Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = partial volume correction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1085 KB  
Article
Predicting Regional Cerebral Blood Flow Using Voxel-Wise Resting-State Functional MRI
by Hongjie Ke, Bhim M. Adhikari, Yezhi Pan, David B. Keator, Daniel Amen, Si Gao, Yizhou Ma, Paul M. Thompson, Neda Jahanshad, Jessica A. Turner, Theo G. M. van Erp, Mohammed R. Milad, Jair C. Soares, Vince D. Calhoun, Juergen Dukart, L. Elliot Hong, Tianzhou Ma and Peter Kochunov
Brain Sci. 2025, 15(9), 908; https://doi.org/10.3390/brainsci15090908 - 23 Aug 2025
Viewed by 1458
Abstract
Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Methods: Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) [...] Read more.
Background: Regional cerebral blood flow (rCBF) is a putative biomarker for neuropsychiatric disorders, including major depressive disorder (MDD). Methods: Here, we show that rCBF can be predicted from resting-state functional MRI (rsfMRI) at the voxel level while correcting for partial volume averaging (PVA) artifacts. Cortical patterns of MDD-related CBF differences decoded from rsfMRI using a PVA-corrected approach showed excellent agreement with CBF measured using single-photon emission computed tomography (SPECT) and arterial spin labeling (ASL). A support vector machine algorithm was trained to decode cortical voxel-wise CBF from temporal and power-spectral features of voxel-level rsfMRI time series while accounting for PVA. Three datasets, Amish Connectome Project (N = 300; 179 M/121 F, both rsfMRI and ASL data), UK Biobank (N = 8396; 3097 M/5319 F, rsfMRI data), and Amen Clinics Inc. datasets (N = 372: N = 183 M/189 F, SPECT data), were used. Results: PVA-corrected CBF values predicted from rsfMRI showed significant correlation with the whole-brain (r = 0.54, p = 2 × 10−5) and 31 out of 34 regional (r = 0.33 to 0.59, p < 1.1 × 10−3) rCBF measures from 3D ASL. PVA-corrected rCBF values showed significant regional deficits in the UKBB MDD group (Cohen’s d = −0.30 to −0.56, p < 10−28), with the strongest effect sizes observed in the frontal and cingulate areas. The regional deficit pattern of MDD-related hypoperfusion showed excellent agreement with CBF deficits observed in the SPECT data (r = 0.74, p = 4.9 × 10−7). Consistent with previous findings, this new method suggests that perfusion signals can be predicted using voxel-wise rsfMRI signals. Conclusions: CBF values computed from widely available rsfMRI can be used to study the impact of neuropsychiatric disorders such as MDD on cerebral neurophysiology. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

