 2024
Viewed by 1229
Abstract
The Sanhetun tellurium–gold (Te–Au) deposit, located in the Duobaoshan polymetallic metallogenic belt (DPMB) within the eastern section of the Central Asian Orogenic Belt (CAOB), is a newly discovered small-scale gold deposit. The mineralization, with a resource of ≥4 t Au, is mainly hosted [...] Read more.
The Sanhetun tellurium–gold (Te–Au) deposit, located in the Duobaoshan polymetallic metallogenic belt (DPMB) within the eastern section of the Central Asian Orogenic Belt (CAOB), is a newly discovered small-scale gold deposit. The mineralization, with a resource of ≥4 t Au, is mainly hosted in three NNE-trending alteration zones between Early Carboniferous granitic mylonite and Lower Cretaceous volcanogenic-sedimentary formations. The genesis of formation of this deposit is poorly constrained. Here, we report the results of petrographic studies, TESCAN Integrated Mineral Analyzer (TIMA), major and trace element concentrations, and in situ S isotopes of pyrite. The results show that there are four types of pyrite: coarse-grained euhedral Py1, fine-grained quartz-Py2 vein crosscutting Py1, anhedral aggregated Py3, and anhedral aggregated Py4. The pre-ore stage Py1 contains negligible Au, Te, and other trace elements and has a relatively narrow range of δ34S values ranging from −1.20 to −0.57‰. Py2 has higher concentrations of Au and Te and distinctly high concentrations of Mo, Sb, Zn, and Mn with markedly positive δ34S values of 4.67 to 14.43‰. The main-ore stage Py3 contains high Au and Te concentrations and shows narrow δ34S values ranging from −5.69 to 0.19‰. The post-ore stage Py4 displays low Au concentrations with the δ34S values ranging from 2.66 to 3.86‰. Tellurides are widespread in Py3 and Py4, consisting mainly of native tellurium, tetradymite, tsumoite, hessite, and petzite. Especially, tetradymite commonly coexists with native gold. This study highlights the role of Te–Bi–S melt as an important gold scavenger in As-deficient ore-forming fluids. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

14 pages, 6797 KB  
Article
Telluride Mineralogy of the Kochbulak Epithermal Gold Deposit, Tien Shan, Eastern Uzbekistan
by Yongwei Lu, Xiaobo Zhao, Chunji Xue, Bakhtiar Nurtaev, Yiwei Shi, Yangtao Liu and Shukhrat Shukurov
Minerals 2024, 14(7), 730; https://doi.org/10.3390/min14070730 - 22 Jul 2024
Cited by 1 | Viewed by 1912
Abstract
The Kochbulak gold deposit is situated on the northern slope of the Kurama range of eastern Uzbekistan and is one of the largest Tellurium-rich epithermal gold deposits in the world. Based on a detailed field and petrological investigation, three stages of mineralization can [...] Read more.
The Kochbulak gold deposit is situated on the northern slope of the Kurama range of eastern Uzbekistan and is one of the largest Tellurium-rich epithermal gold deposits in the world. Based on a detailed field and petrological investigation, three stages of mineralization can be classified, including, from early to late, quartz–pyrite vein stage, quartz–telluride–sulfide–sulphosalt–native gold stage, and pyrite–chalcopyrite vein stage. Abundant tellurides, including tellurobismuthite, rucklidgeite, tetradymite, altaite, volynskite, and hessite, have been well recognized in the second (main) mineralization stage. Based on the mineral assemblages and petrogenetic occurrence, the sequence of tellurides in the second mineralization stage can be approximately identified as altaite+calaverite+native tellurium, calaverite+native gold, Bi-telluride (e.g., tellurobismuthite and rucklidgeite)+petzite+native gold, Ag-Bi telluride (e.g., volynskite), and Ag-telluride (e.g., hessite)+native gold. By depicting the Log ƒ(Te2)-Log ƒ(S2) relationship diagram of the Kochbulak gold deposit under 250 °C and 200 °C, the Log ƒ(S2) value ranges from −14.7 to −8.6 and from −16.7 to −10.9, respectively, with Log ƒ(Te2) value varies from −12.3 to −7.8 under 250 °C and ranges from −13.8 to −11.2 under 200 °C. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Figure 1

