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Abstract: Parking duration analysis is an important aspect of evaluating parking demand. Identifying
accurate distribution characteristics of parking duration can not only enhance parking efficiency
and parking facility planning, but also provide essential support for parking delicacy management.
Previous studies have proposed various statistical distributions to depict parking duration data.
However, it is difficult to find a certain type of distribution to describe the characteristics of park-
ing duration in diverse parking facilities, since model uncertainty is caused by stochastic parking
behaviors and diverse parking environments. To address the model uncertainty, a Bayesian model
averaging (BMA) was applied to integrate the advantages of different statistical distributions to
depict parking duration characteristics. The parking dataset was collected from a commercial parking
lot in Chengdu, China, and the dataset was categorized into two groups (i.e., temporary users and
long-term users) to analyze. A set of statistical distributions was chosen as candidate models, and
their corresponding unknown parameters were estimated. The posterior model probability for each
candidate model was calculated according to the goodness-of-fit (GOF) metric. The findings of the
study illustrate that there is no universally applicable distribution form (e.g., log-normal distribution)
to depict the parking duration distribution for both user types, whereas the BMA approach assigns
weights to candidate models and always provides an accurate description of the parking duration
characteristics. The parking duration analysis is useful for improving parking management strategies
and optimizing parking pricing policies.

Keywords: applied sciences; traffic management; parking delicacy management; parking demand;
parking duration; Bayesian model averaging

1. Introduction

Amidst rapid socioeconomic development, there has been a notable upsurge in private
car ownership. This surge, however, has not been met with a corresponding expansion in
parking infrastructure. Consequently, the parking supply–demand imbalance is becoming
increasingly acute, resulting in a pervasive issue of parking challenges [1–3]. Park-and-ride
facilities provide a solution to parking problems in cities [4]. They are typically located
at the outskirts of cities, which allows users to park and transfer to public transport to
enter the city center. However, the choice of park-and-ride facilities is a complicated issue,
influenced by numerous factors. Macioszek et al. [5] attempted to identify and quantify the
factors determining the choice of park-and-ride facilities using a multinomial logit model.

Another solution to address the parking supply–demand disparity is to improve the
requirement for comprehensive, secure, and delicate management of parking facilities [6,7].
However, the delicacy of parking management necessitates more precise and compre-
hensive parking demand information. Therefore, accurately depicting parking demand
characteristics, such as parking arrival and departure times, parking duration, parking
peak ratio, etc., can provide crucial support for delicacy parking management, and has
garnered much attention from scholars [8–10].
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Parking duration, a crucial parking demand parameter, is defined as the amount of time
a vehicle parks in a parking lot. Parking duration modeling serves as an essential procedure
in parking demand analysis, as it allows for the discovery of intrinsic parking demand
patterns [11–13]. Nevertheless, due to the sensitivity of parking duration, it is susceptible
to various factors [14], such as the socioeconomic status of travelers, travel cost, parking fee,
driving characteristics, etc. Parmar et al. [15] proposed an artificial neural network (ANN) to
capture the interrelationship between driver characteristics and parking duration considering
two land uses. These reveal that parking duration exhibits considerable uncertainty, and
accurately capturing its statistical characteristics presents a significant challenge [16–18]. In
addition, an accurate description of parking duration distribution can improve parking
efficiency, parking facility planning and management, etc.

In the context of analyzing parking characteristics, parking duration frequently serves as
a metric to elucidate parking traits by delineating statistical distribution characteristics [19,20].
To depict the parking characteristics exhibited by urban streets in commercial areas, Parmar
et al. [21] conducted statistical modeling to analyze parking indexes, parking occupancy,
parking duration, etc. Chen et al. [22] used parking indexes, peak parking ratio, parking
turnover rate, and parking duration to explore the parking characteristics of different types
of land use (i.e., market, business-and-office-oriented, and food-and-drink-oriented areas) in
central Shanghai city. Wang et al. [23] conducted an investigation of parking duration and
parking turnover in street parking, delving into the impact of parking pricing policies on
street parking characteristics. Nie et al. [24] focused on curb parking and designed a parking
demand estimation framework to accurately predict the parking demand distribution over
different parking durations for a road section. Sun et al. [25] investigated the influence of
parking time and duration on the choice of parking location and revealed increased turnover
rates in parking lots that have higher parking fees. However, while these studies investigated
the impacts of parking duration and described the parking demand characteristics, they do
not provide a precise description of the parking duration distribution.

