Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = permeable interlocking concrete pavers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 17246 KiB  
Article
Permeable Interlocking Concrete Pavements: A Sustainable Solution for Urban and Industrial Water Management
by Laura Moretti, Luigi Altobelli, Giuseppe Cantisani and Giulia Del Serrone
Water 2025, 17(6), 829; https://doi.org/10.3390/w17060829 - 13 Mar 2025
Cited by 2 | Viewed by 1431
Abstract
Anthropization has significantly altered the natural water cycle by increasing impermeable surfaces, reducing evapotranspiration, and limiting groundwater recharge. Permeable Interlocking Concrete Pavements (PICPs) have emerged as a permeable pavement, effectively reducing runoff and improving water quality. This study investigates the base depth for [...] Read more.
Anthropization has significantly altered the natural water cycle by increasing impermeable surfaces, reducing evapotranspiration, and limiting groundwater recharge. Permeable Interlocking Concrete Pavements (PICPs) have emerged as a permeable pavement, effectively reducing runoff and improving water quality. This study investigates the base depth for PICPs regarding the strength and permeability. This study examines the hydraulic and structural performance of Permeable Interlocking Concrete Pavements (PICPs) for urban and industrial applications by evaluating the effects of subgrade conditions, traffic loads, and material properties. Using DesignPave and PermPave software, the optimal base layer thickness is determined to prevent rutting while ensuring effective stormwater infiltration beneath 110 mm-thick concrete pavers placed on a 30 mm-thick bedding course. The required base thickness for urban pavements ranges from 100 mm to 395 mm, whereas for industrial pavements, it varies between 580 mm and 1760 mm, depending on subgrade permeability, traffic volume, and loading conditions. The findings demonstrate that PICPs serve as a viable and environmentally sustainable alternative to conventional impermeable pavements, offering significant hydrological and ecological benefits. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 3722 KiB  
Article
A Prediction Model to Cost-Optimize Clean-Out of Permeable Interlocking Concrete Pavers
by Sachet Siwakoti, Andrew Binns, Andrea Bradford, Hossein Bonakdari and Bahram Gharabaghi
Water 2023, 15(11), 2135; https://doi.org/10.3390/w15112135 - 4 Jun 2023
Viewed by 2727
Abstract
Permeable Interlocking Concrete Paver (PICP) systems provide onsite stormwater management by detaining runoff and removing contaminants. However, a major problem with PICPs is the significant maintenance cost associated with their clean-out to restore the original functionality, which discourages landowners and municipalities from adopting [...] Read more.
Permeable Interlocking Concrete Paver (PICP) systems provide onsite stormwater management by detaining runoff and removing contaminants. However, a major problem with PICPs is the significant maintenance cost associated with their clean-out to restore the original functionality, which discourages landowners and municipalities from adopting the systems. A combination of laboratory experiments and machine-learning techniques are applied to address this challenge. A total of 376 laboratory experiments were conducted to investigate four independent variables (cleaning equipment speed over the pavement, air speed in the cleaning jets, top opening width of the cupule, and filter media gradation) that affect the cleaning of PICPs. The Buckingham Pi-Theorem was used to express the four main input variables in three dimension-less parameters. This current investigation provides a novel understanding of variables affecting the sustainable and economically feasible maintenance of PICPs. A new model is derived to more accurately predict the percentage of mass removal from PICPs during clean-out using a machine-learning technique. The Group Method of Data Handling (GMDH) model exhibits high performance, with a correlation coefficient (R2) of 0.87 for both the training and testing stages. The established simple explicit equation can be applied to optimize the maintenance costs for industrial applications of Regenerative Air Street Sweepers for sustainable and cost-effective PICP maintenance. Pavements with larger surface areas are found to have lower maintenance costs ($/m2/year) compared to the ones with smaller surface areas. This study estimates $0.32/m2/year and $0.50/m2/year to maintain pavements with larger (5000 m2) and smaller (1000 m2) surface areas, respectively. Full article
(This article belongs to the Special Issue Water Quality for Sustainable Development)
Show Figures

