Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = parking lot dataset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5780 KiB  
Article
Utilizing GCN-Based Deep Learning for Road Extraction from Remote Sensing Images
by Yu Jiang, Jiasen Zhao, Wei Luo, Bincheng Guo, Zhulin An and Yongjun Xu
Sensors 2025, 25(13), 3915; https://doi.org/10.3390/s25133915 - 23 Jun 2025
Viewed by 531
Abstract
The technology of road extraction serves as a crucial foundation for urban intelligent renewal and green sustainable development. Its outcomes can optimize transportation network planning, reduce resource waste, and enhance urban resilience. Deep learning-based approaches have demonstrated outstanding performance in road extraction, particularly [...] Read more.
The technology of road extraction serves as a crucial foundation for urban intelligent renewal and green sustainable development. Its outcomes can optimize transportation network planning, reduce resource waste, and enhance urban resilience. Deep learning-based approaches have demonstrated outstanding performance in road extraction, particularly excelling in complex scenarios. However, extracting roads from remote sensing data remains challenging due to several factors that limit accuracy: (1) Roads often share similar visual features with the background, such as rooftops and parking lots, leading to ambiguous inter-class distinctions; (2) Roads in complex environments, such as those occluded by shadows or trees, are difficult to detect. To address these issues, this paper proposes an improved model based on Graph Convolutional Networks (GCNs), named FR-SGCN (Hierarchical Depth-wise Separable Graph Convolutional Network Incorporating Graph Reasoning and Attention Mechanisms). The model is designed to enhance the precision and robustness of road extraction through intelligent techniques, thereby supporting precise planning of green infrastructure. First, high-dimensional features are extracted using ResNeXt, whose grouped convolution structure balances parameter efficiency and feature representation capability, significantly enhancing the expressiveness of the data. These high-dimensional features are then segmented, and enhanced channel and spatial features are obtained via attention mechanisms, effectively mitigating background interference and intra-class ambiguity. Subsequently, a hybrid adjacency matrix construction method is proposed, based on gradient operators and graph reasoning. This method integrates similarity and gradient information and employs graph convolution to capture the global contextual relationships among features. To validate the effectiveness of FR-SGCN, we conducted comparative experiments using 12 different methods on both a self-built dataset and a public dataset. The proposed model achieved the highest F1 score on both datasets. Visualization results from the experiments demonstrate that the model effectively extracts occluded roads and reduces the risk of redundant construction caused by data errors during urban renewal. This provides reliable technical support for smart cities and sustainable development. Full article
Show Figures

Figure 1

25 pages, 4031 KiB  
Article
Highway Rest Area Truck Parking Occupancy Prediction Using Machine Learning: A Case Study from Poland
by Artur Budzyński and Maria Cieśla
Infrastructures 2025, 10(7), 151; https://doi.org/10.3390/infrastructures10070151 - 22 Jun 2025
Viewed by 723
Abstract
Highway rest areas are relevant components of road infrastructure, providing drivers with essential opportunities to rest and mitigate fatigue-related crash risks. Despite their acknowledged importance, little is known about the factors that influence their actual utilization. This study addresses this gap by applying [...] Read more.
Highway rest areas are relevant components of road infrastructure, providing drivers with essential opportunities to rest and mitigate fatigue-related crash risks. Despite their acknowledged importance, little is known about the factors that influence their actual utilization. This study addresses this gap by applying supervised machine learning algorithms to predict hourly occupancy levels of truck parking lots at highway rest areas using a dataset collected from digital monitoring systems in Poland. The dataset includes 10,740 observations and 33 features describing infrastructural, administrative, and locational characteristics of selected rest areas in Poland. Eight classification models—Gradient Boosting, XGBoost, Random Forest, k-NN, Decision Tree, Logistic Regression, SVM, and Naive Bayes—were implemented and compared using standard performance metrics. Gradient Boosting emerged as the best-performing model, achieving the highest prediction accuracy and identifying key features such as the presence of fuel stations, rest area category, and facility amenities as significant predictors of occupancy. The findings highlight the potential of interpretable machine learning methods for supporting infrastructure planning, particularly in identifying underutilized or overburdened facilities. This research demonstrates a data-driven approach for analyzing rest area usage and provides practical insights for optimizing facility distribution, enhancing road safety, and informing future investments in transport infrastructure. Full article
(This article belongs to the Special Issue Smart Mobility and Transportation Infrastructure)
Show Figures

