Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (657)

Search Parameters:
Keywords = pavement engineering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3431 KB  
Article
Evolution Mechanism of Volume Parameters and Gradation Optimization Method for Asphalt Mixtures Based on Dual-Domain Fractal Theory
by Bangyan Hu, Zhendong Qian, Fei Zhang and Yu Zhang
Materials 2026, 19(3), 488; https://doi.org/10.3390/ma19030488 - 26 Jan 2026
Viewed by 187
Abstract
The primary objective of this study is to bridge the gap between descriptive geometry and mechanistic design by establishing a dual-domain fractal framework to analyze the internal architecture of asphalt mixtures. This research quantitatively assesses the sensitivity of volumetric indicators—namely air voids (VV), [...] Read more.
The primary objective of this study is to bridge the gap between descriptive geometry and mechanistic design by establishing a dual-domain fractal framework to analyze the internal architecture of asphalt mixtures. This research quantitatively assesses the sensitivity of volumetric indicators—namely air voids (VV), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA)—by employing the coarse aggregate fractal dimension (Dc), the fine aggregate fractal dimension (Df), and the coarse-to-fine ratio (k) through Grey Relational Analysis (GRA). The findings demonstrate that whereas Df and k substantially influence macro-volumetric parameters, the mesoscopic void fractal dimension (DV) remains structurally unchanged, indicating that gradation predominantly dictates void volume rather than geometric intricacy. Sensitivity rankings create a prevailing hierarchy: Process Control (Compaction) > Skeleton Regulation (Dc) > Phase Filling (Pb) > Gradation Adjustment (k, Df). Dc is recognized as the principal regulator of VMA, while binder content (Pb) governs VFA. A “Robust Design” methodology is suggested, emphasizing Dc to stabilize the mineral framework and reduce sensitivity to construction variations. A comparative investigation reveals that the optimized gradation (OG) achieves a more stable volumetric condition and enhanced mechanical performance relative to conventional empirical gradations. Specifically, the OG group demonstrated a substantial 112% enhancement in dynamic stability (2617 times/mm compared to 1230 times/mm) and a 75% increase in average film thickness (AFT), while ensuring consistent moisture and low-temperature resistance. In conclusion, this study transforms asphalt mixture design from empirical trial-and-error to a precision-engineered methodology, providing a robust instrument for optimizing the long-term durability of pavements in extreme cold and arid environments. Full article
Show Figures

Figure 1

17 pages, 2800 KB  
Article
Characterization of Viscoelastic Performance and VOC Emission of Warm-Mixed SBS Asphalt Binder Under Different Dosages of Warm-Mixed Additive
by Wentao Wang, Yue Yang, Mengxue Xu, Xiangrui Han, Yinghao Miao and Linbing Wang
Materials 2026, 19(3), 485; https://doi.org/10.3390/ma19030485 - 26 Jan 2026
Viewed by 139
Abstract
Warm-mixed asphalt technology can significantly reduce the heating temperatures required for asphalt pavement construction, which makes it one of the crucial technical approaches in road engineering for achieving energy conservation and emission reduction, and carbon neutrality. Existing research often focuses on designing asphalt [...] Read more.
Warm-mixed asphalt technology can significantly reduce the heating temperatures required for asphalt pavement construction, which makes it one of the crucial technical approaches in road engineering for achieving energy conservation and emission reduction, and carbon neutrality. Existing research often focuses on designing asphalt materials to ensure optimal service performance, but insufficient attention has been paid to the specific extent of reduction in asphalt fume emissions. However, the latter is a critical factor that cannot be neglected when constructing asphalt pavements in environmentally sensitive regions. Considering the environmental factor, this study systematically explores the comprehensive influence of different warm-mixed additive dosages on the viscoelastic properties and VOC emissions of warm-mixed SBS asphalt binder using rotational viscosity, bending beam rheometer (BBR), dynamic shear rheometer (DSR), and gas chromatography–mass spectrometry (GC-MS) test methods. The findings show that the application of warm-mixed additive does not compromise the comprehensive properties of SBS asphalt binder, but partially enhances its service performance instead. Due to the significant reduction in heating temperature, asphalt VOC emissions are indirectly reduced. Although the warm-mixed additive possesses a certain degree of volatility, its application still shows a significant trend toward emission reduction. Despite 0.4% being a relatively economical dosage of warm-mixed additive, a slight increase to 0.5% can achieve more pronounced environmental benefits in VOC emission reduction while maintaining comprehensive service performance that meets specification requirements. The findings can provide new insights for the application and decision-making of warm-mixed asphalt technology in environmentally sensitive regions. Full article
Show Figures