16 pages, 12111 KB  
Article
Mineralogy of Gold, Tellurides and Sulfides from Lianzigou Gold Deposits in the Xiaoqinling Region, Central China: Implications for Ore-Forming Conditions and Processes
by Guoming Weng, Jiajun Liu, Emmanuel John M. Carranza, Fangfang Zhang, Degao Zhai, Yinhong Wang, Shen Gao, Mingyang Si, Zaixin Su and Yingying Zhang
Minerals 2024, 14(7), 675; https://doi.org/10.3390/min14070675 - 28 Jun 2024
Viewed by 1609
Abstract
The Lianzigou deposit, which has an Au–Te paragenetic association, is hosted in plagioclase gneiss of the Qincanggou Formation in the Taihua Group in the Xiaoqinling region, central China. This quartz vein-type Au deposit comprises native Au and a variety of tellurides. The latter [...] Read more.
The Lianzigou deposit, which has an Au–Te paragenetic association, is hosted in plagioclase gneiss of the Qincanggou Formation in the Taihua Group in the Xiaoqinling region, central China. This quartz vein-type Au deposit comprises native Au and a variety of tellurides. The latter include calaverite (AuTe2), krennerite (Au3AgTe8), petzite (Au3AgTe2), hessite (Ag2Te), melonite (NiTe2), and altaite (PbTe). Four stages have been recognized in this deposit: stage I consists of K-feldspar and quartz; stage II is of milky quartz veins accompanied by coarse-grained disseminated and lumps of pyrite with weak Au mineralization; stage III is composed mainly of Au, tellurides, and sulfides; and stage IV is characterized by abundant carbonate and quartz. Based on mineral assemblage and thermodynamic data, we estimated the physicochemical conditions of the main metallogenic stages. Based on thermodynamic modelling, the physicochemical conditions of Au–Ag–Te mineral associations were estimated. The Au–Ag–Te minerals from stage III formed mainly under conditions of logƒO2 = −43.15 to −33.31, logƒH2S = ~−9.29, pH < 7, logfTe2 = −10.6 to −9.8 and logαAu+/αAg+ = −7.2 to −6.5. In contrast, the physicochemical conditions of stage II were higher, specifically pH (8.3–8.5) and logƒO2 (−34.90−31.96). In the ore-forming fluids of the Lianzigou deposit, the dominant Au species was Au(HS)2 while the dominant Te species were HTe(aq) and Te22−(aq). Moreover, the Au–Ag–Te metal associations in the Lianzigou Au deposit were derived from mantle materials related to lithospheric thinning of the eastern North China craton in the Early Cretaceous under an extensional tectonic system. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

23 pages, 18571 KB  
Article
Constraints on Ore Genesis from Trace Ore Mineralogy: A New Occurrence of Kupčíkite and Paděraite from the Zhibula Cu Skarn Deposit, Southern Tibet
by Jing Xu, Cristiana Liana Ciobanu, Nigel John Cook, Shen Gao, Taiping Zhao and Jichen Jiang
Minerals 2024, 14(5), 474; https://doi.org/10.3390/min14050474 - 29 Apr 2024
Cited by 2 | Viewed by 1642
Abstract
Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in [...] Read more.
Mineral assemblages containing Cu-Bi sulfosalts, Bi chalcogenides, and Ag-(Au) tellurides have been identified in the mid-Miocene Zhibula Cu skarn deposit, Gangdese Belt, southern Tibet. Different mineral assemblages from three locations in the deposit, including proximal massive garnet skarn, proximal retrogressed pyroxene-dominant skarn in contact with marble, and distal banded garnet–pyroxene skarn hosted in marble, are studied to constrain the evolution of the mineralization. Hypogene bornite contains elevated Bi (mean 6.73 wt.%) and co-exists in proximal andradite skarn with a second bornite with far lower Bi content, carrollite, Au-Ag tellurides (hessite, petzite), and wittichenite. This assemblage indicates formation at relatively high temperatures (>400 °C) and high fS2 and fTe2 during prograde-stage mineralization. Assemblages of Bi sulfosalts (wittichenite, aikinite, kupčíkite, and paděraite) and bismuth chalcogenides (e.g., tetradymite) in proximal pyroxene skarn are also indicative of formation at relatively high temperatures, but at relatively lower fTe2 and fS2 conditions. Within the reduced distal skarn (chalcopyrite–pyrrhotite-bearing) in marble, cobalt, and nickel occur as discrete minerals: cobaltite, melonite and cobaltic pentlandite. The trace ore mineral signature of the Zhibula skarn and the distributions of precious and critical trace elements such as Ag, Au, Co, Te, Se, and Bi support an evolving magmatic–hydrothermal system in which different parts of the deposit each define ore formation at distinct local physicochemical conditions. This is the first report of kupčíkite and paděraite from a Chinese location. Their compositions are comparable to other occurrences, but conspicuously, they do not form nanoscale intergrowths with one another. Full article
(This article belongs to the Special Issue Selenium, Tellurium and Precious Metal Mineralogy)
Show Figures