11 pages, 225 KB  
Article
Interpretation of PSMA-PET Among Urologists: A Prospective Multicentric Evaluation
by Guglielmo Mantica, Francesco Chierigo, Francesca Ambrosini, Francesca D’Amico, Greta Celesti, Arianna Ferrari, Fabrizio Gallo, Maurizio Schenone, Andrea Benelli, Carlo Introini, Rosario Leonardi, Alessandro Calarco, Francesco Esperto, Andrea Pacchetti, Rocco Papalia, Giorgio Bozzini, Armando Serao, Valentina Pau, Gianmario Sambuceti, Carlo Terrone, Giuseppe Fornarini and Matteo Baucknehtadd Show full author list remove Hide full author list
Cancers 2025, 17(13), 2122; https://doi.org/10.3390/cancers17132122 - 24 Jun 2025
Viewed by 502
Abstract
Background: Prostate-specific membrane antigen (PSMA)-PET imaging has significantly improved prostate cancer (PCa) staging, yet its interpretation remains challenging, even for experienced specialists. No prior study has assessed urologists’ ability to interpret PSMA-PET. Methods: We conducted a multicenter prospective study involving 63 urologists from [...] Read more.
Background: Prostate-specific membrane antigen (PSMA)-PET imaging has significantly improved prostate cancer (PCa) staging, yet its interpretation remains challenging, even for experienced specialists. No prior study has assessed urologists’ ability to interpret PSMA-PET. Methods: We conducted a multicenter prospective study involving 63 urologists from eight Italian institutions. Participants evaluated 20 PSMA-PET scans of high-risk PCa cases, with no clinical information provided. Proficiency was defined as correctly identifying at least two of three staging components (T, N, M) in ≥75% of cases. Associations between performance and factors such as hierarchy (resident vs. consultant), institution type, surgical volume, and multidisciplinary team (MDT) presence were analyzed using univariable and multivariable logistic regression. Results: Only one participant achieved full staging proficiency, while 44% reached the ≥75% threshold for partial (almost correct) staging. Urologists from centers with ≥300 PCa diagnoses per year demonstrated better T and M stage identification. Institutions with ≥150 robot-assisted radical prostatectomies (RARPs) per year and those with MDTs showed higher accuracy in M staging. No significant predictors of proficiency emerged in the multivariable analysis, although hierarchy and surgical volume approached significance for nodal metastasis detection. Conclusion: PSMA-PET interpretation is complex for urologists, with particular challenges in T and M staging. High institutional case volumes and MDT involvement may enhance interpretation skills. Structured training programs and increased exposure to multidisciplinary imaging discussions are essential to optimize urologists’ diagnostic proficiency and ultimately improve patient care. Full article
(This article belongs to the Special Issue Advances in the Use of PET/CT and MRI in Prostate Cancer)
11 pages, 874 KB  
Article
Low Tidal Volume Ventilation in Percutaneous Liver Ablations: Preliminary Experience on 10 Patients
by Francesco Giurazza, Francesco Coletta, Antonio Tomasello, Fabio Corvino, Silvio Canciello, Claudio Carrubba, Vincenzo Schettini, Francesca Schettino, Romolo Villani and Raffaella Niola
Diagnostics 2025, 15(12), 1495; https://doi.org/10.3390/diagnostics15121495 - 12 Jun 2025
Viewed by 492
Abstract
Objectives: Low tidal volume ventilation (LTVV) is a ventilatory strategy with the advantages of minimizing diaphragm movements and reducing hypercapnia and barotrauma risks. This preliminary study aims to report on the safety and effectiveness of LTVV applied during percutaneous US-guided liver ablations of [...] Read more.
Objectives: Low tidal volume ventilation (LTVV) is a ventilatory strategy with the advantages of minimizing diaphragm movements and reducing hypercapnia and barotrauma risks. This preliminary study aims to report on the safety and effectiveness of LTVV applied during percutaneous US-guided liver ablations of focal malignancies. Methods: Patients affected by focal liver malignancies treated with percutaneous microwaves ablation were retrospectively included in this single-center analysis. Arterial gas analysis was performed immediately before and after ablation to evaluate the arterial pH, partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), and plasma lactate levels. The primary endpoint of this study was to evaluate the safety and efficacy of LTVV during percutaneous liver cancer ablation. The secondary endpoint was to assess the procedural technical success in terms of correct needle probe targeting without the need for repositioning. Results: Ten patients affected by a single liver lesion had been analyzed. The ASA score was three in all patients, with three patients also suffering from COPD. The procedural technical success was 100%: ablations were performed with a single liver puncture without the need for changing access or repositioning the needle. No variations in post-ablation arterial gas analysis requiring anesthesiological management remodulation occurred. Lactate levels remained stable and hemodynamic balance was preserved during all procedures. No switch to standard volume ventilation was required. Conclusions: In this preliminary study, LTVV was a safe and effective anesthesiological protocol in patients treated with percutaneous ablations of liver malignancies, offering an ideal balance between patient safety and percutaneous needle probe positioning precision. Larger prospective studies are needed to confirm these findings. Full article
Show Figures