Figure 1

16 pages, 2358 KB  
Article
Thermal-Oxidative Aging Behavior of Waste Engine Oil Bottom-Rejuvenated Asphalt Binder
by Rukai Li, Dawei Shi, Hongmei Zhu and Chuanqiang Li
Appl. Sci. 2026, 16(3), 1234; https://doi.org/10.3390/app16031234 - 25 Jan 2026
Viewed by 172
Abstract
Incorporating waste engine oil bottoms (WEOBs) as rejuvenators into reclaimed asphalt pavement offers a sustainable solution to reduce the consumption of non-renewable resources. To explore the effect of WEOBs on aged asphalt, WEOB-rejuvenated asphalt (WEOB-asphalt) with different thermal-oxidative aging times was prepared. Subsequently, [...] Read more.
Incorporating waste engine oil bottoms (WEOBs) as rejuvenators into reclaimed asphalt pavement offers a sustainable solution to reduce the consumption of non-renewable resources. To explore the effect of WEOBs on aged asphalt, WEOB-rejuvenated asphalt (WEOB-asphalt) with different thermal-oxidative aging times was prepared. Subsequently, viscosity, double-edge-notched tension (DENT), temperature sweep, linear amplitude sweep (LAS), and Fourier transform infrared spectroscopy (FTIR) tests were conducted to investigate the performance of WEOB-asphalt. The results indicate that WEOB-asphalt shows acceptable thermal-oxidative aging ability within 180 min. The WEOB-asphalt experiences a small decrease in critical crack tip opening displacement within a 180 min aging time. Additionally, the temperature sensitivity of WEOB-asphalt is low, and the rutting factors at temperatures of 46 °C and 52 °C can significantly distinguish the thermal-oxidative aging performance of asphalt at different aging degrees. The fatigue life of WEOB-asphalt decreases compared to the original asphalt after 540 min of aging when the strain exceeds 0.04%. Furthermore, WEOB-asphalt displays increased carbonyl and sulfoxide groups, indicating poorer thermal-oxidative aging resistance than the original asphalt. Based on these results, it is suggested that WEOB-asphalt should be used in areas with mild climate conditions to avoid its rapid secondary aging. Full article
Show Figures

Figure 1

24 pages, 2270 KB  
Article
Study on the Dynamic Properties of the Polyurethane Mixture with Open-Graded Gradation
by Haisheng Zhao, Bin Wang, Peiyu Zhang, Yong Liu, Chunhua Su, Mingzhu Xu, Wensheng Zhang and Shijie Ma
Coatings 2026, 16(2), 153; https://doi.org/10.3390/coatings16020153 - 24 Jan 2026
Viewed by 208
Abstract
Polyurethane (PU) mixtures exhibit superior mechanical performance compared to traditional asphalt mixtures, owing to the excellent engineering properties of the PU binder. This study investigates the dynamic rheological properties of an open-graded polyurethane mixture (PUM–OGFC) in comparison with a dense-graded polyurethane mixture (PUM–AC). [...] Read more.
Polyurethane (PU) mixtures exhibit superior mechanical performance compared to traditional asphalt mixtures, owing to the excellent engineering properties of the PU binder. This study investigates the dynamic rheological properties of an open-graded polyurethane mixture (PUM–OGFC) in comparison with a dense-graded polyurethane mixture (PUM–AC). The time–temperature superposition principle and three rheological models (Standard Logistic Sigmoid (SLS), Generalized Logistic Sigmoid (GLS), and Havriliak–Negami (HN)) were employed to construct and analyze master curves. The results show that while PUM–AC possesses a higher dynamic modulus, PUM–OGFC exhibits a lower phase angle, indicating a more elastic response. Critically, PUM–OGFC demonstrated superior rutting resistance, as evidenced by its higher rutting parameter (|E*|/sin δ). Aggregate gradation significantly influenced all rheological properties. The master curve analysis further revealed that PUM–OGFC exhibits greater temperature sensitivity than PUM–AC. The SLS and GLS models provided excellent fits for both dynamic modulus and phase angle data, whereas the HN model was suitable only for dynamic modulus. In summary, the open-graded structure, when combined with a PU binder, creates a high-performance composite with an exceptional balance of elasticity and rutting resistance, showcasing its potential for demanding pavement applications. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