Figure 1

18 pages, 825 KiB  
Article
Modeling Rollover Crash Risks: The Influence of Road Infrastructure and Traffic Stream Characteristics
by Abolfazl Khishdari, Hamid Mirzahossein, Xia Jin and Shahriar Afandizadeh
Infrastructures 2025, 10(2), 31; https://doi.org/10.3390/infrastructures10020031 - 27 Jan 2025
Cited by 1 | Viewed by 1271
Abstract
Rollover crashes are among the most prevalent types of accidents in developing countries. Various factors may contribute to the occurrence of rollover crashes. However, limited studies have simultaneously investigated both traffic stream and road-related variables. For instance, the effects of T-intersection density, U-turns, [...] Read more.
Rollover crashes are among the most prevalent types of accidents in developing countries. Various factors may contribute to the occurrence of rollover crashes. However, limited studies have simultaneously investigated both traffic stream and road-related variables. For instance, the effects of T-intersection density, U-turns, roadside parking lots, the entry and exit ramps of side roads, as well as traffic stream characteristics (e.g., standard deviation of vehicle speeds, speed violations, presence or absence of speed cameras, and road surface deterioration) have not been thoroughly explored in previous research. Additionally, the simultaneous modeling of crash frequency and intensity remains underexplored. This study examines single-vehicle rollover crashes in Yazd Province, located in central Iran, as a case study and simultaneously evaluates all the variables. A dataset comprising three years of crash data (2015–2017) was collected and analyzed. A crash index was developed based on the weight of crash intensity, road type, road length (as dependent variables), and road infrastructure and traffic stream properties (as independent variables). Initially, the dataset was refined to determine the significance of explanatory variables on the crash index. Correlation analysis was conducted to assess the linear independence between variable pairs using the variance inflation factor (VIF). Subsequently, various models were compared based on goodness of fit (GOF) indicators and odds ratio (OR) calculations. The results indicated that among ten crash modeling techniques, namely, Poisson, negative binomial (NB), zero-truncated Poisson (ZTP), zero-truncated negative binomial (ZTNB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), fixed-effect Poisson (FEP), fixed-effect negative binomial (FENB), random-effect Poisson (REP), and random-effect negative binomial (RENB), the FENB model outperformed the others. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) values for the FENB model were 1305.7 and 1393.6, respectively, demonstrating its superior performance. The findings revealed a declining trend in the frequency and severity of rollover crashes. Full article
Show Figures

Figure 1

14 pages, 15950 KiB  
Article
Uncertainty-Aware Depth Network for Visual Inertial Odometry of Mobile Robots
by Jimin Song, HyungGi Jo, Yongsik Jin and Sang Jun Lee
Sensors 2024, 24(20), 6665; https://doi.org/10.3390/s24206665 - 16 Oct 2024
Cited by 2 | Viewed by 4447
Abstract
Simultaneous localization and mapping, a critical technology for enabling the autonomous driving of vehicles and mobile robots, increasingly incorporates multi-sensor configurations. Inertial measurement units (IMUs), known for their ability to measure acceleration and angular velocity, are widely utilized for motion estimation due to [...] Read more.
Simultaneous localization and mapping, a critical technology for enabling the autonomous driving of vehicles and mobile robots, increasingly incorporates multi-sensor configurations. Inertial measurement units (IMUs), known for their ability to measure acceleration and angular velocity, are widely utilized for motion estimation due to their cost efficiency. However, the inherent noise in IMU measurements necessitates the integration of additional sensors to facilitate spatial understanding for mapping. Visual–inertial odometry (VIO) is a prominent approach that combines cameras with IMUs, offering high spatial resolution while maintaining cost-effectiveness. In this paper, we introduce our uncertainty-aware depth network (UD-Net), which is designed to estimate both depth and uncertainty maps. We propose a novel loss function for the training of UD-Net, and unreliable depth values are filtered out to improve VIO performance based on the uncertainty maps. Experiments were conducted on the KITTI dataset and our custom dataset acquired from various driving scenarios. Experimental results demonstrated that the proposed VIO algorithm based on UD-Net outperforms previous methods with a significant margin. Full article
Show Figures