Graphical abstract

25 pages, 6134 KB  
Article
Geochemical and Isotopic Fractionation in the Hypogene Ore, Gossan, and Saprolite of the Alvo 118 Deposit: Implications for Copper Exploration in the Regolith of the Carajás Mineral Province
by Pabllo Henrique Costa dos Santos, Marcondes Lima da Costa and Desiree Lisette Roerdink
Minerals 2023, 13(11), 1441; https://doi.org/10.3390/min13111441 - 15 Nov 2023
Cited by 2 | Viewed by 2019
Abstract
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves [...] Read more.
In the Carajás Mineral Province, gossan formation and lateritization have produced numerous supergene orebodies at the expense of IOCG deposits and host rocks. The Alvo 118 deposit comprises massive and disseminated hypogene copper sulfides associated with gossan and mineralized saprolites. The hypogene reserves are 170 Mt, with 1% Cu and 0.3 ppm Au, while the supergenes are 55 Mt, comprised of 30% gossan and 70% saprolite, with 0.92% Cu and 0.03 ppm Au. The gossan includes goethite, malachite, cuprite, and libethenite zones. The saprolite comprises kaolinite, vermiculite, smectite, and relics of chlorite. In the hypogene mineralization, Ag, Te, Pb, Se, Bi, Au, In, Y, Sn, and U are mainly hosted by chalcopyrite and petzite, altaite, galena, uraninite, stannite, and cassiterite. In the gossan, Ag, Te, Pb, Se, and Bi are hosted by Cu minerals, while Au, In, Y, Sn, and U are associated with iron oxyhydroxides, in addition to Zn, As, Be, Ga, Ga, Mo, Ni, and Sc. As supporting information, δ65Cu values indicate that the gossan is immature and, at least partly, not affected by leaching. In the saprolite, Ga, Sc, Sn, V, Mn, Co, and Cr are associated with the iron oxyhydroxides, partially derived from the host rock weathering. The δ56Fe values indicate that hypogene low contribution of the hypogene mineralization to the saprolite iron content. The association of Al2O3, Hf, Zr, Th, TiO2, Ce, La, Ba, and Sr represents the geochemical signature of the host rocks, with dominant contributions from chlorites, while In, Y, Te, Pb, Bi, and Se are the main pathfinders of Cu mineralization. Full article
(This article belongs to the Special Issue Mineral Evolution and Mineralization during Weathering)
Show Figures

