Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = permanent magnet linear generator (PMLG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9412 KiB  
Article
Research on Decoupling Duty Cycle Optimization Control Method of a Multiport Converter for Dual-Port Direct Drive Wave Power Generation System
by Lei Huang, Shixiang Wang, Baoyi Pan, Haitao Liu, Jiyu Zhang and Shiquan Wu
J. Mar. Sci. Eng. 2024, 12(10), 1811; https://doi.org/10.3390/jmse12101811 - 11 Oct 2024
Viewed by 1293
Abstract
Dual-port direct drive wave energy power generation systems (DP-DDWEPGS) have received widespread attention due to their smooth and zero-free output power, compared to single-port direct drive wave energy power generation systems (SP-DDWEPGS) which have the disadvantage of large out-put power fluctuations. To further [...] Read more.
Dual-port direct drive wave energy power generation systems (DP-DDWEPGS) have received widespread attention due to their smooth and zero-free output power, compared to single-port direct drive wave energy power generation systems (SP-DDWEPGS) which have the disadvantage of large out-put power fluctuations. To further enhance the performance of the DP-DDWEPGS, optimal power capture control is proposed to achieve maximum power point tracking. Meanwhile, a multiport converter is applied to the DP-DDWEPGS to solve the problem caused by an excessive number of switching devices in the overall system converter. The multiport converter fulfills all the functional requirements of the DP-DDWEPGS while reducing the number of switching devices. However, switch multiplexing of the multiport converter also introduces coupling relationships between each port and the wave force exhibits time-varying characteristics, necessitating advanced control methods with superior fast-tracking capability. Therefore, in this paper, a decoupling duty cycle optimization model predictive control for DP-DDWEPGS is proposed. Based on the characteristics of switching multiplexing, NSC finite control set model predictive control (FCS-MPC) decouples the current prediction and the cost function, reduces the number of candidate voltage vectors in each operation, and shortens the operation time by 70%. To address the issues of high ripple value and increased error due to decoupling in FCS-MPC, duty cycle optimization control is added, greatly reducing the fluctuations in electromagnetic force and power of the permanent magnet linear generator (PMLG). Based on the established simulation model, the feasibility and superiority of the multiport converter and decoupling duty cycle optimization model predictive current control method are verified. Full article
(This article belongs to the Special Issue Advances in Offshore Wind and Wave Energies—2nd Edition)
Show Figures

Figure 1

15 pages, 5789 KiB  
Article
Design and Analysis of a High Power Density Permanent Magnet Linear Generator for Direct-Drive Wave Power Generation
by Xinyu Fan, Changkun Wang, Zhibing Zhu and Hao Meng
Actuators 2022, 11(11), 327; https://doi.org/10.3390/act11110327 - 10 Nov 2022
Cited by 4 | Viewed by 3386
Abstract
Wave energy is a new type of clean energy. Aiming at a low wave energy density and small wave height in China’s coastal areas, a tubular permanent magnet linear generator (PMLG) with a short stroke, small volume, and high power density is designed [...] Read more.
Wave energy is a new type of clean energy. Aiming at a low wave energy density and small wave height in China’s coastal areas, a tubular permanent magnet linear generator (PMLG) with a short stroke, small volume, and high power density is designed for wave power generation. Firstly, the generator’s electromagnetic parameters are analyzed by the analytical method, and the magnetic circuit topology and basic structure of the generator are analyzed by the equivalent magnetic circuit method (EMCM). Then, the finite element method (FEM) is used to analyze the influence law of the generator’s basic structural parameters on the output electromotive force (EMF) and its sinusoidal characteristics. The multi-factor and multi-level analysis is carried out based on the orthogonal test method to study the size parameters of the above analysis, and the optimal structure parameter combination for the generator is obtained. Finally, the prototype is trial-produced and tested for steady-state and transient performance to confirm the accuracy of the simulation calculations, and the output performance under no-load and load conditions is examined. The results show that both the optimized prototype’s power density and the output EMF’s sinusoidal properties have been improved under the proposed scheme. Full article
(This article belongs to the Special Issue Linear Motors and Direct-Drive Technology)
Show Figures

Figure 1

17 pages, 5753 KiB  
Article
A Novel Back-Stepping Sliding Mode Control Strategy of Direct-Drive Wave Energy Converters
by Shiguang Weng and Jianyong Wang
Processes 2022, 10(7), 1385; https://doi.org/10.3390/pr10071385 - 15 Jul 2022
Cited by 4 | Viewed by 2049
Abstract
In this paper, a maximum energy extraction and tracking strategy for direct-drive wave energy converters (DDWECs) based on back-stepping and sliding mode control strategies are developed. It is well known that the existence of the chattering phenomenon degrades the control performance of conventional [...] Read more.
In this paper, a maximum energy extraction and tracking strategy for direct-drive wave energy converters (DDWECs) based on back-stepping and sliding mode control strategies are developed. It is well known that the existence of the chattering phenomenon degrades the control performance of conventional sliding mode control (SMC). To mitigate the effects of flutter and external disturbances, a back-stepping sliding model control (BSMC) scheme is proposed. The main features of the proposed methodology are as follows: (1) By using the proposed BSMC, the maximum wave energy of DDWEC can be captured. Moreover, the speed tracking of the permanent magnet linear generator (PMLG), which is a subsystem of DDWEC, tracked in real-time. (2) By virtue of the proposed BSMC, the closed-loop control system is asymptotically stable in finite time. (3) With the superior controllability of the BSMC, it can handle disturbances that the SMC cannot handle. Comprehensive and comparative studies are proved to be superior to the most advanced method Full article
(This article belongs to the Topic Marine Renewable Energy)
Show Figures