Figure 1

20 pages, 4983 KiB  
Article
Parking Lot Traffic Prediction Based on Fusion of Multifaceted Spatio-Temporal Features
by Lechuan Zhang, Bin Wang, Qian Zhang, Sulei Zhu and Yan Ma
Sensors 2024, 24(15), 4971; https://doi.org/10.3390/s24154971 - 31 Jul 2024
Viewed by 1928
Abstract
With the rapid growth of population and vehicles, issues such as traffic congestion are becoming increasingly apparent. Parking guidance and information (PGI) systems are becoming more critical, with one of the most important tasks being the prediction of traffic flow in parking lots. [...] Read more.
With the rapid growth of population and vehicles, issues such as traffic congestion are becoming increasingly apparent. Parking guidance and information (PGI) systems are becoming more critical, with one of the most important tasks being the prediction of traffic flow in parking lots. Predicting parking traffic can effectively improve parking efficiency and alleviate traffic congestion, traffic accidents, and other problems. However, due to the complex characteristics of parking spatio-temporal data, high levels of noise, and the intricate influence of external factors, there are three challenges to predicting parking traffic in a city effectively: (1) how to better model the nonlinear, asymmetric, and complex spatial relationships among parking lots; (2) how to model the temporal autocorrelation of parking flow more accurately for each parking lot, whether periodic or aperiodic; and (3) how to model the correlation between external influences, such as holiday weekends, POIs (points of interest), and weather factors. In this context, this paper proposes a parking lot traffic prediction model based on the fusion of multifaceted spatio-temporal features (MFF-STGCN). The model consists of a feature embedding module, a spatio-temporal attention mechanism module, and a spatio-temporal convolution module. The feature embedding module embeds external features such as weekend holidays, geographic POIs, and weather features into the time series, the spatio-temporal attention mechanism module captures the dynamic spatio-temporal correlation of parking traffic, and the spatio-temporal convolution module captures the spatio-temporal features by using graph convolution and gated recursion units. Finally, the outputs of adjacent time series, daily series, and weekly series are weighted and fused to obtain the final prediction results, thus predicting the parking lot traffic flow more accurately and effectively. Results on real datasets demonstrate that the proposed model enhances prediction performance. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 3649 KiB  
Article
Foreign Object Debris Detection on Wireless Electric Vehicle Charging Pad Using Machine Learning Approach
by Narayanamoorthi Rajamanickam, Dominic Savio Abraham, Roobaea Alroobaea and Waleed Mohammed Abdelfattah
Processes 2024, 12(8), 1574; https://doi.org/10.3390/pr12081574 - 27 Jul 2024
Cited by 3 | Viewed by 1665
Abstract
Foreign object debris (FOD) includes any unwanted and unintentional material lying on the charging lane or parking lots, posing a risk to the wireless charging system, the vehicle, or the people inside. FOD in an Electric Vehicle (EV) wireless charging system can cause [...] Read more.
Foreign object debris (FOD) includes any unwanted and unintentional material lying on the charging lane or parking lots, posing a risk to the wireless charging system, the vehicle, or the people inside. FOD in an Electric Vehicle (EV) wireless charging system can cause problems, including decreased charging efficiency, safety risks, charging system damage, communication issues, and health risks. To address this problem, this paper proposes the deep learning object detection network approach of using YOLOv4 (You Only Look Once), which is a single-shot detector. Additionally, for real-time implementation, YOLOv4-Tiny is suggested, which is a compressed version of YOLOv4 designed for devices with low computational power. YOLOv4-Tiny enables faster inferences and facilitates the deployment of FOD detectors on edge devices. The algorithm is trained using the FOD dataset, consisting of images of common debris on runways or taxiways. Furthermore, utilizing the concept of transfer learning, the last few layers of the pre-trained YOLOv4 model are modified using the COCO (Common Objects in Context) dataset to transfer features to the new network and retrain the model on the FOD dataset. The results obtained using this YOLOv4 model yielded a precision rate of 99.05%, while the results from YOLOv4-Tiny achieved a precision rate of 97.74%, with an average inference time of 150 ms under the ambient light and weather conditions. Full article
Show Figures