Figure 1

13 pages, 3216 KiB  
Article
A Sustainable Approach to Cleaning Porous and Permeable Pavements
by Qiuxia Yang, Ziqi Gao and Simon Beecham
Sustainability 2022, 14(21), 14583; https://doi.org/10.3390/su142114583 - 6 Nov 2022
Cited by 8 | Viewed by 2627
Abstract
The clogging of porous and permeable pavements is a problem that faces many municipalities and, because of the high associated costs, it has become a major impediment to the uptake of such water sensitive and sustainable technologies. This study has experimentally examined the [...] Read more.
The clogging of porous and permeable pavements is a problem that faces many municipalities and, because of the high associated costs, it has become a major impediment to the uptake of such water sensitive and sustainable technologies. This study has experimentally examined the performance of seven cleaning methods that were shown to be able to restore higher infiltration rates in partially clogged pavement systems. It was found that high-pressure water injection was the most effective cleaning method, particularly when combined with vacuuming. The highest restoration of infiltration rate was achieved using high-pressure water injection combined with the highest-pressure vacuum, which produced an average increase in infiltration rate of 20.9%. Cleaning a porous pavement involves removing the sediment that has caused clogging in the first place. In normal circumstances, this collected sediment would have to be dried before disposal to a landfill, which is another costly process. Through a sustainability analysis, the potential reuse of collected sediment was investigated and it was found that the resulting economic and environmental benefit-cost ratios were high. Full article
(This article belongs to the Special Issue Recycling Materials for the Circular Economy)
Show Figures

Figure 1

13 pages, 2271 KiB  
Article
Subsurface Temperature Properties for Three Types of Permeable Pavements in Cold Weather Climates and Implications for Deicer Reduction
by Mari E. Danz, Nicolas H. Buer and William R. Selbig
Water 2021, 13(24), 3513; https://doi.org/10.3390/w13243513 - 9 Dec 2021
Cited by 3 | Viewed by 3964
Abstract
Permeable pavement has been shown to be an effective urban stormwater management tool although much is still unknown about freeze-thaw responses and the implications for deicer reduction in cold weather climates. Temperature data from the subsurface of three permeable pavement types—interlocking concrete pavers [...] Read more.
Permeable pavement has been shown to be an effective urban stormwater management tool although much is still unknown about freeze-thaw responses and the implications for deicer reduction in cold weather climates. Temperature data from the subsurface of three permeable pavement types—interlocking concrete pavers (PICP), concrete (PC), and asphalt (PA)—were collected over a seven-year period and evaluated. Temperature profiles of all pavements indicate favorable conditions to allow infiltration during winter rain and melting events, with subsurface temperatures remaining above freezing even when air temperatures were below freezing. Data show that PICP surpassed PC and PA with fewer days below freezing, higher temperatures on melt days, slower freeze and faster thaw times, and less penetration of freezing temperatures at depth. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

19 pages, 6689 KiB  
Article
The Link between Permeable Interlocking Concrete Pavement (PICP) Design and Nutrient Removal
by Bodi Kimberly Liu and Neil P. Armitage
Water 2020, 12(6), 1714; https://doi.org/10.3390/w12061714 - 16 Jun 2020
Cited by 11 | Viewed by 4715
Abstract
The construction of ‘hard’ impermeable surfaces in urban areas results in the increased flow of stormwater runoff and its associated pollutants into downstream receiving waters. Permeable Pavement Systems (PPS) can help mitigate this. The most common type of PPS in South Africa is [...] Read more.
The construction of ‘hard’ impermeable surfaces in urban areas results in the increased flow of stormwater runoff and its associated pollutants into downstream receiving waters. Permeable Pavement Systems (PPS) can help mitigate this. The most common type of PPS in South Africa is permeable interlocking concrete pavement (PICP), but there is currently insufficient information available on the relative treatment performance of different PICP designs. This paper describes an investigation into the performance of ten different PICP systems constructed in the Civil Engineering Laboratory at the University of Cape Town for the treatment of various nutrients commonly found in stormwater runoff. It was found that removal efficiencies ranged from 27.5% to 78.7% for ammonia-nitrogen and from −37% to 11% for orthophosphate-phosphorus; whilst 4% to 20.2% more nitrite-nitrogen and 160% to 2580% more nitrate-nitrogen were simultaneously added. The presence of a geotextile resulted in higher ammonia-nitrogen removal efficiencies but also higher nitrate-nitrogen addition than those cells without—with small differences between various types. The cell with a permanently wet ‘sump’ had the highest nitrate-nitrogen addition of all. Lower pH results in higher nitrate-nitrogen concentrations, whilst the electrical conductivity strongly depends on the length of the periods between rainfall ‘seasons’, decreasing rapidly during wet periods but increasing during dry periods. Paver type also had a minor impact on nutrient removal. Full article
Show Figures

