Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = peel ply

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2214 KiB  
Article
Engineered Lysin-Derived Peptide as a Potent Antimicrobial for Acne Vulgaris
by Uri Sela, Ryan D. Heselpoth and Vincent A. Fischetti
Antibiotics 2025, 14(4), 344; https://doi.org/10.3390/antibiotics14040344 - 27 Mar 2025
Viewed by 1130
Abstract
Background/Objectives: Acne vulgaris is a skin disorder that affects millions worldwide, with Cutibacterium acnes playing a key role in its inflammation. Antibiotics reduce C. acnes and inflammation, but growing antibiotic resistance has limited their efficacy. Additionally, other common acne treatments with bactericidal [...] Read more.
Background/Objectives: Acne vulgaris is a skin disorder that affects millions worldwide, with Cutibacterium acnes playing a key role in its inflammation. Antibiotics reduce C. acnes and inflammation, but growing antibiotic resistance has limited their efficacy. Additionally, other common acne treatments with bactericidal activity, like benzoyl peroxide, cause irritation, dryness, and peeling. To fulfill the unmet need for alternative therapies, our strategy focused on identifying potent phage lysins and/or their derived cationic peptides. Methods: The C-terminal cationic antimicrobial peptide of the Prevotella intermedia phage lysin PlyPi01 was synthesized along with several sequence-engineered variants in an attempt to enhance their bactericidal efficacy. In vitro bacterial killing assays evaluated the potency of the lysin-derived peptide derivatives against C. acnes and Staphylococcus aureus, another skin bacterium associated with acne. Antibacterial activity was assessed both in conditions simulating the human skin and in combination with retinoids. Results: The variant peptide P156 was engineered by adding arginine residues at both the N- and C-terminal ends of the parental peptide PiP01. P156 was highly potent and eradicated all tested strains of C. acnes and S. aureus. P156 acted rapidly (>5-log kill in 10 min), further reducing the potential of resistance development. Additionally, P156 maintained its potency under conditions (e.g., temperature, pH, and salt concentration) observed on the skin surface and in hair follicles, as well as in combination with retinoid—all without being toxic to human cells. Conclusions: These collective findings position P156 as a promising topical drug for clinical applications to control acne vulgaris. Full article
Show Figures

Figure 1

18 pages, 13278 KiB  
Article
Novel Classification of Inclusion Defects in Glass Fiber-Reinforced Polymer Based on THz-TDS and One-Dimensional Neural Network Sequential Models
by Yue Shi, Xuanhui Li, Jianwei Ao, Keju Liu, Yuan Li and Hui Cheng
Photonics 2025, 12(3), 250; https://doi.org/10.3390/photonics12030250 - 11 Mar 2025
Viewed by 656
Abstract
Fiber-reinforced composites, such as glass fiber-reinforced polymer (GFRP), are widely used across industries but are susceptible to inclusion defects during manufacturing. Detecting and classifying these defects is crucial for ensuring material integrity. This study classifies four common inclusion defects—metal, peel ply, release paper, [...] Read more.
Fiber-reinforced composites, such as glass fiber-reinforced polymer (GFRP), are widely used across industries but are susceptible to inclusion defects during manufacturing. Detecting and classifying these defects is crucial for ensuring material integrity. This study classifies four common inclusion defects—metal, peel ply, release paper, and PTFE film—in GFRP using terahertz technology and machine learning. Two GFRP sheets with inclusion defects at different depths were fabricated. Terahertz time-domain signals were acquired, and a cross-correlation-based deconvolution algorithm extracted impulse responses. LSTM-RNN, Bi-LSTM RNN, and 1D-CNN models were trained and tested on time-domain, frequency-domain, and impulse response signals. The defect-free region exhibited the highest classification accuracy. Bi-LSTM RNN achieved the best recall and macro F1-score, followed by 1D-CNN, while LSTM-RNN performed worse. Training with impulse response signals improved classification while maintaining accuracy. Full article
(This article belongs to the Section Data-Science Based Techniques in Photonics)
Show Figures

Figure 1

19 pages, 22457 KiB  
Article
Study of CFRP Laminate Gradually Modified throughout the Thickness Using Thin Ply under Transvers Tensile Loading
by Hossein Malekinejad, Farin Ramezani, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Materials 2024, 17(10), 2388; https://doi.org/10.3390/ma17102388 - 16 May 2024
Cited by 2 | Viewed by 2036
Abstract
The use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement [...] Read more.
The use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement of carbon fiber-reinforced polymer (CFRP) laminates throughout the thickness could be considered as an approach to improve the joint strength. Using thin plies locally between the conventional CFRP layers in a laminate can enhance the strength, as the sudden change in stiffness means that the load transfer is not monotonous. Consequently, the following study examined the effect of altering thin plies gradually throughout the thickness on the behaviour of the CFRP laminates when subjected to transverse tensile loading. To achieve this goal, the CFRP laminates were gradually modified by using different commercially accessible prepreg thin plies, leading to an improved overall structural performance by reducing stress concentrations. Besides conducting an experimental study, a numerical assessment was also carried out utilizing Abaqus software with a Representative Volume Element (RVE) at the micro scale. The comparison of reference configurations, which involved various thin plies with different thicknesses and traditional CFRP laminates, with the suggested gradual configuration, demonstrated a notable enhancement in both strength and material cost. Furthermore, the proposed RVE model showed promising capability in accurately forecasting the strength of fabricated laminates. Full article
Show Figures