In the area of statistical modeling of parking duration, several studies have endeavored
to capture the distribution characteristics through both parametric and non-parametric
approaches [26,27]. Mesfin et al. [28] considered the impacts of COVID-19 using a non-
parametric approach to characterize the parking arrival, departure, and duration distribu-
tion of an off-street parking area. Ran et al. [29] sought to employ the gamma distribution
and a gamma mixture model for delineating the parking duration distribution across dis-
tinct periods, with the additional objective of delving into the dynamic parking demand
characteristics. Li et al. [30] used the parking duration distribution to estimate the proba-
bility of parking durations using survival analysis, thereby facilitating nighttime parking
demand forecasting. Similarly, Zheng et al. [31] explored the distribution patterns of park-
ing arrival and departure times, and proposed using the Markov birth-and-death process
to model the distribution of short-term parking demand. Kalahasthi et al. [32] investigated
the parking patterns of trucks in urban freight loading zones by concurrently modeling
vehicle arrival rates and parking duration, where the parking duration was characterized
using survival analysis based on Weibull distribution. However, statistical distributions
(e.g., log-normal distribution, log-logistic distribution, etc.) were not employed to depict
the parking duration characteristics, and there was no specific distribution that could
adequately fit the diverse parking duration data.

In summary, previous studies have endeavored to characterize parking duration dis-
tribution patterns using statistical models like the gamma distribution and log-normal
distribution. However, it is important to note that the appropriateness of these distribu-
tions may vary depending on the parking duration data collected from the various parking
facilities. More specifically, because of the stochastic parking behavior and the diversity of
parking facilities, distinct distributions may be more appropriate for representing parking
duration, which is referred to as model uncertainty. Bayesian model averaging (BMA) is
renowned for its capacity to mitigate model uncertainty by generating a set of candidate
models and assigning weights to each component, where the weights reflect the contribu-
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tions of candidate modes to the ensemble over the given data [33–35]. Previous studies
have demonstrated that the BMA approach can offer a more dependable depiction of the
overall predictive uncertainty and produce a more accurately derived probability density
function and cumulative density function in probabilistic forecasts [36]. Wang et al. [37]
introduced a hybrid forecasting method for wind power, applying the BMA approach
to amalgamate three distinct machine learning techniques, thereby enhancing predictive
accuracy. Wu et al. [38] employed the BMA approach to delineate the characteristics of time
headway distribution in diverse traffic facilities, taking into account the model uncertainty.

This study applies a BMA approach to depict the characteristics of parking duration
distribution. The parking dataset was gathered within a commercial district, and it was
categorized into two user groups—temporary users and long-term users—for comprehen-
sive analysis. The rest of this paper is organized as follows. Section 2 provides a detailed
description of the data preparation. Section 3 describes the methodology, encompassing the
theory of the BMA approach and its implementation. Section 4 presents the experiments
and results, and the conclusion is summarized in Section 5.

2. Data Preparation

The parking demand dataset was collected in the parking lot of a High-tech International
Plaza in Chengdu from 1 to 31 January 2015. The plaza is a business office space with a
total area of 2.3× 105 m2 and 632 parking spots. The dataset provides details including the
username and specific time of entry and exit from the parking lot. The parking lot users can be
divided into two types: temporary users and long-term users. The temporary users primarily
comprise individuals needing short-term parking, such as shoppers and occasional visitors,
whereas the majority of long-term users are employees working in this plaza. For a business
office space, the parking demand is affected by whether it is a working day. Therefore, the
data collected under holiday and moderate/heavy rain conditions were removed.

For exploring the characteristics of parking demand, the time-varying curves depicting
parking arrival and departure patterns are illustrated in Figure 1. Note that the statistical
time interval is 30 min, and 48 data points are obtained per day. The curves indicate
the fluctuation trends of the mean value of parking arrival and departure vehicles over
statistical days during the time interval, and the shaded regions denote the upper and lower
range. It can be seen that the daily patterns of parking arrival and departure present similar
trends. For the parking arrival pattern, the majority of long-term users arrive between 8:00
and 10:00 for work. The curve of temporary users demonstrates a bimodal trend, with
peak hours occurring between 9:00 to 11:00 and 13:00 to 16:00. Regarding the parking
departure pattern, long-term users’ peak hours are from 17:00 to 19:00, whereas temporary
users’ peak periods are from 11:00 to 12:00 and 14:00 to 18:00. These patterns reveal that
the parking duration of long-term users tends to exceed that of temporary users, and the
predominant work hours of long-term users typically commence at 9:00 and conclude at
18:00. This observation aligns with real-world practices.

For a better understanding of the characteristics of the parking arrivals and departures,
several metrics (e.g., minimum, maximum, mean, etc.) are summarized in Table 1 to
depict the statistical characteristics. Note that the metrics are derived from data points
between 8:00 a.m. and 8:00 p.m. using mean values, as data points from other time periods
frequently include a considerable number of zeros. From Table 1, it can be observed that
the statistical characteristics of the parking arrival and departures for temporary users
exhibit similar trends, with comparable minimum, maximum, mean, and median values.
Similarly, these characteristics are also observed for long-term users. However, the standard
deviation for the parking departure is smaller than that for the parking arrival (the standard
deviations of temporary users are 10.307 for departure and 15.723 for arrival, and those of
long-term users are 11.411 and 15.723 for departure and arrival, respectively), which can be
attributed to the more dispersed nature of the parking arrival.
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Figure 1. Temporal patterns of parking arrival and departure. (a) Arrival. (b) Departure.

Table 1. Summary of parking arrivals and departures (unit: vehicle).