Figure 1

18 pages, 6924 KiB  
Article
Dynamic Spatio-Temporal Adaptive Graph Convolutional Recurrent Networks for Vacant Parking Space Prediction
by Liangpeng Gao, Wenli Fan and Wenliang Jian
Appl. Sci. 2024, 14(13), 5927; https://doi.org/10.3390/app14135927 - 7 Jul 2024
Viewed by 1395
Abstract
The prediction of vacant parking spaces (VPSs) can reduce the time drivers spend searching for parking, thus alleviating traffic congestion. However, previous studies have mostly focused on modeling the temporal features of VPSs using historical data, neglecting the complex and extensive spatial characteristics [...] Read more.
The prediction of vacant parking spaces (VPSs) can reduce the time drivers spend searching for parking, thus alleviating traffic congestion. However, previous studies have mostly focused on modeling the temporal features of VPSs using historical data, neglecting the complex and extensive spatial characteristics of different parking lots within the transportation network. This is mainly due to the lack of direct physical connections between parking lots, making it challenging to quantify the spatio-temporal features among them. To address this issue, we propose a dynamic spatio-temporal adaptive graph convolutional recursive network (DSTAGCRN) for VPS prediction. Specifically, DSTAGCRN divides VPS data into seasonal and periodic trend components and combines daily and weekly information with node embeddings using the dynamic parameter-learning module (DPLM) to generate dynamic graphs. Then, by integrating gated recurrent units (GRUs) with the parameter-learning graph convolutional recursive module (PLGCRM) of DPLM, we infer the spatio-temporal dependencies for each time step. Furthermore, we introduce a multihead attention mechanism to effectively capture and fuse the spatio-temporal dependencies and dynamic changes in the VPS data, thereby enhancing the prediction performance. Finally, we evaluate the proposed DSTAGCRN on three real parking datasets. Extensive experiments and analyses demonstrate that the DSTAGCRN model proposed in this study not only improves the prediction accuracy but can also better extract the dynamic spatio-temporal characteristics of available parking space data in multiple parking lots. Full article
(This article belongs to the Special Issue Intelligent Transportation System in Smart City)
Show Figures