Figure 1

8 pages, 3656 KB  
Case Report
The Long Shadow of Repair: Late-Onset Atrioventricular Block and Atrial Arrhythmias After Scimitar Syndrome and Mitral Annuloplasty
by Fulvio Cacciapuoti, Ciro Mauro, Salvatore Crispo, Gerardo Carpinella and Mario Volpicelli
Reports 2025, 8(2), 72; https://doi.org/10.3390/reports8020072 - 18 May 2025
Viewed by 576
Abstract
Background and Clinical Significance: Scimitar Syndrome is a rare congenital cardiopulmonary anomaly characterized by partial anomalous pulmonary venous return, often requiring early surgical correction. It may coexist with other congenital or acquired cardiovascular anomalies, including valvular diseases such as mitral regurgitation. When surgical [...] Read more.
Background and Clinical Significance: Scimitar Syndrome is a rare congenital cardiopulmonary anomaly characterized by partial anomalous pulmonary venous return, often requiring early surgical correction. It may coexist with other congenital or acquired cardiovascular anomalies, including valvular diseases such as mitral regurgitation. When surgical correction of Scimitar Syndrome is combined with mitral valve annuloplasty, the proximity to the atrioventricular node may potentially predispose patients to late-onset conduction disturbances, although causality remains speculative. Case Presentation: We describe the case of a 53-year-old male who developed paroxysmal atrial fibrillation, atrial flutter, and intermittent second-degree AV block decades after undergoing surgical correction of Scimitar Syndrome with concomitant mitral annuloplasty. Multimodal echocardiographic evaluation revealed preserved left atrial volume, normal intra-atrial conduction time, mildly reduced strain, and maintained atrial synchrony. The patient was treated with direct oral anticoagulants and beta-blockers and underwent the implantation of a ventricular leadless pacemaker. Conclusions: This case highlights the supportive role of atrial function imaging in assessing atrial health and informing rhythm management and procedural choices in surgically corrected congenital heart disease. Full article
(This article belongs to the Section Cardiology/Cardiovascular Medicine)
Show Figures

Figure 1

3 pages, 149 KB  
Correction
Correction: González-Ginel et al. Impact of Tumor Volume and Other Factors on Renal Function After Partial Nephrectomy. J. Clin. Med. 2024, 13, 6305
by Ignacio González-Ginel, Mario Hernández-Arroyo, Clara García-Rayo, Carmen Gómez-del-Cañizo, Alfredo Rodríguez-Antolín and Félix Guerrero-Ramos
J. Clin. Med. 2025, 14(10), 3386; https://doi.org/10.3390/jcm14103386 - 13 May 2025
Viewed by 333
Abstract
In the original publication [...] Full article
(This article belongs to the Section Nephrology & Urology)
18 pages, 761 KB  
Article
Neuroinflammation at the Neuroforamina and Spinal Cord in Patients with Painful Cervical Radiculopathy and Pain-Free Participants: An [11C]DPA713 PET/CT Proof-of-Concept Study
by Ivo J. Lutke Schipholt, Meghan A. Koop, Michel W. Coppieters, Elsmarieke M. van de Giessen, Adriaan A. Lammerstma, Bastiaan C. ter Meulen, Carmen Vleggeert-Lankamp, Bart N.M. van Berckel, Joost Bot, Hans van Helvoirt, Paul R. Depauw, Ronald Boellaard, Maqsood Yaqub and Gwendolyne Scholten-Peeters
J. Clin. Med. 2025, 14(7), 2420; https://doi.org/10.3390/jcm14072420 - 2 Apr 2025
Viewed by 1254
Abstract
Background/Objectives: The complex pathophysiology of painful cervical radiculopathy is only partially understood. Neuroimmune activation in the dorsal root ganglion and spinal cord is assumed to underlie the genesis of radicular pain. Molecular positron emission tomography (PET) using the radiotracer [11C]DPA713, which [...] Read more.
Background/Objectives: The complex pathophysiology of painful cervical radiculopathy is only partially understood. Neuroimmune activation in the dorsal root ganglion and spinal cord is assumed to underlie the genesis of radicular pain. Molecular positron emission tomography (PET) using the radiotracer [11C]DPA713, which targets the 18-kDa translocator protein (TSPO), offers the ability to quantify neuroinflammation in humans in vivo. The primary objectives of this study were to (1) assess whether uptake of [11C]DPA713, a metric of neuroinflammation, is higher in the neuroforamina and spinal cord of patients with painful cervical radiculopathy compared with that in pain-free participants and (2) assess whether [11C]DPA713 uptake is associated with clinical parameters, such as pain intensity. Methods: Dynamic 60 min [11C]DPA713 PET/CT scans were acquired, and regions of interest were defined for neuroforamina and spinal cord. Resulting time-activity curves were fitted to a single-tissue compartment model using an image-derived input function, corrected for plasma-to-whole blood ratios and parent fractions, to obtain the volume of distribution (VT) as the primary outcome measure. Secondary neuroinflammation metrics included 1T2k VT without metabolite correction (1T2k_WB) and Logan VT. Results: The results indicated elevated levels of 1T2k VT at the neuroforamina (p < 0.04) but not at the spinal cord (p = 0.16). Neuroforamina and spinal cord 1T2k VT lack associations with clinical parameters. Secondary neuroinflammatory metrics show associations with clinical parameters such as the likelihood of neuropathic pain. Conclusions: These findings enhance our understanding of painful cervical radiculopathy’s pathophysiology, emphasizing the neuroforamina levels of neuroinflammation as a potential therapeutic target. Full article
(This article belongs to the Special Issue Recent Advancements in Nuclear Medicine and Radiology)
Show Figures