Figure 1

16 pages, 7299 KB  
Article
Mineralogy and Mineral Chemistry of the Au-Ag-Te-(Bi-Se) San Luis Alta Deposit, Mid-South Peru
by Pura Alfonso, Elsa Ccolqque, Maite Garcia-Valles, Arnau Martínez, Maria Teresa Yubero, Hernan Anticoi and Nor Sidki-Rius
Minerals 2023, 13(4), 568; https://doi.org/10.3390/min13040568 - 18 Apr 2023
Cited by 3 | Viewed by 2655
Abstract
A mineralogical and mineral chemistry study was carried out in the San Luis Alta telluride-rich gold deposit, mid-south Peru, to contribute towards determining its formation and improving the ore processing. The San Luis mineralization is considered an intrusion-related gold deposit located in the [...] Read more.
A mineralogical and mineral chemistry study was carried out in the San Luis Alta telluride-rich gold deposit, mid-south Peru, to contribute towards determining its formation and improving the ore processing. The San Luis mineralization is considered an intrusion-related gold deposit located in the Arequipa segment of the Coastal Batholith. The mineralization occurs in quartz veins hosted in diorites and granodiorites from the Tiabaya Super-Unit. These veins are sulfide-rich in the deep areas and contain abundant iron oxides. Sulfides are mainly pyrite with minor chalcopyrite and galena. Native gold and telluride minerals are abundant. Mineral chemistry was determined using an electron microprobe. The mineralogy of veins was classified into four stages. Gold occurs in the three last stages either in large grains, visible to the naked eye, or, more frequently, in grains of less than 10 µm. Gold appears as grains encapsulated in pyrite, Fe oxides, quartz and filling fractures. The first stage is characterized by the deposition of quartz and massive pyrite, which does not contain gold. During the second stage, hessite, calaverite, petzite and altaite are formed. Additionally, Bi-tellurides, mainly volynskite, rucklidgeite, kochkarite and tellurobusmuthine, are formed. Some of these minerals occur as blebs encapsulated in pyrite, suggesting that a Bi-Te-rich melt was formed from the ore-forming hydrothermal fluid and transported the Au and Ag elements. This stage was followed by a fracturing event and tellurobismuthite, tetradymite and montbrayite precipitated. In the last stage, a supergene replacement formed covellite, bornite and goethite. Te-Bi minerals do not appear in this stage, but selenium minerals occur in minor amounts. Chlorargyrite and iodargyrite occur and are associated with gold. Full article
Show Figures

Figure 1

10 pages, 3678 KB  
Communication
A Rare Au-Sb Telluride Pampaloite from the Svetlinsk Gold-Telluride Deposit, South Urals, Russia
by Olga V. Vikent’eva, Vladimir V. Shilovskikh, Vasily D. Shcherbakov, Ilya V. Vikentyev and Nikolay S. Bortnikov
Minerals 2022, 12(10), 1274; https://doi.org/10.3390/min12101274 - 9 Oct 2022
Cited by 4 | Viewed by 2336
Abstract
Pampaloite AuSbTe, a rare gold-antimony telluride that was first described in 2019 from the Pampalo gold mine, Finland, was found in samples from the large Svetlinsk gold-telluride deposit, South Urals, Russia. Optical microscopy, scanning electron microscopy, electron microprobe analysis, reflectance measurements, electron backscatter [...] Read more.
Pampaloite AuSbTe, a rare gold-antimony telluride that was first described in 2019 from the Pampalo gold mine, Finland, was found in samples from the large Svetlinsk gold-telluride deposit, South Urals, Russia. Optical microscopy, scanning electron microscopy, electron microprobe analysis, reflectance measurements, electron backscatter diffraction and Raman spectroscopy were used to study eight grains of pampaloite. Pampaloite forms inclusions (5–30 μm) in quartz together with other tellurides (typically petzite), native gold and, less often, sulfides. In reflected light, pampaloite is white or creamy white in color with weak anisotropism and without internal reflections. The empirical formula calculated on the basis of 3 apfu is Au0.97–1.07Ag0–0.02Sb0.96–1.04Te0.96–1.04 (n = 18). The holotype pampaloite structure was used as a reference and provided the perfect match for an experimental EBSD pattern (12 bands out of 12, mean angle deviation 0.19°). Raman spectra are reported for the first time for this mineral. All studied pampaloite grains exhibit vibrational modes in the range 60–180 cm−1. Average peak positions are 71, 108, 125, 147 and 159 cm−1. According to experimental data for the Au-Sb-Te system, we estimate the upper temperature range of pampaloite crystallization at the Svetlinsk deposit to be 350–430 °C. Full article
(This article belongs to the Special Issue The Crystal Chemistry and Mineralogy of Critical Metals)
Show Figures