Figure 1

14 pages, 8041 KiB  
Article
Vehicle-Type Recognition Method for Images Based on Improved Faster R-CNN Model
by Tong Bai, Jiasai Luo, Sen Zhou, Yi Lu and Yuanfa Wang
Sensors 2024, 24(8), 2650; https://doi.org/10.3390/s24082650 - 21 Apr 2024
Cited by 9 | Viewed by 2093
Abstract
The rapid increase in the number of vehicles has led to increasing traffic congestion, traffic accidents, and motor vehicle crime rates. The management of various parking lots has also become increasingly challenging. Vehicle-type recognition technology can reduce the workload of humans in vehicle [...] Read more.
The rapid increase in the number of vehicles has led to increasing traffic congestion, traffic accidents, and motor vehicle crime rates. The management of various parking lots has also become increasingly challenging. Vehicle-type recognition technology can reduce the workload of humans in vehicle management operations. Therefore, the application of image technology for vehicle-type recognition is of great significance for integrated traffic management. In this paper, an improved faster region with convolutional neural network features (Faster R-CNN) model was proposed for vehicle-type recognition. Firstly, the output features of different convolution layers were combined to improve the recognition accuracy. Then, the average precision (AP) of the recognition model was improved through the contextual features of the original image and the object bounding box optimization strategy. Finally, the comparison experiment used the vehicle image dataset of three vehicle types, including cars, sports utility vehicles (SUVs), and vans. The experimental results show that the improved recognition model can effectively identify vehicle types in the images. The AP of the three vehicle types is 83.2%, 79.2%, and 78.4%, respectively, and the mean average precision (mAP) is 1.7% higher than that of the traditional Faster R-CNN model. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 10144 KiB  
Article
CMCA-YOLO: A Study on a Real-Time Object Detection Model for Parking Lot Surveillance Imagery
by Ning Zhao, Ke Wang, Jiaxing Yang, Fengkai Luan, Liping Yuan and Hu Zhang
Electronics 2024, 13(8), 1557; https://doi.org/10.3390/electronics13081557 - 19 Apr 2024
Cited by 6 | Viewed by 4087
Abstract
In the accelerated phase of urbanization, intelligent surveillance systems play an increasingly pivotal role in enhancing urban management efficiency, particularly in the realm of parking lot administration. The precise identification of small and overlapping targets within parking areas is of paramount importance for [...] Read more.
In the accelerated phase of urbanization, intelligent surveillance systems play an increasingly pivotal role in enhancing urban management efficiency, particularly in the realm of parking lot administration. The precise identification of small and overlapping targets within parking areas is of paramount importance for augmenting parking efficiency and ensuring the safety of vehicles and pedestrians. To address this challenge, this paper delves into and amalgamates cross-attention and multi-spectral channel attention mechanisms, innovatively designing the Criss-cross and Multi-spectral Channel Attention (CMCA) module and subsequently refining the CMCA-YOLO model, specifically optimized for parking lot surveillance scenarios. Through meticulous analysis of pixel-level contextual information and frequency characteristics, the CMCA-YOLO model achieves significant advancements in accuracy and speed for detecting small and overlapping targets, exhibiting exceptional performance in complex environments. Furthermore, the study validates the research on a proprietary dataset of parking lot scenes comprising 4502 images, where the CMCA-YOLO model achieves an mAP@0.5 score of 0.895, with a pedestrian detection accuracy that surpasses the baseline model by 5%. Comparative experiments and ablation studies with existing technologies thoroughly demonstrate the CMCA-YOLO model’s superiority and advantages in handling complex surveillance scenarios. Full article
Show Figures