Figure 1

21 pages, 13416 KiB  
Article
An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion
by Domenico Curto, Vincenzo Franzitta, Andrea Guercio, Rosario Miceli, Claudio Nevoloso, Francesco Maria Raimondi and Marco Trapanese
Energies 2022, 15(7), 2387; https://doi.org/10.3390/en15072387 - 24 Mar 2022
Cited by 21 | Viewed by 2813
Abstract
Permanent Magnet Linear Generators (PMLGs) are currently being studied for sea wave energy harvesting. Typically, a PMLG consists of an iron-made armature and a moving translator. The permanent magnets adoption produces parasitic effects, such as cogging force, and the machine weight increment. A [...] Read more.
Permanent Magnet Linear Generators (PMLGs) are currently being studied for sea wave energy harvesting. Typically, a PMLG consists of an iron-made armature and a moving translator. The permanent magnets adoption produces parasitic effects, such as cogging force, and the machine weight increment. A solution could be the adoption of an ironless configuration, accepting a power density reduction. This paper investigates the use of ironless PMLGs in sea wave energy conversion systems by an experimental comparative analysis between an iron PMLG prototype and an ironless PMLG prototype, which share the same geometry. The main electrical and mechanical parameters (resistance, mass, and magnetic fields) were preliminarily measured. Subsequently, open-circuit and load tests were carried out to compare the induced voltages, the energy transferred to a resistive load, efficiency and the load average power. The reported comparison shows that iron PMLG performances are significantly superior to the ironless ones during the open-circuit tests, as expected. However, the analysis carried out through the load tests shows that the cogging force significantly limits the energy production, obtaining similar values in both machines. Therefore, the experimental tests justify the use of ironless machines in sea wave energy harvesting, where the maximization of energy production is a relevant target. Full article
(This article belongs to the Special Issue Permanent Magnet Machines for Wave Energy Converters)
Show Figures

Figure 1

21 pages, 16835 KiB  
Article
Damping Studies on PMLG-Based Wave Energy Converter under Oceanic Wave Climates
by Yue Hong, Irina Temiz, Jianfei Pan, Mikael Eriksson and Cecilia Boström
Energies 2021, 14(4), 920; https://doi.org/10.3390/en14040920 - 9 Feb 2021
Cited by 10 | Viewed by 2159
Abstract
Wave energy converters (WECs), which are designed to harvest ocean wave energy, have recently been improved by the installation of numerous conversion mechanisms; however, it is still difficult to find an appropriate method that can compromise between strong environmental impact and robust performance [...] Read more.
Wave energy converters (WECs), which are designed to harvest ocean wave energy, have recently been improved by the installation of numerous conversion mechanisms; however, it is still difficult to find an appropriate method that can compromise between strong environmental impact and robust performance by transforming irregular wave energy into stable electrical power. To solve this problem, an investigation into the impact of varied wave conditions on the dynamics of WECs and to determine an optimal factor for WECs to comply with long-term impacts was performed. In this work, we researched the performance of WECs influenced by wave climates. We used a permanent magnet linear generator (PMLG)-based WEC that was invented at Uppsala University. The damping effect was first studied with a PMLG-type WEC. Then, a group of sea states was selected to investigate their impact on the power production of the WEC. Two research sites were chosen to investigate the WEC’s annual energy production as well as a study on the optimal damping coefficient impact. In addition, we compared the WEC’s energy production between optimal damping and constant damping under a full range of sea states at both sites. Our results show that there is an optimal damping coefficient that can achieve the WEC’s maximum power output. For the chosen research sites, only a few optimal damping coefficients were able to contribute over 90% of the WEC’s annual energy production. In light of the comparison between optimal and constant damping, we conclude that, for specific regions, constant damping might be a better choice for WECs to optimize long-term energy production. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

22 pages, 6802 KiB  
Article
Numerical Investigation of a Tuned Heave Plate Energy-Harvesting System of a Semi-Submersible Platform
by Kun Liu, Haizhi Liang and Jinping Ou
Energies 2016, 9(2), 82; https://doi.org/10.3390/en9020082 - 28 Jan 2016
Cited by 17 | Viewed by 7953
Abstract
A novel tuned heave plate energy-harvesting system (THPEH) is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD) and is composed of spring supports, a [...] Read more.
A novel tuned heave plate energy-harvesting system (THPEH) is presented for the motion suppressing and energy harvesting of a semi-submersible platform. This THPEH system is designed based on the principle of a tuned mass damper (TMD) and is composed of spring supports, a power take-off system (PTO) and four movable heave plates. The permanent magnet linear generators (PMLG) are used as the PTO system in this design. A semi-submersible platform operating in the South China Sea is selected as the research subject for investigating the effects of the THPEH system on motion reduction and harvesting energy through numerical simulations. The numerical model of the platform and the THPEH system, which was established based on hydrodynamic analysis, is modified and validated by the results of the flume test of a 1:70 scale model. The effects of the parameters, including the size, the frequency ratio and the damping ratio of the THPEH system, are systematically investigated. The results show that this THPEH system, with proper parameters, could significantly reduce the motions of the semi-submersible platform and generate considerable power under different wave conditions. Full article
(This article belongs to the Special Issue Waste Energy Harvesting)
Show Figures

Figure 1

Back to TopTop