Figure 1

17 pages, 2421 KB  
Article
Exploring Multi-Pathology Brain Segmentation: From Volume-Based to Component-Based Deep Learning Analysis
by Ioannis Stathopoulos, Roman Stoklasa, Maria Anthi Kouri, Georgios Velonakis, Efstratios Karavasilis, Efstathios Efstathopoulos and Luigi Serio
J. Imaging 2025, 11(1), 6; https://doi.org/10.3390/jimaging11010006 - 31 Dec 2024
Viewed by 1593
Abstract
Detection and segmentation of brain abnormalities using Magnetic Resonance Imaging (MRI) is an important task that, nowadays, the role of AI algorithms as supporting tools is well established both at the research and clinical-production level. While the performance of the state-of-the-art models is [...] Read more.
Detection and segmentation of brain abnormalities using Magnetic Resonance Imaging (MRI) is an important task that, nowadays, the role of AI algorithms as supporting tools is well established both at the research and clinical-production level. While the performance of the state-of-the-art models is increasing, reaching radiologists and other experts’ accuracy levels in many cases, there is still a lot of research needed on the direction of in-depth and transparent evaluation of the correct results and failures, especially in relation to important aspects of the radiological practice: abnormality position, intensity level, and volume. In this work, we focus on the analysis of the segmentation results of a pre-trained U-net model trained and validated on brain MRI examinations containing four different pathologies: Tumors, Strokes, Multiple Sclerosis (MS), and White Matter Hyperintensities (WMH). We present the segmentation results for both the whole abnormal volume and for each abnormal component inside the examinations of the validation set. In the first case, a dice score coefficient (DSC), sensitivity, and precision of 0.76, 0.78, and 0.82, respectively, were found, while in the second case the model detected and segmented correct (True positives) the 48.8% (DSC ≥ 0.5) of abnormal components, partially correct the 27.1% (0.05 > DSC > 0.5), and missed (False Negatives) the 24.1%, while it produced 25.1% False Positives. Finally, we present an extended analysis between the True positives, False Negatives, and False positives versus their position inside the brain, their intensity at three MRI modalities (FLAIR, T2, and T1ce) and their volume. Full article
Show Figures

