Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = perinaphthenone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1925 KiB  
Article
Concentration-Dependent Photoproduction of Singlet Oxygen by Common Photosensitizers
by Grzegorz Szewczyk and Krystian Mokrzyński
Molecules 2025, 30(5), 1130; https://doi.org/10.3390/molecules30051130 - 1 Mar 2025
Cited by 3 | Viewed by 1061
Abstract
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks [...] Read more.
Singlet oxygen quantum yield (ΦΔ) is a critical parameter in photodynamic studies, particularly for evaluating photosensitizers’ efficiency in diverse applications such as photodynamic therapy and environmental remediation. Standard photosensitizers, including Rose Bengal, Methylene Blue, and porphyrins, are widely employed as benchmarks for determining ΦΔ. However, accurate determination of ΦΔ relies not only on the intrinsic properties of these photosensitizers but also on their experimental conditions, such as concentration. This study investigated the influence of photosensitizer concentration on singlet oxygen quantum yield using several standard photosensitizers. Our findings revealed a significant decrease in ΦΔ with increasing photosensitizer concentrations across all tested compounds. This decline was attributed to self-quenching effects and molecular aggregation, which reduced the efficiency of energy transfer from the excited triplet state of the photosensitizer to molecular oxygen. The results emphasize the importance of optimizing photosensitizer concentration to ensure reliable ΦΔ measurements and avoid underestimations. This work underscores the need to consider concentration-dependent effects in future studies to ensure accurate and reproducible outcomes. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

53 pages, 15885 KiB  
Review
Advances in Fungal Phenaloenones—Natural Metabolites with Great Promise: Biosynthesis, Bioactivities, and an In Silico Evaluation of Their Potential as Human Glucose Transporter 1 Inhibitors
by Sabrin R. M. Ibrahim, Abdelsattar M. Omar, Yosra A. Muhammad, Ali A. Alqarni, Abdullah M. Alshehri, Shaimaa G. A. Mohamed, Hossam M. Abdallah, Mahmoud A. Elfaky, Gamal A. Mohamed and Jianbo Xiao
Molecules 2022, 27(20), 6797; https://doi.org/10.3390/molecules27206797 - 11 Oct 2022
Cited by 10 | Viewed by 3914
Abstract
Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase [...] Read more.
Phenaloenones are structurally unique aromatic polyketides that have been reported in both microbial and plant sources. They possess a hydroxy perinaphthenone three-fused-ring system and exhibit diverse bioactivities, such as cytotoxic, antimicrobial, antioxidant, and anti-HIV properties, and tyrosinase, α-glucosidase, lipase, AchE (acetylcholinesterase), indoleamine 2,3-dioxygenase 1, angiotensin-I-converting enzyme, and tyrosine phosphatase inhibition. Moreover, they have a rich nucleophilic nucleus that has inspired many chemists and biologists to synthesize more of these related derivatives. The current review provides an overview of the reported phenalenones with a fungal origin, including their structures, sources, biosynthesis, and bioactivities. Moreover, more than 135 metabolites have been listed, and 71 references have been cited. SuperPred, an artificial intelligence (AI) webserver, was used to predict the potential targets for selected phenalenones. Among these targets, we chose human glucose transporter 1 (hGLUT1) for an extensive in silico study, as it shows high probability and model accuracy. Among them, aspergillussanones C (60) and G (60) possessed the highest negative docking scores of −15.082 and −14.829 kcal/mol, respectively, compared to the native inhibitor of 5RE (score: −11.206 kcal/mol). The MD (molecular dynamics) simulation revealed their stability in complexes with GLUT1 at 100 ns. The virtual screening study results open up a new therapeutic approach by using some phenalenones as hGLUT1 inhibitors, which might be a potential target for cancer therapy. Full article
(This article belongs to the Special Issue Structural Analysis and Biological Evaluation of Compounds from Fungi)
Show Figures

Figure 1

17 pages, 1915 KiB  
Article
Preliminary Studies of Antimicrobial Activity of New Synthesized Hybrids of 2-Thiohydantoin and 2-Quinolone Derivatives Activated with Blue Light
by Agnieszka Kania, Waldemar Tejchman, Anna M. Pawlak, Krystian Mokrzyński, Bartosz Różanowski, Bogdan M. Musielak and Magdalena Greczek-Stachura
Molecules 2022, 27(3), 1069; https://doi.org/10.3390/molecules27031069 - 5 Feb 2022
Cited by 31 | Viewed by 3352
Abstract
Thiohydantoin and quinolone derivatives have attracted researchers’ attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid [...] Read more.
Thiohydantoin and quinolone derivatives have attracted researchers’ attention because of a broad spectrum of their medical applications. The aim of our research was to synthesize and analyze the antimicrobial properties of novel 2-thiohydantoin and 2-quinolone derivatives. For this purpose, two series of hybrid compounds were synthesized. Both series consisted of 2-thiohydantoin core and 2-quinolone derivative ring, however one of them was enriched with an acetic acid group at N3 atom in 2-thiohydantoin core. Antibacterial properties of these compounds were examined against bacteria: Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The antimicrobial assay was carried out using a serial dilution method to obtain the MIC. The influence of blue light irradiation on the tested compounds was investigated. The relative yield of singlet oxygen (1O2*, 1Δg) generation upon excitation with 420 nm was determined by a comparative method, employing perinaphthenone (PN) as a standard. Antimicrobial properties were also investigated after blue light irradiation of the suspensions of the hybrids and bacteria placed in microtitrate plates. Preliminary results confirmed that some of the hybrid compounds showed bacteriostatic activity to the reference Gram-positive bacterial strains and a few of them were bacteriostatic towards Gram-negative bacteria, as well. Blue light activation enhanced bacteriostatic effect of the tested compounds. Full article
Show Figures

Figure 1

7 pages, 33 KiB  
Article
Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs
by Winston Quiñones, Gustavo Escobar, Fernando Echeverri, Fernando Torres, Yoni Rosero, Victor Arango, Gloria Cardona and Adriana Gallego
Molecules 2000, 5(7), 974-980; https://doi.org/10.3390/50700974 - 26 Jul 2000
Cited by 45 | Viewed by 9858
Abstract
Several perinaphthenone/phenylphenalenone compounds were synthesized to establish a relationship between structure and antifungal activity against Mycosphaerella fijiensis. Substitutions on the unsaturated carbonyl system or addition of a phenyl group reduced antibiotic activity. Full article
Show Figures

Figure 1

Back to TopTop