17 pages, 4517 KB  
Article
Study on Mechanical Response and Structural Combination Design of Steel Bridge Deck Pavement Based on Multi-Scale Finite Element Simulation
by Jiping Wang, Jiaqi Tang, Tianshu Huang, Zhenqiang Han, Zhiyou Zeng and Haitao Ge
Materials 2026, 19(3), 448; https://doi.org/10.3390/ma19030448 - 23 Jan 2026
Viewed by 153
Abstract
Steel bridge deck pavements (SBDPs) are susceptible to complex mechanical and service environmental conditions, yet current design methods often struggle to simultaneously capture global bridge system behavior and local pavement responses. To address this issue, this study develops a multi-scale finite element modeling [...] Read more.
Steel bridge deck pavements (SBDPs) are susceptible to complex mechanical and service environmental conditions, yet current design methods often struggle to simultaneously capture global bridge system behavior and local pavement responses. To address this issue, this study develops a multi-scale finite element modeling framework that integrates a full-bridge model, a refined girder-segment model, and a detailed pavement submodel. The framework is applied to an extra-long suspension bridge to evaluate the mechanical responses of five typical pavement structural configurations—including double-layer SMA, double-layer Epoxy Asphalt (EA), EA-SMA combinations, and a composite scheme with a thin epoxy resin aggregate overlay. By coupling global deformations from a full-bridge model to the local pavement submodel, the proposed method enables a consistent assessment of both bridge-level effects and pavement-level stress concentrations. The analysis reveals that pavement structures significantly alter the stress and strain distributions within the deck system. The results indicate that while the composite configuration with a thin overlay effectively reduces shear stress at the pavement–deck interface, it results in excessive tensile strain, posing a high risk of fatigue cracking. Conversely, the double-layer EA configuration exhibits the lowest fatigue-related strain, demonstrating superior deformation coordination, while the optimized EA-SMA combination offers a robust balance between fatigue control and interfacial stress distribution. These findings validate the effectiveness of the multi-scale approach for SBDP analysis and highlight that rational structural configuration selection—specifically balancing layer stiffness and thickness—is critical for enhancing the durability and long-term performance of steel bridge deck pavements. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

21 pages, 4862 KB  
Article
Resonant Acoustic Spectroscopy for Measuring Complex Modulus of Bitumen
by Frederik A. Kollmus, Lucas Sassaki Vieira da Silva and Michael P. Wistuba
Sensors 2026, 26(2), 720; https://doi.org/10.3390/s26020720 - 21 Jan 2026
Viewed by 139
Abstract
The complex modulus is one of the intrinsic properties of bituminous materials, and, hence, is of importance for their rheological characterization. It was shown by various authors that the complex modulus of asphalt mixtures can be calculated from dynamic modulus measurements using the [...] Read more.
The complex modulus is one of the intrinsic properties of bituminous materials, and, hence, is of importance for their rheological characterization. It was shown by various authors that the complex modulus of asphalt mixtures can be calculated from dynamic modulus measurements using the Resonant Acoustic Spectroscopy (RAS). This paper extends the RAS technique to bitumen. For the purpose of validation, rheological data for the same bitumen are also derived from standard Dynamic Shear Rheometer (DSR) tests, and the master curves resulting from both methods are compared. The laboratory programme comprised a temperature range from −30 °C to 20 °C, and four different bitumens in unaged and aged condition, resulting in 36 different test variants. RAS successfully characterizes the complex modulus of bitumen and reflects temperature and ageing effects, with good agreement to DSR results at low temperatures. At higher temperatures, viscosity and damping introduce deviations, indicating that RAS is effective for modulus evaluation but not sufficient for complete master curve development. Full article
(This article belongs to the Special Issue Acoustic Sensing for Condition Monitoring)
Show Figures