Figure 1

15 pages, 6289 KiB  
Article
Automated Foreign Object Detection for Carbon Fiber Laminates Using High-Resolution Ultrasound Testing
by Rifat Ara Nargis, Daniel P. Pulipati and David A. Jack
Materials 2024, 17(10), 2381; https://doi.org/10.3390/ma17102381 - 16 May 2024
Cited by 4 | Viewed by 1608
Abstract
Carbon fiber laminates have become popular in the manufacturing industry for their many desirable properties, like good vibration damping, high strength-to-weight ratio, toughness, high dimensional stability, and low coefficient of thermal expansion. During the manufacturing process, undesirable foreign objects, such as peel-ply strips, [...] Read more.
Carbon fiber laminates have become popular in the manufacturing industry for their many desirable properties, like good vibration damping, high strength-to-weight ratio, toughness, high dimensional stability, and low coefficient of thermal expansion. During the manufacturing process, undesirable foreign objects, such as peel-ply strips, gloving material, and Kapton film, can be introduced into the part which can lead to a localized weakness. These manufacturing defects can function as stress concentration points and oftentimes cause a premature catastrophic failure. In this study, a method using high-resolution pulse-echo ultrasound testing is employed for the detection and quantification of the dimensions of foreign object debris (FOD) embedded within carbon fiber laminates. This research presents a method to create high-resolution C-scans using an out of immersion tank portable housing ultrasound scanning system, with similar capabilities to that of a full immersion system. From the full-waveform dataset, we extract the FOD depth and planar dimensions with an automatic edge detection technique. Results from several carbon fiber laminates are investigated with embedded foreign objects that are often considered undetectable. Results are presented for FOD identification for two different shapes: circles with diameters ranging from 7.62 mm to 12.7 mm, and 3-4-5 triangles with hypotenuses ranging from 7.6 mm to 12.7 mm. CT imaging is used to confirm proper FOD placement and that the FOD was not damaged or altered during manufacturing. Of importance for the ultrasound inspection results, in every single case studied, the FOD is detected, the layer depth is properly identified, and the typical error is less than 1.5 mm for the primary dimension. Full article
(This article belongs to the Special Issue Non-Destructive Testing (NDT) of Advanced Composites and Structures)
Show Figures

Figure 1

20 pages, 12602 KiB  
Article
Ultrasonic Nondestructive Evaluation of Composite Bond Strength: Quantification through Bond Quality Index (BQI)
by Sourav Banerjee, Vahid Tavaf and Mustahseen M. Indaleeb
J. Compos. Sci. 2024, 8(3), 107; https://doi.org/10.3390/jcs8030107 - 18 Mar 2024
Cited by 1 | Viewed by 1674
Abstract
This article presents a concept, materials, and methods to devise a Bond Quality Index (BQI) for assessing composite bond quality, approximately correlating to the respective bond strength. Interface bonding is the common mechanism to join two composite structural components. Ensuring the health and [...] Read more.
This article presents a concept, materials, and methods to devise a Bond Quality Index (BQI) for assessing composite bond quality, approximately correlating to the respective bond strength. Interface bonding is the common mechanism to join two composite structural components. Ensuring the health and quality of the bond line between two load-bearing composite structures is crucial. The article presents the classification and data-driven distinction between two types of bond lines between similar structural components. The interface bonds in composite plates were prepared using polyester peel ply and TX-1040 nylon peel ply. For all the plates, ultrasonic inspection through scanning acoustic microscopy (SAM) (>10 MHz) was performed before and after localized failure of the plate by impinging energy. Energy was impinged 0–10 J/cm2 of in the 16-ply plates, and 0–25 J/cm2 were impinged in 40-ply plates. Followed by bond failure and SAM, a new parameter called the Bond Quality Index (BQI) was formulated using ultrasonic scan data and energy data. The BQI was found to be 0.55 and 0.45, respectively, in plates with polyester peel ply and TX-1040 nylon peel ply bonds. Further, in 40-ply plates with polyester peel ply resulted in a BQI equivalent to 3.49 compared to 0.75 in plates with a TX-1040 nylon peel ply bond. Currently, the BQI is not normalized; however, this study could be used for AI-driven normalized BQIs for all types of bonds in the future. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Figure 1