Figure 1

19 pages, 3870 KB  
Article
Enhancing Amyloid PET Quantification: MRI-Guided Super-Resolution Using Latent Diffusion Models
by Jay Shah, Yiming Che, Javad Sohankar, Ji Luo, Baoxin Li, Yi Su, Teresa Wu and for the Alzheimer’s Disease Neuroimaging Initiative
Life 2024, 14(12), 1580; https://doi.org/10.3390/life14121580 - 1 Dec 2024
Cited by 5 | Viewed by 2265
Abstract
Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer’s disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial [...] Read more.
Amyloid PET imaging plays a crucial role in the diagnosis and research of Alzheimer’s disease (AD), allowing non-invasive detection of amyloid-β plaques in the brain. However, the low spatial resolution of PET scans limits the accurate quantification of amyloid deposition due to partial volume effects (PVE). In this study, we propose a novel approach to addressing PVE using a latent diffusion model for resolution recovery (LDM-RR) of PET imaging. We leverage a synthetic data generation pipeline to create high-resolution PET digital phantoms for model training. The proposed LDM-RR model incorporates a weighted combination of L1, L2, and MS-SSIM losses at both noise and image scales to enhance MRI-guided reconstruction. We evaluated the model’s performance in improving statistical power for detecting longitudinal changes and enhancing agreement between amyloid PET measurements from different tracers. The results demonstrate that the LDM-RR approach significantly improves PET quantification accuracy, reduces inter-tracer variability, and enhances the detection of subtle changes in amyloid deposition over time. We show that deep learning has the potential to improve PET quantification in AD, effectively contributing to the early detection and monitoring of disease progression. Full article
Show Figures

Figure 1

10 pages, 5130 KB  
Article
Correction of Post-Surgical Temporal Hollowing with Adipo-Dermal Grafts: A Case Series
by Stefano Andreoli, Davide Brucato, Daniel Schmauss and Yves Harder
J. Clin. Med. 2024, 13(16), 4936; https://doi.org/10.3390/jcm13164936 - 21 Aug 2024
Viewed by 1859
Abstract
Background: Surgical dissection and partial detachment of the temporalis muscle during neurosurgical procedures might result in a temporal depression known as “temporal hollowing”. Reconstructive procedures to correct this condition include the implantation of synthetic materials (e.g., hydroxyapatite, methacrylate or polyethylene), injection of autologous [...] Read more.
Background: Surgical dissection and partial detachment of the temporalis muscle during neurosurgical procedures might result in a temporal depression known as “temporal hollowing”. Reconstructive procedures to correct this condition include the implantation of synthetic materials (e.g., hydroxyapatite, methacrylate or polyethylene), injection of autologous fat or fillers as well as the use of flaps (e.g., temporo-parietal local flap and latissimus dorsi free flap). However, none of these techniques proved to be an ideal option due to a high complication rate or need for invasive and complex surgery. Adipo-dermal grafts are autologous; the resorption rate seems to be limited and the complexity of the procedure is minor. Moreover, autologous fat grafting can be performed to enhance the final outcome by correcting residual contour deformities. Methods: In this series of five patients, an institutional experience is presented using multi-layered adipo-dermal grafts harvested from the supra-pubic area for the restoration of volume and contour in post-surgical temporal hollowing. During the last follow-up, patients were asked to express their satisfaction, which was assessed by a survey. Results: this approach demonstrates a marked improvement in temporal hollowing associated with a low complication rate and good patient satisfaction. Conclusions: the aim of this consecutive case series is to emphasize the effectiveness of this surgical technique as one of the options to address temporal hollowing. Full article
(This article belongs to the Special Issue Clinical Advances in Plastic Surgery)
Show Figures