Figure 1

24 pages, 14284 KiB  
Article
Mask2Former with Improved Query for Semantic Segmentation in Remote-Sensing Images
by Shichen Guo, Qi Yang, Shiming Xiang, Shuwen Wang and Xuezhi Wang
Mathematics 2024, 12(5), 765; https://doi.org/10.3390/math12050765 - 4 Mar 2024
Cited by 9 | Viewed by 6481
Abstract
Semantic segmentation of remote sensing (RS) images is vital in various practical applications, including urban construction planning, natural disaster monitoring, and land resources investigation. However, RS images are captured by airplanes or satellites at high altitudes and long distances, resulting in ground objects [...] Read more.
Semantic segmentation of remote sensing (RS) images is vital in various practical applications, including urban construction planning, natural disaster monitoring, and land resources investigation. However, RS images are captured by airplanes or satellites at high altitudes and long distances, resulting in ground objects of the same category being scattered in various corners of the image. Moreover, objects of different sizes appear simultaneously in RS images. For example, some objects occupy a large area in urban scenes, while others only have small regions. Technically, the above two universal situations pose significant challenges to the segmentation with a high quality for RS images. Based on these observations, this paper proposes a Mask2Former with an improved query (IQ2Former) for this task. The fundamental motivation behind the IQ2Former is to enhance the capability of the query of Mask2Former by exploiting the characteristics of RS images well. First, we propose the Query Scenario Module (QSM), which aims to learn and group the queries from feature maps, allowing the selection of distinct scenarios such as the urban and rural areas, building clusters, and parking lots. Second, we design the query position module (QPM), which is developed to assign the image position information to each query without increasing the number of parameters, thereby enhancing the model’s sensitivity to small targets in complex scenarios. Finally, we propose the query attention module (QAM), which is constructed to leverage the characteristics of query attention to extract valuable features from the preceding queries. Being positioned between the duplicated transformer decoder layers, QAM ensures the comprehensive utilization of the supervisory information and the exploitation of those fine-grained details. Architecturally, the QSM, QPM, and QAM as well as an end-to-end model are assembled to achieve high-quality semantic segmentation. In comparison to the classical or state-of-the-art models (FCN, PSPNet, DeepLabV3+, OCRNet, UPerNet, MaskFormer, Mask2Former), IQ2Former has demonstrated exceptional performance across three publicly challenging remote-sensing image datasets, 83.59 mIoU on the Vaihingen dataset, 87.89 mIoU on Potsdam dataset, and 56.31 mIoU on LoveDA dataset. Additionally, overall accuracy, ablation experiment, and visualization segmentation results all indicate IQ2Former validity. Full article
(This article belongs to the Special Issue Advanced Research in Data-Centric AI)
Show Figures

Figure 1

16 pages, 24162 KiB  
Article
Monocular Depth Estimation from a Fisheye Camera Based on Knowledge Distillation
by Eunjin Son, Jiho Choi, Jimin Song, Yongsik Jin and Sang Jun Lee
Sensors 2023, 23(24), 9866; https://doi.org/10.3390/s23249866 - 16 Dec 2023
Cited by 5 | Viewed by 3962
Abstract
Monocular depth estimation is a task aimed at predicting pixel-level distances from a single RGB image. This task holds significance in various applications including autonomous driving and robotics. In particular, the recognition of surrounding environments is important to avoid collisions during autonomous parking. [...] Read more.
Monocular depth estimation is a task aimed at predicting pixel-level distances from a single RGB image. This task holds significance in various applications including autonomous driving and robotics. In particular, the recognition of surrounding environments is important to avoid collisions during autonomous parking. Fisheye cameras are adequate to acquire visual information from a wide field of view, reducing blind spots and preventing potential collisions. While there have been increasing demands for fisheye cameras in visual-recognition systems, existing research on depth estimation has primarily focused on pinhole camera images. Moreover, depth estimation from fisheye images poses additional challenges due to strong distortion and the lack of public datasets. In this work, we propose a novel underground parking lot dataset called JBNU-Depth360, which consists of fisheye camera images and their corresponding LiDAR projections. Our proposed dataset was composed of 4221 pairs of fisheye images and their corresponding LiDAR point clouds, which were obtained from six driving sequences. Furthermore, we employed a knowledge-distillation technique to improve the performance of the state-of-the-art depth-estimation models. The teacher–student learning framework allows the neural network to leverage the information in dense depth predictions and sparse LiDAR projections. Experiments were conducted on the KITTI-360 and JBNU-Depth360 datasets for analyzing the performance of existing depth-estimation models on fisheye camera images. By utilizing the self-distillation technique, the AbsRel and SILog error metrics were reduced by 1.81% and 1.55% on the JBNU-Depth360 dataset. The experimental results demonstrated that the self-distillation technique is beneficial to improve the performance of depth-estimation models. Full article
(This article belongs to the Special Issue Advances in Sensor Related Technologies for Autonomous Driving)
Show Figures