Figure 1

17 pages, 10236 KiB  
Article
Assessment of Restorative Maintenance Practices on the Infiltration Capacity of Permeable Pavement
by Mari E. Danz, William R. Selbig and Nicolas H. Buer
Water 2020, 12(6), 1563; https://doi.org/10.3390/w12061563 - 30 May 2020
Cited by 20 | Viewed by 5282
Abstract
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat [...] Read more.
Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the useful life and benefits of the system. Maintenance practices used to restore the infiltration capacity of permeable pavement were evaluated on three surfaces: Permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each of the three test plots received a similar volume of runoff and sediment load from an adjacent, impervious asphalt parking lot. Six different maintenance practices were evaluated over a four-year period: Hand-held pressure washer and vacuum, leaf blower and push broom, vacuum-assisted street cleaner, manual disturbance of PICP aggregate, pressure washing and vacuuming, and compressed air and vacuuming. Of the six practices tested, five were completed on PICP, four on PC, and two on PA. Nearly all forms of maintenance resulted in increased average surface infiltration rates. Increases ranged from 94% to 1703% for PICP, 5% to 169% for PC, and 16% to 40% for PA. Disruption of the aggregate between the joints of PICP, whether by simple hand tools or sophisticated machinery, resulted in significant (p ≤ 0.05) gains in infiltration capacity. Sediment penetrated into the solid matrix of the PC and PA, making maintenance practices using a high-pressure wash followed by high-suction vacuum the most effective for these permeable pavement types. In all instances, when the same maintenance practice was done on multiple surfaces, PICP showed the greatest recovery in infiltration capacity. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 4536 KiB  
Article
Improving Restorative Maintenance Practices for Mature Permeable Interlocking Concrete Pavements
by Kirti Sehgal, Jennifer Drake, Tim Van Seters and William Kyle Vander Linden
Water 2018, 10(11), 1588; https://doi.org/10.3390/w10111588 - 6 Nov 2018
Cited by 20 | Viewed by 5578
Abstract
Permeable Interlocking Concrete Pavements (PICP) are a Low Impact Development (LID) technology that reduce the total volume of stormwater discharge and peak flows from urban hardscapes. Over time, particulates accumulate in the PICP joints, decreasing the pavement’s surface infiltration capacity and negatively affecting [...] Read more.
Permeable Interlocking Concrete Pavements (PICP) are a Low Impact Development (LID) technology that reduce the total volume of stormwater discharge and peak flows from urban hardscapes. Over time, particulates accumulate in the PICP joints, decreasing the pavement’s surface infiltration capacity and negatively affecting its overall functionality. Maintenance with two surface treatment technologies, a hand-held power brush and pressure washer-used in combination with vacuum street sweepers were compared to maintenance with vacuum street sweepers alone at four PICP parking lots. Both surface treatments along with vacuum street sweeping significantly improved the restoration of infiltration capacity for the young (i.e., <4 years) PICP section. Pressure washing in combination with vacuum sweeping was effective for PICP sections with larger (13–14 mm) joint openings. Power brushing, however, provided inconsistent results between the PICP sections. The effect of surface treatments was not significant for older (i.e., >6 years) installations with small (3–4 mm) joint openings. Though surface treatment resulted in significant improvement with a pressure washer and vacuum street sweeper combination, usage intensity of the parking lot was deemed as an important factor in restoring infiltration capacity. These findings re-emphasize that regular maintenance is essential to ensure long-term hydraulic functionality of PICP. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

12 pages, 1676 KiB  
Article
Flood Mitigation by Permeable Pavements in Chinese Sponge City Construction
by Maochuan Hu, Xingqi Zhang, Yim Ling Siu, Yu Li, Kenji Tanaka, Hong Yang and Youpeng Xu
Water 2018, 10(2), 172; https://doi.org/10.3390/w10020172 - 9 Feb 2018
Cited by 99 | Viewed by 13748
Abstract
It is important to evaluate the effectiveness of permeable pavements on flood mitigation at different spatial scales for their effective application, for example, sponge city construction in China. This study evaluated the effectiveness of three types of permeable pavements (i.e., permeable asphalts (PA), [...] Read more.
It is important to evaluate the effectiveness of permeable pavements on flood mitigation at different spatial scales for their effective application, for example, sponge city construction in China. This study evaluated the effectiveness of three types of permeable pavements (i.e., permeable asphalts (PA), permeable concretes (PC), and permeable interlocking concrete pavers (PICP)) on flood mitigation at a community scale in China using a hydrological model. In addition, the effects of clogging and initial water content in permeable pavements on flood mitigation performance were assessed. The results indicated that in 12 scenarios, permeable pavements reduced total surface runoff by 1–40% and peak flow by 7–43%, respectively. The hydrological performance of permeable pavements was limited by clogging and initial water content. Clogging resulted in the effectiveness on total surface runoff reduction and peak flow reduction being decreased by 62–92% and 37–65%, respectively. By increasing initial water content at the beginning of the simulation, the effectiveness of total runoff reduction and peak flow reduction decreased by 57–85% and 37–67%, respectively. Overall, among the three types of permeable pavements, PC without clogging had the best performance in terms of flood mitigation, and PICP was the least prone to being clogged. Our findings demonstrate that both the type and the maintenance of permeable pavements have significant effects on their performance in the flood mitigation. Full article
Show Figures