Figure 1

18 pages, 2051 KB  
Article
Study on Desulfurized Crumb Rubber–Modified Epoxy Asphalt
by Yi Zhao and Peixing Yang
Coatings 2026, 16(1), 102; https://doi.org/10.3390/coatings16010102 - 13 Jan 2026
Viewed by 478
Abstract
Epoxy asphalt, as a thermosetting material, has received increasing attention due to its outstanding mechanical properties and durability. However, its insufficient low-temperature resistance, limited toughness, and relatively high material cost still restrict its large-scale application in pavement engineering. To improve its low-temperature performance [...] Read more.
Epoxy asphalt, as a thermosetting material, has received increasing attention due to its outstanding mechanical properties and durability. However, its insufficient low-temperature resistance, limited toughness, and relatively high material cost still restrict its large-scale application in pavement engineering. To improve its low-temperature performance and reduce construction costs, this study investigates the low-temperature behavior of epoxy asphalt modified with desulfurized crumb rubber. In this study, a functional additive, hereafter referred to as WJFL (a laboratory-designated organic disulfide-based rubber plasticizer), was incorporated during the preparation of the desulfurized rubber–asphalt binder to enhance the curing rate of the modified epoxy asphalt. The addition of WJFL promotes the devulcanization and activation of rubber powder, enhancing the overall performance of the modified epoxy asphalt. When the desulfurized rubber content is 20%, WJFL additive dosage is 2%, and asphalt content is 300% of epoxy resin mass, the modified epoxy asphalt not only meets the specification requirements but also exhibits excellent low-temperature crack resistance and improved economic efficiency. The addition of crumb rubber increased tensile strength by 15.38% and elongation at break by 17.24%. Furthermore, WJFL additive increased tensile strength by 80% and elongation at break by 25% when WJFL content was increased from 0% to 2%. Additionally, optimizing the asphalt-to-epoxy ratio, with asphalt content increased from 100% to 300%, resulted in an 80% increase in tensile strength and a 28.57% improvement in elongation at break. Moreover, desulfurized crumb rubber modification enhanced the low-temperature stiffness modulus, highlighting better performance in cold regions. Relaxation tests conducted at −10 °C, −15 °C, −20 °C, and −25 °C show that the modified epoxy asphalt has significant potential for use in pavement surfacing, particularly in cold climates. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

16 pages, 577 KB  
Article
Developing an AI Assistant for Knowledge Management and Workforce Training in State DOTs
by Divija Amaram, Lu Gao, Gowtham Reddy Gudla and Tejaswini Sanjay Katale
Electronics 2026, 15(1), 217; https://doi.org/10.3390/electronics15010217 - 2 Jan 2026
Viewed by 361
Abstract
Effective knowledge management is critical for preserving institutional expertise and improving the efficiency of workforce training in state transportation agencies. Traditional approaches, such as static documentation, classroom-based instruction, and informal mentorship, often lead to fragmented knowledge transfer, inefficiencies, and the gradual loss of [...] Read more.
Effective knowledge management is critical for preserving institutional expertise and improving the efficiency of workforce training in state transportation agencies. Traditional approaches, such as static documentation, classroom-based instruction, and informal mentorship, often lead to fragmented knowledge transfer, inefficiencies, and the gradual loss of expertise as senior engineers retire. Moreover, given the enormous volume of technical manuals, guidelines, and research reports maintained by these agencies, it is increasingly challenging for engineers to locate relevant information quickly and accurately when solving field problems or preparing for training tasks. These limitations hinder timely decision-making and create steep learning curves for new personnel in maintenance and construction operations. To address these challenges, this paper proposes a Retrieval-Augmented Generation (RAG) framework with a multi-agent architecture to support knowledge management and decision-making. The system integrates structured document retrieval with real-time, context-aware response generation powered by a large language model (LLM). Unlike conventional single-pass RAG systems, the proposed framework employs multiple specialized agents for retrieval, answer generation, evaluation, and query refinement, which enables iterative improvement and quality control. In addition, the system incorporates an open-weight vision-language model to convert technical figures into semantic textual representations, which allows figure-based knowledge to be indexed and retrieved alongside text. Retrieved text and figure-based context are then provided to an open-weight large language model, which generates the final responses grounded in the retrieved evidence. Moreover, a case study was conducted using over 500 technical and research documents from multiple State Departments of Transportation (DOTs) to assess system performance. The multi-agent RAG system was tested with 100 domain-specific queries covering pavement maintenance and management topics. The results demonstrated Recall@3 of 94.4%. These results demonstrate the effectiveness of the system in supporting document-based response generation for DOT knowledge management tasks. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Emerging Applications)
Show Figures