Figure 1

17 pages, 33186 KB  
Article
Influence of the Hubbard U Correction on the Electronic Properties and Chemical Bands of the Cubic (Pm3¯m) Phase of SrTiO3 Using GGA/PBE and LDA/CA-PZ Approximations
by Issam Derkaoui, Mohamed Achehboune, Roberts I. Eglitis, Anatoli I. Popov, Issam Boukhoubza, Mohamed A. Basyooni-M. Kabatas and Abdellah Rezzouk
Molecules 2024, 29(13), 3081; https://doi.org/10.3390/molecules29133081 - 28 Jun 2024
Cited by 4 | Viewed by 1801
Abstract
By using DFT simulations employing the GGA/PBE and LDA/CA-PZ approximations, the effects of the Hubbard U correction on the crystal structure, electronic properties, and chemical bands of the cubic phase (Pm3¯m) of STO were investigated. Our findings showed [...] Read more.
By using DFT simulations employing the GGA/PBE and LDA/CA-PZ approximations, the effects of the Hubbard U correction on the crystal structure, electronic properties, and chemical bands of the cubic phase (Pm3¯m) of STO were investigated. Our findings showed that the cubic phase (Pm3¯m) STO’s band gaps and lattice parameters/volume are in reasonably good accordance with the experimental data, supporting the accuracy of our model. By applying the DFT + U method, we were able to obtain band gaps that were in reasonably good agreement with the most widely used experimental band gaps of the cubic (Pm3¯m) phase of STO, which are 3.20 eV, 3.24 eV, and 3.25 eV. This proves that the Hubbard U correction can overcome the underestimation of the band gaps induced by both GGA/PBE and LDA/CA-PZ approximations. On the other hand, the Sr-O and Ti-O bindings appear predominantly ionic and covalent, respectively, based on the effective valence charges, electron density distribution, and partial density of states analyses. In an attempt to enhance the performance of STO for new applications, these results might also be utilized as theoretical guidance, benefitting from our precise predicted values of the gap energies of the cubic phase (Pm3¯m). Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

37 pages, 1405 KB  
Article
CP Conservation in the Strong Interactions
by Wen-Yuan Ai, Björn Garbrecht and Carlos Tamarit
Universe 2024, 10(5), 189; https://doi.org/10.3390/universe10050189 - 23 Apr 2024
Cited by 3 | Viewed by 1301
Abstract
We discuss matters related to the point that topological quantization in the strong interaction is a consequence of an infinite spacetime volume. Because of the ensuing order of limits, i.e., infinite volume prior to summing over topological sectors, CP is conserved. Here, [...] Read more.
We discuss matters related to the point that topological quantization in the strong interaction is a consequence of an infinite spacetime volume. Because of the ensuing order of limits, i.e., infinite volume prior to summing over topological sectors, CP is conserved. Here, we show that this reasoning is consistent with the construction of the path integral from steepest-descent contours. We reply to some objections that aim to support the case for CP violation in strong interactions that are based on the role of the CP-odd theta-parameter in three-form effective theories, the correct sampling of all configurations in the dilute instanton gas approximation and the volume dependence of the partition function. We also show that the chiral effective field theory derived from taking the volume to infinity first is in no contradiction with analyses based on partially conserved axial currents. Full article
(This article belongs to the Special Issue CP Violation and Flavor Physics)
Show Figures