Figure 1

13 pages, 1676 KiB  
Article
Analyzing Parking Demand Characteristics Using a Bayesian Model Averaging
by Bo Liu, Peng Zhang, Shubo Wu, Yajie Zou, Linbo Li and Shuning Tang
Appl. Sci. 2023, 13(24), 13245; https://doi.org/10.3390/app132413245 - 14 Dec 2023
Cited by 1 | Viewed by 1569
Abstract
Parking duration analysis is an important aspect of evaluating parking demand. Identifying accurate distribution characteristics of parking duration can not only enhance parking efficiency and parking facility planning, but also provide essential support for parking delicacy management. Previous studies have proposed various statistical [...] Read more.
Parking duration analysis is an important aspect of evaluating parking demand. Identifying accurate distribution characteristics of parking duration can not only enhance parking efficiency and parking facility planning, but also provide essential support for parking delicacy management. Previous studies have proposed various statistical distributions to depict parking duration data. However, it is difficult to find a certain type of distribution to describe the characteristics of parking duration in diverse parking facilities, since model uncertainty is caused by stochastic parking behaviors and diverse parking environments. To address the model uncertainty, a Bayesian model averaging (BMA) was applied to integrate the advantages of different statistical distributions to depict parking duration characteristics. The parking dataset was collected from a commercial parking lot in Chengdu, China, and the dataset was categorized into two groups (i.e., temporary users and long-term users) to analyze. A set of statistical distributions was chosen as candidate models, and their corresponding unknown parameters were estimated. The posterior model probability for each candidate model was calculated according to the goodness-of-fit (GOF) metric. The findings of the study illustrate that there is no universally applicable distribution form (e.g., log-normal distribution) to depict the parking duration distribution for both user types, whereas the BMA approach assigns weights to candidate models and always provides an accurate description of the parking duration characteristics. The parking duration analysis is useful for improving parking management strategies and optimizing parking pricing policies. Full article
(This article belongs to the Special Issue AI Techniques in Intelligent Transport Systems)
Show Figures

Figure 1

18 pages, 1606 KiB  
Article
A Multi-View Approach for Regional Parking Occupancy Prediction with Attention Mechanisms
by Wei Ye, Haoxuan Kuang, Xinjun Lai and Jun Li
Mathematics 2023, 11(21), 4510; https://doi.org/10.3390/math11214510 - 1 Nov 2023
Cited by 6 | Viewed by 1921
Abstract
The near-future parking space availability is informative for the formulation of parking-related policy in urban areas. Plenty of studies have contributed to the spatial–temporal prediction for parking occupancy by considering the adjacency between parking lots. However, their similarities in properties remain unspecific. For [...] Read more.
The near-future parking space availability is informative for the formulation of parking-related policy in urban areas. Plenty of studies have contributed to the spatial–temporal prediction for parking occupancy by considering the adjacency between parking lots. However, their similarities in properties remain unspecific. For example, parking lots with similar functions, though not adjacent, usually have similar patterns of occupancy changes, which can help with the prediction as well. To fill the gap, this paper proposes a multi-view and attention-based approach for spatial–temporal parking occupancy prediction, namely hybrid graph convolution network with long short-term memory and temporal pattern attention (HGLT). In addition to the local view of adjacency, we construct a similarity matrix using the Pearson correlation coefficient between parking lots as the global view. Then, we design an integrated neural network focusing on graph structure and temporal pattern to assign proper weights to the different spatial features in both views. Comprehensive evaluations on a real-world dataset show that HGLT reduces prediction error by about 30.14% on average compared to other state-of-the-art models. Moreover, it is demonstrated that the global view is effective in predicting parking occupancy. Full article
(This article belongs to the Special Issue Advanced Methods in Intelligent Transportation Systems)
Show Figures