Figure 1

23 pages, 7328 KB  
Article
Assessing the Influence Zone and Drainage Efficiency of Geotextiles with Enhanced Lateral Drainage Abilities in Unsaturated Soil Systems
by Shakeel Abid Mohammed and Jorge G. Zornberg
Geosciences 2026, 16(1), 22; https://doi.org/10.3390/geosciences16010022 - 1 Jan 2026
Viewed by 310
Abstract
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results [...] Read more.
The hydraulic performance of woven geotextiles is frequently overlooked in roadway design, despite their extensive use for reinforcement applications. Woven geotextiles are typically manufactured from hydrophobic polymers such as polypropylene or polyester and can act as capillary barriers under unsaturated conditions. This results in moisture accumulation at the soil–geotextile interface, adversely impacting long-term pavement performance. Such problems can be effectively mitigated using geotextiles with enhanced lateral drainage (ELD) capabilities, which are engineered with hydrophilic fibers to facilitate capillary-driven lateral water movement under unsaturated conditions. This functionality facilitates the redistribution of moisture away from the interface, mitigating moisture retention and enhancing drainage performance. The hydraulic performance of geotextiles with enhanced lateral drainage capabilities under unsaturated conditions remains insufficiently understood, particularly in terms of their influence zone and drainage efficiency. For this reason, the present study evaluates the lateral drainage behavior of an ELD geotextile using a soil column test, compared against a control setup without a geotextile and with a non-woven geotextile. Two moisture migration scenarios, namely capillary rise and vertical infiltration, were simulated, with the water table varied at multiple depths. Moisture sensors were embedded along the column depth to monitor real-time water content variations. Results show that the ELD geotextile facilitated efficient lateral drainage, with a consistent influence zone extending up to 2 inches below the fabric. Under infiltration, the ELD geotextile reduced moisture accumulation by 30% around the geotextile, highlighting its superior drainage behavior. These findings encourage practicing engineers to adopt rational, performance-based designs that leverage ELD geotextiles to enhance subgrade drainage and moisture control in pavement and geotechnical applications. Full article
Show Figures

Figure 1

20 pages, 1390 KB  
Article
Machine Learning-Based Compressive Strength Prediction in Pervious Concrete
by Hamed Abdul Baseer and G. G. Md. Nawaz Ali
CivilEng 2026, 7(1), 3; https://doi.org/10.3390/civileng7010003 - 31 Dec 2025
Viewed by 416
Abstract
The construction industry significantly contributes to global sustainability challenges, producing 30–40 percent of global carbon dioxide emissions and consuming large amounts of natural resources. Pervious concrete has emerged as a sustainable alternative to conventional pavements due to its ability to promote stormwater infiltration [...] Read more.
The construction industry significantly contributes to global sustainability challenges, producing 30–40 percent of global carbon dioxide emissions and consuming large amounts of natural resources. Pervious concrete has emerged as a sustainable alternative to conventional pavements due to its ability to promote stormwater infiltration and groundwater recharge. However, the absence of fine aggregates creates a highly porous structure that results in reduced compressive strength, limiting its broader structural use. Determining compressive strength traditionally requires destructive laboratory testing of concrete specimens, which demands considerable material, energy, and curing time, often up to 28 days—before results can be obtained. This makes iterative mix design and optimization both slow and resource intensive. To address this practical limitation, this study applies Machine Learning (ML) as a rapid, preliminary estimation tool capable of providing early predictions of compressive strength based on mix composition and curing parameters. Rather than replacing laboratory testing, the developed ML models serve as supportive decision-making tools, enabling engineers to assess potential strength outcomes before casting and curing physical specimens. This can reduce the number of trial batches produced, lower material consumption, and minimize the environmental footprint associated with repeated destructive testing. Multiple ML algorithms were trained and evaluated using data from existing literature and validated through laboratory testing. The results indicate that ML can provide reliable preliminary strength estimates, offering a faster and more resource-efficient approach to guiding mix design adjustments. By reducing the reliance on repeated 28-day test cycles, the integration of ML into previous concrete research supports more sustainable, cost-effective, and time-efficient material development practices. Full article
Show Figures