Figure 1

11 pages, 2517 KiB  
Article
Using Drainage Slots in Permeable Paving Blocks to Delay the Effects of Clogging: Proof of Concept Study
by Terry Lucke
Water 2014, 6(9), 2660-2670; https://doi.org/10.3390/w6092660 - 3 Sep 2014
Cited by 16 | Viewed by 11295
Abstract
Permeable interlocking concrete pavements (PICP) are specifically designed to remove sediment and other pollutants from stormwater runoff. Over time, this can lead to clogging of the PICP system. Previous research has shown that much of the clogging occurs on the bedding aggregate directly [...] Read more.
Permeable interlocking concrete pavements (PICP) are specifically designed to remove sediment and other pollutants from stormwater runoff. Over time, this can lead to clogging of the PICP system. Previous research has shown that much of the clogging occurs on the bedding aggregate directly below the paving joints, while the remainder of the aggregate is unaffected. This paper describes a proof of concept study to delay the effects of clogging by making more efficient use of the bedding aggregate used in PICP systems. Lateral drainage slots were cut into the underside of PICP blocks to allow sediment-laden stormwater to access, and be filtered by, a greater surface area of bedding aggregate. Eight different slot designs were trialed in the study to determine which of the slot designs made the most efficient use of the bedding aggregate to filter the sediment from the stormwater. The study results demonstrated that the eight drainage slot designs deposited between 25% and 366% more sediment (by weight) beneath the pavers than the control pavement. The results of the study suggest that PICP systems with drainage slots cast into their bases would take much longer to clog than unmodified pavers, thereby proving the concept of this study. Full article
Show Figures

Figure 1

14 pages, 1181 KiB  
Article
Comparing Two Methods of Determining Infiltration Rates of Permeable Interlocking Concrete Pavers
by Peter W.B.Nichols, Terry Lucke and Carsten Dierkes
Water 2014, 6(8), 2353-2366; https://doi.org/10.3390/w6082353 - 8 Aug 2014
Cited by 28 | Viewed by 10572
Abstract
Adequate infiltration through Permeable Interlocking Concrete Pavements (PICPs) is critical to their hydraulic performance. Detected by monitoring infiltration performance, reduced infiltration rates can indicate that maintenance is required. Measurement of infiltration rates has previously been problematic on PICPs because of a lack of [...] Read more.
Adequate infiltration through Permeable Interlocking Concrete Pavements (PICPs) is critical to their hydraulic performance. Detected by monitoring infiltration performance, reduced infiltration rates can indicate that maintenance is required. Measurement of infiltration rates has previously been problematic on PICPs because of a lack of accepted standard methodologies and the practical difficulties in modifying existing testing methodologies. On large sites, standard methodologies necessitate multiple measurements to achieve accuracy. Standard methods also contend with practical issues such as sealing the rings to the surface to prevent lateral water flow. This study examined the performance of two PICP surface infiltration rate measurement methods: a modified double-ring infiltrometer (DRIT), and a specially designed rainfall simulation infiltrometer (RSIT). A positive correlation (R2 = 0.85) of results was found between the two, demonstrating that the RSIT was comparable to the DRIT. The modified DRIT produced surface infiltration results approximately 60% higher than the RSIT results. The RSIT provided lower variation between tests, requiring fewer measurements in large sites whilst still maintaining accuracy, thereby improving testing efficiency. The new RSIT method also eliminates some of the practical difficulties with existing methodologies such as unrealistic pressure heads artificially increasing infiltration rates, and the use of sealant under test measurement infiltration rings. Full article
Show Figures

Figure 1

Back to TopTop