15 pages, 6406 KiB  
Article
Effect of Peel Ply on Resin Flow during Vacuum Infusion
by Sehun An, Jung-soo Kim, Hyung Doh Roh, Wie-Dae Kim, Jungwan Lee and Moon-Kwang Um
Materials 2023, 16(12), 4421; https://doi.org/10.3390/ma16124421 - 15 Jun 2023
Cited by 2 | Viewed by 2152
Abstract
Although various simulations have been conducted for the vacuum infusion process, most of the studies have considered only fabrics and flow medium and ignored the effect of peel ply. However, peel ply can affect resin flow because it is placed between the fabrics [...] Read more.
Although various simulations have been conducted for the vacuum infusion process, most of the studies have considered only fabrics and flow medium and ignored the effect of peel ply. However, peel ply can affect resin flow because it is placed between the fabrics and flow medium. To verify this, permeability of two types of peel plies was measured, and it was found that the permeability between the peel plies differed significantly. Moreover, the permeability of the peel plies was lower than that of the carbon fabric; thus, peel ply can cause a bottleneck in the flow in the out-of-plane direction. Some 3D flow simulations were conducted in cases of no peel ply and for two types of the peel plies to confirm the effect of peel ply, and experiments were also conducted for two types of the peel plies. It was observed that filling time and flow pattern were highly dependent on the peel plies. The smaller permeability of peel ply has, the greater effect of peel ply is. These results indicate that the permeability of peel ply is one of the dominant factors and should be considered in process design in vacuum infusion. Additionally, by adding one layer of peel ply and applying permeability, the accuracy of flow simulations can be improved for filling time and pattern. Full article
Show Figures

Figure 1

13 pages, 5023 KiB  
Article
Interface Characterization of Consolidated PPGF Tapes on PPGF Mat Material
by Andreas Kapshammer, Matei Constantin Miron, Lukas Dangl and Zoltan Major
Polymers 2023, 15(4), 935; https://doi.org/10.3390/polym15040935 - 14 Feb 2023
Cited by 3 | Viewed by 2628
Abstract
Laminated composites with thermoset matrices are already well established in major engineering fields like automotive and aviation. The primary drawbacks of such thermoset-based composites are the high cycle times required during manufacturing and their limited potential for recycling. Providing an alternative to thermoset-based [...] Read more.
Laminated composites with thermoset matrices are already well established in major engineering fields like automotive and aviation. The primary drawbacks of such thermoset-based composites are the high cycle times required during manufacturing and their limited potential for recycling. Providing an alternative to thermoset-based composites, thermoplastic matrix materials gained more and more momentum by addressing these previously mentioned drawbacks. The preferred manufacturing technique for these materials employs fiber-reinforced thermoplastic tapes consolidated and formed together with a compatible substrate. The most critical aspect for all these applications is the stress or load transfer between the thermoplastic tapes and the substrate. If the interface is too weak and fails prior to the substrate or tape, a high amount of theoretical mechanical performance is lost. The presented research investigates the influence of variations in manufacturing parameters, within the industrially relevant process window, on the interface strength of the final composite. The investigated composite material consists of PPGF UD tapes consolidated on a PPGF mat substrate. In particular, the influence of the consolidation parameters of pressure, temperature, and time are of special interest. The results of this work reveal a 400% increase in the measured mean strain energy release rate upon increasing the consolidation time from 60 s to 120 s at a consolidation temperature of 230 °C and a pressure of one bar. In contrast to this, an increase in the consolidation pressure, at constant temperature and time, leads to a minor improvement in the GC value of 20%. For testing and characterizing the corresponding interface properties, a mandrel peel testing setup was employed. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Polymers)
Show Figures

Figure 1

12 pages, 58419 KiB  
Article
Surface Treatment of Composites with Bismaleimide Resin-Based Wet Peel Ply for Enhanced Adhesive Bonding Performance
by Hongfeng Li, Liwei Zhao, Yingjie Qiao, Xuefeng Bai, Dezhi Wang, Chunyan Qu, Changwei Liu and Yongqiang Wang
Polymers 2021, 13(20), 3488; https://doi.org/10.3390/polym13203488 - 11 Oct 2021
Cited by 12 | Viewed by 2876
Abstract
Surface treatment is typically required to improve the bonding performance of carbon-fiber-reinforced composites. Herein, a wet peel ply was prepared using bismaleimide (BMI) resins as a matrix resin. The temperature–heating rate extrapolation method and rheological method were employed to study the reaction characteristics [...] Read more.
Surface treatment is typically required to improve the bonding performance of carbon-fiber-reinforced composites. Herein, a wet peel ply was prepared using bismaleimide (BMI) resins as a matrix resin. The temperature–heating rate extrapolation method and rheological method were employed to study the reaction characteristics and viscosity-temperature characteristics of the matrix in the BMI wet peel ply. The curing temperatures of the BMI wet peel ply and the BMI prepreg were the same (200 °C), making this wet peel ply suitable for co-curing with the BMI prepreg. After treatment with the wet peel ply, the bonding strength of the BMI composite joint showed a mean shear strength of 35.5 MPa, which was 1.72% higher than that of the sanded composite and 17.5% higher than that of the composite treated with the dry peel ply. In addition, the BMI composite treated with the BMI wet peel ply exhibited good bonding stability with a coefficient of variation of 3.9. After damp-heat aging for 1440 h, the retention rate of shear strength at room-temperature was 82.3%. The relatively loosely woven carrier in the BMI wet peel ply increased the surface roughness of the composite, thus improving the bonding strength. Full article
(This article belongs to the Special Issue Mechanical and Adhesive Properties of Polymeric Materials)
Show Figures

Figure 1

Back to TopTop