Figure 1

20 pages, 2947 KB  
Article
Influence of Nano-Silica and Porosity on the Strength and Permeability of Permeable Concrete: An Experimental Study
by Jinping Fu, Lu Jiang, Mingjian Yang, Desun Yu, Minghao Shen and Yanjie Wang
Buildings 2026, 16(1), 148; https://doi.org/10.3390/buildings16010148 - 29 Dec 2025
Viewed by 218
Abstract
Strength and the permeability coefficient are recognized as the two main design parameters for permeable concrete. Although adding an appropriate amount of nano-silica (NS) can enhance the slurry strength and enhance the bond between the aggregate and cementitious material, research on the combined [...] Read more.
Strength and the permeability coefficient are recognized as the two main design parameters for permeable concrete. Although adding an appropriate amount of nano-silica (NS) can enhance the slurry strength and enhance the bond between the aggregate and cementitious material, research on the combined effects of porosity and NS on the behavior of permeable concrete is limited. An experimental program was carried out to demonstrate the impact of NS on the permeability (K) and strength (fc) of permeable concrete. The tested variables included the NS content (0, 0.5, 1.0, 1.5, 2.0, and 2.5%) and the porosity (p = 15, 20, and 25%), following the identification of an optimal water-to-binder (w/b) ratio of 0.3. It was found that the addition of NS alters the failure mechanism by transferring the critical failure location from the cementitious matrix to aggregate particles. An additive of 1% NS shows the most significant enhancement in the concrete strength, with improvement efficacy increasing substantially with the porosity. Specifically, the 28-day strength of permeable concrete modified with 1% NS increased by 6.4%, 16.1%, and 38.5% for mixes with 15%, 20%, and 25% porosity, respectively. Meanwhile, NS improves the permeability with 0.5% dosage, providing the most effective enhancement. Finally, an empirical expression between permeability and porosity was developed based on the test results, which allows engineers to calculate the required porosity (e.g., p ≈ 17% for K = 1.0 cm/s) to meet specific permeability in pavement applications. Full article
Show Figures

Figure 1

45 pages, 9392 KB  
Article
Engineering Performance, Environmental and Economic Assessment of Pavement Reconstruction Using Cold In-Place Recycling with Foamed Bitumen: A Municipal Road Case Study
by Justyna Stępień, Anna Chomicz-Kowalska, Krzysztof Maciejewski and Patrycja Wąsik
Materials 2026, 19(1), 83; https://doi.org/10.3390/ma19010083 - 25 Dec 2025
Viewed by 469
Abstract
Modernizing municipal roads requires rehabilitation strategies that ensure adequate structural performance while reducing environmental and economic burdens. Although cold in-place recycling with foamed bitumen (CIR-FB) has been widely investigated, integrated assessments combining mechanistic–empirical modeling with LCA and LCCA remain limited—particularly for municipal roads [...] Read more.
Modernizing municipal roads requires rehabilitation strategies that ensure adequate structural performance while reducing environmental and economic burdens. Although cold in-place recycling with foamed bitumen (CIR-FB) has been widely investigated, integrated assessments combining mechanistic–empirical modeling with LCA and LCCA remain limited—particularly for municipal roads in Central and Eastern Europe, where reclaimed asphalt pavement (RAP) quality, climatic conditions and budget constraints differ from commonly studied regions. This study compares two reconstruction variants for a 1 km road section: a conventional design using virgin materials (V1-N) and a recycling-based alternative (V2-Rc) incorporating RAP from the existing wearing and binder layers and reclaimed aggregate (RA) from the existing base. CIR-FB mixture testing (stiffness ≈ 5.25 GPa; foamed bitumen = 2.5%, cement = 2.0%) was integrated into mechanistic–empirical fatigue analysis, material-flow quantification, LCA and LCCA. The V2-Rc variant achieved a 3–21-fold increase in fatigue life compared to V1-N at equal thickness. Material demand decreased by approximately 27%, demolition waste by approximately 39%, and approximately 92% of the existing pavement was reused in situ. Transport work was reduced five-fold (veh-km) and more than six-fold (t-km). LCA showed a 15.9% reduction in CO2-eq emissions, while LCCA indicated approximately 19% lower construction cost, with advantages remaining robust under ±20% sensitivity. The results demonstrate that CIR-FB, when supported by proper RAP/RA characterization, can substantially improve structural, environmental and economic performance in municipal road rehabilitation. Full article
(This article belongs to the Special Issue Road and Rail Construction Materials: Development and Prospects)
Show Figures