Figure 1

26 pages, 3790 KiB  
Article
Parking Lot Occupancy Detection with Improved MobileNetV3
by Yusufbek Yuldashev, Mukhriddin Mukhiddinov, Akmalbek Bobomirzaevich Abdusalomov, Rashid Nasimov and Jinsoo Cho
Sensors 2023, 23(17), 7642; https://doi.org/10.3390/s23177642 - 3 Sep 2023
Cited by 15 | Viewed by 6028 | Correction
Abstract
In recent years, parking lot management systems have garnered significant research attention, particularly concerning the application of deep learning techniques. Numerous approaches have emerged for tackling parking lot occupancy challenges using deep learning models. This study contributes to the field by addressing a [...] Read more.
In recent years, parking lot management systems have garnered significant research attention, particularly concerning the application of deep learning techniques. Numerous approaches have emerged for tackling parking lot occupancy challenges using deep learning models. This study contributes to the field by addressing a critical aspect of parking lot management systems: accurate vehicle occupancy determination in specific parking spaces. We propose an advanced solution by harnessing an optimized MobileNetV3 model with custom architectural enhancements, trained on the CNRPark-EXT and PKLOT datasets. The model processes individual parking space patches from real-time video feeds, providing occupancy classification for each patch, identifying occupied or available spaces. Our architectural modifications include the integration of a convolutional block attention mechanism in place of the native attention module and the adoption of blueprint separable convolutions instead of the traditional depth-wise separable convolutions. In terms of performance, our proposed model exhibits superior results when benchmarked against state-of-the-art methods. Achieving an exceptional area under the ROC curve (AUC) value of 0.99 for most experiments with the PKLot dataset, our enhanced MobileNetV3 showcases its exceptional discriminatory power in binary classification. Benchmarked against the CarNet and mAlexNet models, representative of previous state-of-the-art solutions, our proposed model showcases exceptional performance. During evaluations using the combined CNRPark-EXT and PKLot datasets, the proposed model attains an impressive average accuracy of 98.01%, while CarNet achieves 97.03%. Beyond achieving high accuracy and precision comparable to previous models, the proposed model exhibits promise for real-time applications. This work contributes to the advancement of parking lot occupancy detection by offering a robust and efficient solution with implications for urban mobility enhancement and resource optimization. Full article
(This article belongs to the Special Issue Computer Vision for Smart Cities)
Show Figures

Figure 1

19 pages, 10551 KiB  
Article
Convolutional Neural Network-Based Approximation of Coverage Path Planning Results for Parking Lots
by Andrius Kriščiūnas, Dalia Čalnerytė, Tautvydas Fyleris, Tadas Jurgutis, Dalius Makackas and Rimantas Barauskas
ISPRS Int. J. Geo-Inf. 2023, 12(8), 313; https://doi.org/10.3390/ijgi12080313 - 30 Jul 2023
Cited by 2 | Viewed by 1696
Abstract
Parking lots have wide variety of shapes because of surrounding environment and the objects inside the parking lot, such as trees, manholes, etc. In the case of paving the parking lot, as much area as possible should be covered by the construction vehicle [...] Read more.
Parking lots have wide variety of shapes because of surrounding environment and the objects inside the parking lot, such as trees, manholes, etc. In the case of paving the parking lot, as much area as possible should be covered by the construction vehicle to reduce the need for manual workforce. Thus, the coverage path planning (CPP) problem is formulated. The CPP of the parking lots is a complex problem with constraints regarding various issues, such as dimensions of the construction vehicle and data processing time and resources. A strategy based on convolutional neural networks (CNNs) for the fast estimation of the CPP’s average track length, standard deviation of track lengths, and number of tracks was suggested in this article. Two datasets of different complexity were generated to analyze the suggested approach. The first case represented a simple case with a working polygon constructed out of several rectangles with applied shear and rotation transformations. The second case represented a complex geometry generated out of rectangles and ellipses, narrow construction area, and obstacles. The results were compared with the linear regression models, with the area of the working polygon as an input. For both generated datasets, the strategy to use an approximator to estimate outcomes led to more accurate results compared to the respective linear regression models. The suggested approach enables us to have rough estimates of a large number of geometries in a short period of time and organize the working process, for example, planning construction time and price, choosing the best decomposition of the working polygon, etc. Full article
Show Figures

Figure 1

Back to TopTop