Figure 1

23 pages, 7760 KB  
Article
The Gold Mineralization of the Baranyevskoe Au-Ag Epithermal Deposit in Central Kamchatka
by Nadezhda Tolstykh, Daria Bukhanova, Maria Shapovalova, Andrey Borovikov and Maksim Podlipsky
Minerals 2021, 11(11), 1225; https://doi.org/10.3390/min11111225 - 4 Nov 2021
Cited by 9 | Viewed by 3050
Abstract
The Baranyevskoe Au-Ag epithermal deposit of low-sulfidation (LS) type is located on the Kamchatka Peninsula in the Neogene-Quaternary Central Kamchatka Volcanic Belt, where Au-bearing quartz veins are usually accompanied by veinlet stockworks. Two economic associations are typical of the Baranyevskoe deposit. The first [...] Read more.
The Baranyevskoe Au-Ag epithermal deposit of low-sulfidation (LS) type is located on the Kamchatka Peninsula in the Neogene-Quaternary Central Kamchatka Volcanic Belt, where Au-bearing quartz veins are usually accompanied by veinlet stockworks. Two economic associations are typical of the Baranyevskoe deposit. The first corresponds to gold-pyrite-quartz association with low-grade native gold (521–738‱) intergrown with pyrite. Some accessory Au-Ag minerals within the early association were also identified: acanthite AgS2, hessite AgTe2, lenaite Ag(Fe,Cu)S2, petzite Ag3AuTe2, utenbogardite Ag3AuS2 and unnamed Ag-Sb-As sulfosalts. The former Au-Ag minerals were most likely formed in the temperature range of 320–330 °C based on the study of arsenopyrite thermometers and fluid inclusions. The second, a gold-sulfosalt-quartz association, includes high-grade native gold (883-941‱) in intergrowth with chalcopyrite. Cuprous phases (bornite, chalcocite, heerite, native copper, Cu-Zn solid solutions), Bi-rich sulfosalts (aikinite PbCuBiS3, emplectite CuBiS2, witticenite Cu3BiS3), stannoidite Cu8Fe3Sn2S12, mawsonite Cu6Fe2SnS8), Au-bearing galena, Te-free and Bi-rich tetrahedrite-tennantite represent this association. Fluid inclusions in gold-sulfosalt-quartz association are characterized by homogenization temperature ranging from 226 to 298 °C, and salinity from 0.4 to 1.2 wt. % NaCl eq. Full article
(This article belongs to the Special Issue Gold Deposits in Russia: Geology, Mineralogy and Ore Genesis)
Show Figures

Figure 1

21 pages, 2264 KB  
Article
Types of Tellurium Mineralization of Gold Deposits of the Aldan Shield (Southern Yakutia, Russia)
by Larisa A. Kondratieva, Galina S. Anisimova and Veronika N. Kardashevskaia
Minerals 2021, 11(7), 698; https://doi.org/10.3390/min11070698 - 29 Jun 2021
Cited by 9 | Viewed by 4636
Abstract
The published and original data on the tellurium mineralization of gold ore deposits of the Aldan Shield are systematized and generalized. The gold content is related to hydrothermal-metasomatic processes caused by Mesozoic igneous activity of the region. The formation of tellurides occurred at [...] Read more.
The published and original data on the tellurium mineralization of gold ore deposits of the Aldan Shield are systematized and generalized. The gold content is related to hydrothermal-metasomatic processes caused by Mesozoic igneous activity of the region. The formation of tellurides occurred at the very late stages of the generation of gold mineralization of all existing types of metasomatic formations. 29 tellurium minerals, including 16 tellurides, 5 sulfotellurides and 8 tellurates have been identified. Tellurium minerals of two systems predominate: Au-Bi-Te and Au-Ag-Te. Gold is not only in an invisible state in sulfides and in the form of native gold of different fineness, but also is part of a variety of compounds: montbrayite, calaverite, sylvanite, krennerite and petzite. In the gold deposits of the Aldan Shield, three mineral types are distinguished: Au-Ag-Te, Au-Bi-Te, and also a mixed one, which combines the mineralization of both systems. The decrease in the fineness of native gold is consistent with the sequence and temperatures of the formation of Te minerals and associated mineral paragenesis from the epithermal–mesothermal Au-Bi-Te to epithermal Au-Ag-Te. The conducted studies allowed us to determine a wide variety of mineral species and significantly expand the area of distribution of Au-Te mineralization that indicates its large-scale regional occurrence in the Aldan Shield. Full article
Show Figures