Graphical abstract

25 pages, 3889 KB  
Article
Performance of Warm Mix Asphalt with Polymer Modified RAP Using Recycled Engine Oil and SBS Binder Modification
by Byung-Sik Ohm and Tri Ho Minh Le
Polymers 2026, 18(1), 44; https://doi.org/10.3390/polym18010044 - 23 Dec 2025
Viewed by 508
Abstract
The growing use of reclaimed asphalt pavement (RAP) in warm-mix asphalt (WMA) presents significant challenges when RAP originates from aged polymer-modified binder (PMB) pavements, where severe oxidation and polymer degradation lead to excessive stiffness and poor cracking resistance. This study presents a multi-scale [...] Read more.
The growing use of reclaimed asphalt pavement (RAP) in warm-mix asphalt (WMA) presents significant challenges when RAP originates from aged polymer-modified binder (PMB) pavements, where severe oxidation and polymer degradation lead to excessive stiffness and poor cracking resistance. This study presents a multi-scale evaluation of a hybrid modification strategy combining recycled engine oil waste (REOW, 3 wt.%) and styrene–butadiene–styrene (SBS, 1–4 wt.%) to restore aged PMB-containing RAP systems under controlled binder conditions. Three binders (control, REOW-modified, and REOW–SBS hybrid) were prepared using a fixed 70/30 virgin-to-RAP binder blend and characterized through rheological analysis, and multiple stress creep recovery (MSCR). The findings show that REOW softened the binder but reduced elastic recovery, whereas SBS modification restored elastic response. Corresponding WMA mixtures with 30 wt.% RAP and 5.0 wt.% total binder content were evaluated for moisture damage, raveling, rutting, and cracking resistance. At the mixture scale, the hybrid system achieved a TSR of 83%, reduced Hamburg rut depth by ~20%, and increased SCB fracture energy by ~30% compared with the control. These findings demonstrate that combined rejuvenation–reinforcement effectively re-mobilizes aged PMB chemistry and restores polymer elasticity, enabling high-performance WMA production with RAP derived from polymer-modified pavements. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