Figure 1

11 pages, 4415 KB  
Case Report
Surgical Correction of a Sinus Venosus Atrial Septal Defect with Partial Anomalous Pulmonary Venous Connections Using Cardiac Computed Tomography Imaging and a 3D-Printed Model
by Kyung-Min Kim, Chang-Hwan Moon, Won-Jong Lee, Woo-Jin Kim, Mihyung Kim, Jaemin Jeong, Hae-Beom Lee, Seong-Mok Jeong, Ho-Jung Choi, Tae Sung Hwang, Hee Chun Lee, Jae Hyeon Yu, Aryung Nam and Dae-Hyun Kim
Animals 2024, 14(7), 1094; https://doi.org/10.3390/ani14071094 - 3 Apr 2024
Viewed by 2383
Abstract
Sinus venosus atrial septal defects (SVASDs), concurrent with partial anomalous pulmonary venous connections (PAPVCs), are a rare congenital heart disease in dogs. Surgical correction is essential when clinical signs or significant hemodynamic changes are present. We aimed to report on the successful surgical [...] Read more.
Sinus venosus atrial septal defects (SVASDs), concurrent with partial anomalous pulmonary venous connections (PAPVCs), are a rare congenital heart disease in dogs. Surgical correction is essential when clinical signs or significant hemodynamic changes are present. We aimed to report on the successful surgical correction of an SVASD with PAPVCs, using a computed tomography (CT)-based customized 3D cardiac model. A 10-month-old male poodle was referred for corrective surgery for an ASD. Echocardiography confirmed a hemodynamically significant left-to-right shunting flow through an interatrial septal defect and severe right-sided heart volume overload. For a comprehensive diagnosis, a CT scan was performed, which confirmed an SVASD with PAPVCs. A customized 3D cardiac model was used for preoperative decision-making and surgical rehearsal. The defect was repaired using an autologous pericardial patch under a cardiopulmonary bypass (CPB). Temporary pacing was applied for sinus bradycardia and third-degree atrioventricular block. The patient recovered from the anesthesia without further complications. The pacemaker was removed during hospitalization and the patient was discharged without complications 2 weeks post-surgery. At the three-month follow-up, there was no shunting flow in the interatrial septum and the right-sided volume overload had been resolved. The cardiac medications were discontinued, and there were no complications. This report indicates the validity of surgical correction under CPB for an SVASD with PAPVCs, and the advantages of utilizing a CT-based 3D cardiac model for preoperative planning to increase the surgical success rate. Full article
(This article belongs to the Special Issue Advances in Small Animal Cardiology)
Show Figures

Figure 1

21 pages, 15874 KB  
Article
Control-Volume-Based Exergy Method of Truncated Busemann Inlets in Off-Design Conditions
by Meijun Zhu, Shuai Zhou, Yang Liu, Zhehong Li and Ziyun Chen
Processes 2024, 12(3), 535; https://doi.org/10.3390/pr12030535 - 7 Mar 2024
Cited by 1 | Viewed by 1389
Abstract
A scramjet engine consisting of several components is a highly coupled system that urgently needs a universal performance metric. Exergy is considered as a potential universal currency to assess the performance of scramjet engines. In this paper, a control-volume-based exergy method for the [...] Read more.
A scramjet engine consisting of several components is a highly coupled system that urgently needs a universal performance metric. Exergy is considered as a potential universal currency to assess the performance of scramjet engines. In this paper, a control-volume-based exergy method for the Reynolds-averaged Navier–Stokes solution of truncated and corrected Busemann inlets was proposed. An exergy postprocessing code was developed to achieve this method. Qualitative and quantitative analyses of exergies in the Busemann inlets were performed. A complete understanding of the evolution process of anergy and the location where anergy occurs in the inlet at various operation conditions was also obtained. The results show that the exergy destroyed in the Busemann inlet can be decomposed into shock wave anergy, viscous anergy and thermal anergy. Shock wave anergy accounts for less than 4% of the total exergy destroyed while thermal anergy and viscous anergy, in a roughly equivalent magnitude, contribute to almost all the remaining. The vast majority of inflow exergy is converted into boundary pressure work and thermal exergy. Some of the thermal exergy excluded by the computation of the total pressure recovery coefficient belongs to the available energy, as this partial energy will be further converted into useful work in combustion chambers. Full article
(This article belongs to the Special Issue Advances in Numerical Analysis of Heat Transfer and Fluid Flow)
Show Figures