Figure 1

17 pages, 4122 KB  
Review
Mineral Transformations in Gold–(Silver) Tellurides in the Presence of Fluids: Nature and Experiment
by Jing Zhao and Allan Pring
Minerals 2019, 9(3), 167; https://doi.org/10.3390/min9030167 - 9 Mar 2019
Cited by 19 | Viewed by 10360
Abstract
Gold–(silver) telluride minerals constitute a major part of the gold endowment at a number of important deposits across the globe. A brief overview of the chemistry and structure of the main gold and silver telluride minerals is presented, focusing on the relationships between [...] Read more.
Gold–(silver) telluride minerals constitute a major part of the gold endowment at a number of important deposits across the globe. A brief overview of the chemistry and structure of the main gold and silver telluride minerals is presented, focusing on the relationships between calaverite, krennerite, and sylvanite, which have overlapping compositions. These three minerals are replaced by gold–silver alloys when subjected to the actions of hydrothermal fluids under mild hydrothermal conditions (≤220 °C). An overview of the product textures, reaction mechanisms, and kinetics of the oxidative leaching of tellurium from gold–(silver) tellurides is presented. For calaverite and krennerite, the replacement reactions are relatively simple interface-coupled dissolution-reprecipitation reactions. In these reactions, the telluride minerals dissolve at the reaction interface and gold immediately precipitates and grows as gold filaments; the tellurium is oxidized to Te(IV) and is lost to the bulk solution. The replacement of sylvanite is more complex and involves two competing pathways leading to either a gold spongy alloy or a mixture of calaverite, hessite, and petzite. This work highlights the substantial progress that has been made in recent years towards understanding the mineralization processes of natural gold–(silver) telluride minerals and mustard gold under hydrothermal conditions. The results of these studies have potential implications for the industrial treatment of gold-bearing telluride minerals. Full article
(This article belongs to the Special Issue Mineral Surface Reactions at the Nanoscale)
Show Figures

Figure 1

26 pages, 7152 KB  
Article
In–Situ LA-ICP-MS Trace Elements Analysis of Pyrite and the Physicochemical Conditions of Telluride Formation at the Baiyun Gold Deposit, North East China: Implications for Gold Distribution and Deposition
by Chang-Ping Li, Jun-Feng Shen, Sheng-Rong Li, Yuan Liu and Fu-Xing Liu
Minerals 2019, 9(2), 129; https://doi.org/10.3390/min9020129 - 22 Feb 2019
Cited by 41 | Viewed by 4505
Abstract
The Baiyun gold deposit is located in the northeastern North China Craton (NCC) where major ore types include Si-K altered rock and auriferous quartz veins. Sulfide minerals are dominated by pyrite, with minor amounts of chalcopyrite, sphalerite and galena. Combined petrological observations, backscattered [...] Read more.
The Baiyun gold deposit is located in the northeastern North China Craton (NCC) where major ore types include Si-K altered rock and auriferous quartz veins. Sulfide minerals are dominated by pyrite, with minor amounts of chalcopyrite, sphalerite and galena. Combined petrological observations, backscattered electron image (BSE) and laser ablation analysis (LA-ICP-MS) have been conducted on pyrite to reveal its textural and compositional evolution. Three generations of pyrite can be identified—Py1, Py2 and Py3 from early to late. The coarse-grained, porous and euhedral to subhedral Py1 (mostly 200–500 μm) from the K-feldspar altered zone is the earliest. Compositionally, they are enriched in As (up to 11541 ppm) but depleted in Au (generally less than 10 ppm). The signal intensity of Au is higher than background values by two orders of magnitude and shows smooth spectra, indicating that invisible gold exists as homogeneously or nanoscale-inclusions in Py1. Anhedral to subhedral Py2 grains (generally ranging 500–1500 μm) coexist with other sulfides such as chalcopyrite, sphalerite and galena in the early silicification stage (gray quartz). They have many visible gold grains and contain little amounts of invisible Au. Notably, visible gold has an affinity with micro-fractures formed due to late deformation, implying that native gold may have resulted from mobilization of preexisting invisible gold in the structure of Py2 grains. Subsequently Py3 occurs as very fine-grained disseminations of euhedral crystals (0.05–1 mm) in late silicification stage (milky quartz) and coexists with tellurides (e.g. petzite, calaverite and hessite). They contain the highest level of invisible gold with positive correlations between Au-Ag-Te. In the depth profiles of Py3, the smooth Au spectra mirror those of Te with high intensities, revealing that gold occurred as homogeneously/nanoscale-inclusions and submicroscopic Au-bearing telluride inclusions in pyrite grains. The high Te and low As in Py3, combined with high Au content, imply that invisible gold can be efficiently scavenged by Te. Abundant tellurides (petzite, calaverite and hessite) have been recognized in auriferous quartz veins. Lack of symbiosis sulfides with the tellurium assemblages indicates crystallization under low fS2 and/or high fTe2 conditions and coincides with the result of thermodynamic calculations. High and markedly variable Co (from 0.24 to 2763 ppm, average 151.9 ppm) and Ni (from 1.16 to 4102 ppm, average 333.1 ppm) values suggest that ore-forming fluid may originate from a magmatically-derived hydrothermal system. Combined with previous geochronological data, the textural and compositional evolution of pyrite indicates that the Baiyun gold deposit has experienced a prolonged history of mineralization. In the late Triassic (220,230 Ma), the magmatic hydrothermal fluids, which had affinity with the post-collisional extensional tectonics on the NCC northern margin, caused initial gold enrichment. Then, as a result of deformation or the addition of new hydrothermal fluids, visible gold-rich Py2 was formed. The upwelling of mantle–derived magma brought in a lot of Te-rich ore-forming hydrothermal fluids during the peak of the destruction of the NCC (~120 Ma). Amount of visible/invisible gold and Au-Ag-Te mineral assemblages precipitated from these mineralized fluids when the physical and chemical conditions changed. Full article
Show Figures