51 pages, 6076 KB  
Systematic Review
From Waste to Sustainable Pavements: A Systematic and Scientometric Assessment of E-Waste-Derived Materials in the Asphalt Industry
by Nura Shehu Aliyu Yaro, Luvuno Nkosinathi Jele, Jacob Adedayo Adedeji, Zesizwe Ngubane and Jacob Olumuyiwa Ikotun
Sustainability 2026, 18(1), 12; https://doi.org/10.3390/su18010012 - 19 Dec 2025
Viewed by 452
Abstract
The global production of electronic waste (e-waste) has increased due to the quick turnover of electronic devices, creating urgent problems for resource management and environmental sustainability. As a result, e-waste-derived materials (EWDMs) are being explored in pavement engineering research as sustainable substitutes in [...] Read more.
The global production of electronic waste (e-waste) has increased due to the quick turnover of electronic devices, creating urgent problems for resource management and environmental sustainability. As a result, e-waste-derived materials (EWDMs) are being explored in pavement engineering research as sustainable substitutes in line with Sustainable Development Goals (SDGs), specifically SDG 9 (Industry, Innovation, and Infrastructure), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). Therefore, to assess global research production and the effectiveness of EWDMs in asphalt applications, this review combines scientometric mapping and systematic evidence synthesis. A total of 276 relevant publications were identified via a thorough search of Web of Science, Scopus, and ScienceDirect (2010–2025). These were examined via coauthorship structures, keyword networks, and contributions at the national level. The review revealed that China, India, and the United States are prominent research hubs. Additionally, experimental studies have shown that EWDMs, such as printed circuit board powder, fluorescent lamp waste glass, high-impact polystyrene, and acrylonitrile–butadiene–styrene, improve the fatigue life, Marshall stability, rutting resistance (up to 35%), and stiffness (up to 28%). However, issues with long-term field durability, microplastic release, heavy metal leaching, and chemical compatibility still exist. These restrictions highlight the necessity for standardised toxicity testing, harmonised mixed-design frameworks, and performance standards unique to EWDMs. Overall, the review shows that e-waste valorisation can lower carbon emissions, landfill build-up, and virgin material extraction, highlighting its potential in the circular pavement industry and promoting sustainable paving practices in accordance with SDGs 9, 11, 12, and 13. This review suggests that further studies on large-scale field trials, life cycles, and technoeconomic assessments are needed to guarantee the safe, long-lasting integration of EWDMs in pavements. It also advocates for coordinated research, supportive policies, and standardised methods. Full article
Show Figures

Figure 1

29 pages, 8063 KB  
Article
Deformation Characteristics of Joints in Ultra-Shallow Precast Prefabricated Underground Tunnels Under Dynamic Loads
by Zhiyi Jin, Yongxu Jia, Tong Han and Ning Xu
Appl. Sci. 2025, 15(24), 13253; https://doi.org/10.3390/app152413253 - 18 Dec 2025
Viewed by 208
Abstract
Ultra-shallow prefabricated underpass tunnel technology has been widely adopted in urban transportation construction owing to its advantages of rapid construction and minimal environmental impact. However, the deformation behavior of tunnel joints under long-term vehicular dynamic loads remains unclear, which constrains the reliability and [...] Read more.
Ultra-shallow prefabricated underpass tunnel technology has been widely adopted in urban transportation construction owing to its advantages of rapid construction and minimal environmental impact. However, the deformation behavior of tunnel joints under long-term vehicular dynamic loads remains unclear, which constrains the reliability and durability of this technology. To address this, this study focuses on a large cross-section tunnel with five bidirectional lanes. A combined methodology of “refined numerical simulation + long-term cyclic loading model tests” was employed to systematically investigate the dynamic response and cumulative deformation patterns of tunnel joints under different burial depths (3 m, 5 m, and 8 m) and prestress levels (0–0.5 MPa). First, based on the analysis of structural bending moment distribution, various division principles such as zero-moment points and maximum-moment points were compared, leading to the determination of a joint layout scheme primarily adopting a two-segment division. On this basis, a refined numerical model integrating pavement excitation and vehicle dynamic coupling was established, supplemented by a model test with 2 million loading cycles, to reveal the deformation mechanism of joints under both moving vehicle loads and long-term loading. The results indicate the following: (1) burial depth is the decisive factor controlling overall joint deformation—increasing the depth from 3 m to 8 m can reduce the maximum joint opening and slip by approximately 60%; (2) prestress serves as a key measure for restraining joint opening and ensuring waterproofing performance, with its effect being particularly pronounced under shallow burial conditions; (3) based on the dynamic attenuation coefficient, the concept of “sensitive burial depth” (approximately 3.7 m) is proposed, providing a quantitative criterion for identifying tunnels susceptible to surface traffic loads; (4) the recommended two-segment structural division scheme effectively controls deformation while considering construction convenience and waterproofing reliability. The methodological framework of “numerical simulation + model testing” established in this study can provide theoretical support and engineering reference for the long-term performance design and assessment of ultra-shallow prefabricated tunnels. Full article
(This article belongs to the Special Issue Advances in Tunnel Excavation and Underground Construction)
Show Figures

Figure 1

Back to TopTop