Figure 1

13 pages, 5166 KB  
Article
Novel Calibration Approach for Monitoring Aerosol Hydrogen Isotopes Using Laser-Induced Breakdown Spectroscopy for Molten Salt Reactor Off-Gas Streams
by Hunter B. Andrews and Joanna McFarlane
Sensors 2023, 23(24), 9797; https://doi.org/10.3390/s23249797 - 13 Dec 2023
Cited by 6 | Viewed by 1845
Abstract
Online monitoring is a key challenge for the continued development of molten salt reactor (MSR) technology. Laser-induced breakdown spectroscopy (LIBS) has previously been demonstrated to be a viable tool for monitoring aerosolized species and noble gases in real time, but the ability to [...] Read more.
Online monitoring is a key challenge for the continued development of molten salt reactor (MSR) technology. Laser-induced breakdown spectroscopy (LIBS) has previously been demonstrated to be a viable tool for monitoring aerosolized species and noble gases in real time, but the ability to discern varying isotopes in these streams has not yet been investigated for MSR applications. Tritium will form in MSRs from ternary fission and from (n,α)-reactions occurring in lithium-containing salts. This study compares three spectrometers of varying resolutions and types for measuring hydrogen isotope shifts in LIBS spectra of wetted filter paper. For each spectrometer, multivariate models were built (i.e., principal component regression, partial least squares regression, and multivariate curve resolution) to quantify the isotope ratio. The top models were then modified and corrected to apply the models to aerosol samples with varying isotope ratios. This novel calibration strategy offers an 82% reduction in volume of the calibration samples needed and is a more viable pathway for calibrating deployable LIBS systems. Lastly, this calibration model was compared with an all-aerosol trained model for monitoring hydrogen isotopes during a real-time test where the protium/deuterium ratio, along with representative salt species (i.e., lithium, sodium, and potassium) were adjusted dynamically. Results of this test validated the predictive capabilities of the transferred model and highlighted the capabilities of LIBS for real-time monitoring of MSR effluent streams. Full article
(This article belongs to the Special Issue Optical Spectroscopy for Sensing, Monitoring and Analysis)
Show Figures

Figure 1

15 pages, 17486 KB  
Article
Denoising of Images for Temperature and Chemiluminescence Measurements of Premixed Flames Applying the Abel Transform
by J. C. I. Zamarripa-Ramírez, D. Moreno-Hernández and A. Martinez Gonzalez
Fire 2023, 6(11), 437; https://doi.org/10.3390/fire6110437 - 15 Nov 2023
Cited by 3 | Viewed by 2552
Abstract
The temperature field and chemiluminescence measurements of axisymmetric flame are obtained simultaneously in only one image. Digital Laser Speckle Displacement measures temperature fields, and direct image flame determines chemiluminescence values. Applying the Abel transform of axisymmetric objects for volume visualization requires smooth intensity [...] Read more.
The temperature field and chemiluminescence measurements of axisymmetric flame are obtained simultaneously in only one image. Digital Laser Speckle Displacement measures temperature fields, and direct image flame determines chemiluminescence values. Applying the Abel transform of axisymmetric objects for volume visualization requires smooth intensity profiles. Due to the nature of the experimental setup, direct image flame is corrupted with speckle noise and a crosstalk effect. These undesirable effects deteriorate the measurement results. Then, experimental data need crosstalk correction and speckle noise reduction to improve the measurements. This work aims to implement a methodology to reduce the speckle noise of highly noisy data intensity profiles to create smooth profiles appropriate to applying the Abel transform. The method uses a Four-Order Partial Differential Equation to reduce speckle noise and a Curve fitting utilizing a set of Gaussian functions to decrease residual undesirable effects. After this, correction of crosstalk is necessary to avoid this effect. The methodology is applied to premixed flames generated with Liquid Petroleum Gas for different mixes. Full article
(This article belongs to the Special Issue Premixed and Non-premixed Flame Propagation and Suppression)
Show Figures

Figure 1

Back to TopTop