Figure 1

12 pages, 1834 KB  
Technical Note
Critical Metal Particles in Copper Sulfides from the Supergiant Río Blanco Porphyry Cu–Mo Deposit, Chile
by Jorge Crespo, Martin Reich, Fernando Barra, Juan José Verdugo and Claudio Martínez
Minerals 2018, 8(11), 519; https://doi.org/10.3390/min8110519 - 9 Nov 2018
Cited by 29 | Viewed by 6489
Abstract
Porphyry copper–molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject [...] Read more.
Porphyry copper–molybdenum deposits (PCDs) are the world’s most important source of copper, molybdenum and rhenium. Previous studies have reported that some PCDs can have sub-economic to economic grades of critical metals, i.e., those elements that are both essential for modern societies and subject to the risk of supply restriction (e.g., platinum group elements (PGE), rare earth elements (REE), In, Co, Te, Ge, Ga, among others). Even though some studies have reported measured concentrations of Pd and Pt in PCDs, their occurrence and mineralogical forms remain poorly constrained. Furthermore, these reconnaissance studies have focused predominantly on porphyry Cu–Au deposits, but very limited information is available for porphyry Cu–Mo systems. In this contribution, we report the occurrence of critical metal (Pd, Pt, Au, Ag, and Te) inclusions in copper sulfides from one of the largest PCDs in the world, the supergiant Río Blanco-Los Bronces deposit in central Chile. Field emission scanning electron microscope (FESEM) observations of chalcopyrite and bornite from the potassic alteration zone reveal the presence of micro- to nano-sized particles (<1–10 μm) containing noble metals, most notably Pd, Au, and Ag. The mineralogical data show that these inclusions are mostly tellurides, such as merenskyite ((Pd, Pt) (Bi, Te)2), Pd-rich hessite (Ag2Te), sylvanite ((Ag,Au)Te2) and petzite (Ag3AuTe2). The data point to Pd (and probably Pt) partitioning in copper sulfides during the high-temperature potassic alteration stage, opening new avenues of research aimed at investigating not only the mobility of PGE during mineralization and partitioning into sulfides, but also at exploring the occurrence of critical metals in porphyry Cu–Mo deposits. Full article
(This article belongs to the Special Issue Minerals Down to the Nanoscale: A Glimpse at Ore-Forming Processes)
Show Figures

Figure 1

Back to TopTop