User Type Minimum Maximum Mean Median S.D. 1

Arrival
Temporary users 0.000 57.667 18.403 16.278 15.723
Long-term users 1.111 76.778 13.106 7.222 18.803

Departure Temporary users 0.000 40.333 18.093 18.667 10.307
Long-term users 1.333 51.889 12.903 9.333 11.411

1 S.D. denotes standard deviation.

Based on the recorded parking arrival and departure times, the parking duration
can be calculated. To enhance data quality, parking durations shorter than 0.25 h were
considered outliers and removed. Several statistical indicators (i.e., mean, median, standard
deviation) were employed to briefly analyze the statistical characteristics. The mean,
median, and standard deviation for both the temporary users and long-term users are
as follows: 2.683, 1.390, and 2.845 h for temporary users, and 7.352, 6.549, and 7.077 h
for long-term users. It is evident that the parking duration of long-term users exceeds
that of temporary users. Moreover, Figure 2 illustrates the kernel density function of the
parking duration. It can be observed that the parking duration of temporary users follows
a unimodal distribution, with the majority of parking duration samples falling within the
range of 0 to 5 h. Conversely, the parking duration of long-term users exhibits a bimodal
distribution, with parking duration samples spanning from 0 to 12 h.
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3. Methodology
3.1. Bayesian Model Averaging

To more effectively address the uncertainty of parking demand arising from stochastic
parking behavior, a BMA approach was applied to depict the characteristics of the parking
demand (i.e., parking duration). For a predefined model space denoted as M consisting of
K components (i.e., candidate models), represented as Mk{k = 1, 2, · · · , K}, the BMA ap-
proach weights individual candidate models and integrates the results into a deterministic
model. Let x denote the quantity of interest (i.e., an observation of parking duration) and
D denote an observed dataset; the posterior distribution (i.e., derived probability density
function of BMA) can be formulated as

p(x|D) =
K

∑
k=1

p(x|Mk, D)p(Mk|D) (1)

where p(x|Mk, D) represents the probability density function of x within the candidate model
Mk, and p(Mk|D) is the posterior model probability, which represents the likelihood of the
candidate model Mk being a correct model for the given observational dataset D. For a specific
model space M, ∑K

k=1 p(Mk|D) = 1, and p(Mk|D) can be calculated using Bayes rules:

p(Mk|D) =
p(Mk)p(D|Mk)

∑K
i=1 p(Mi)p(D|Mi)

(2)

where p(Mk) denotes the prior probability of the candidate model Mk when it is considered
as a “true” model, and p(D|Mk) represents the corresponding marginal likelihood, which
is formulated by

p(D|Mk) =
∫

p(D|θk, Mk)p(θk|Mk)dθk (3)

where θk is a parameter vector of the candidate model Mk, p(θk|Mk) denotes the prior
probability distribution of θk under candidate model Mk, and p(D|θk, Mk) is the likelihood
under the candidate model Mk and parameter θk. Then, the posterior mean E[x|D] and
variance Var[x|D] of the BMA approach are formulated as

E[x|D] =
K

∑
k=1

E(x|D, Mk)p(Mk|D) (4)

Var[x|D] =
K

∑
k=1

(
Var[x|D, Mk] + E

[
x
∣∣∣D, Mk]

2
)

p(Mk|D)− E
[

x
∣∣∣D]2 (5)

where E(x|D, Mk) and Var[x|D, Mk] denote the mean and variance of candidate model Mk
under the given dataset D, respectively.

3.2. Difficulties in Implementing BMA

While BMA holds considerable theoretical appeal, its implementation encounters two
pivotal challenges [39,40]. One pertains to judiciously determining the model space, which
entails the meticulous selection of a set of candidate models. The straightforward approach
entails encompassing all possible models within the model space, yet potentially entailing
substantial time consumption due to the large model space. Another alternative approach,
such as Occam’s window method and Markov Chain Monte Carlo Model Composition
(MC3), determines a set of appropriate candidate models using predefined criteria (e.g.,
Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), etc.). This approach
helps conserve resources by eliminating models that do not perform effectively.

The second practical challenge posed by the BMA approach revolves around the arduous
computation of marginal likelihood. The calculation of marginal likelihood may prove to be
analytically intractable, particularly in cases where closed-form integrals are not attainable
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(see Equation (3)). Consequently, a variety of approaches have been developed to calculate
or approximate the marginal likelihood, such as Laplace approximation, harmonic mean
estimator, and so on. The Laplace approximation calculates the marginal likelihood at either
the posterior mode or parameter estimates aligned with the maximum likelihood estimation.
The harmonic mean estimator employs a Monte Carlo (MC) numerical approach to appraise
the marginal likelihood or the ratio thereof. Monte Carlo integration draws samples from the
specified distribution and aggregates these samples to approximate expectations.

3.3. Model Space Determination

The initial phase in executing the BMA approach involves the meticulous selection
of a set of candidate models as the model space. According to the empirical histograms
of the observed data, the parking duration of temporary users shows a unimodal trend,
while that of long-term users displays a bimodal trend. Therefore, several commonly used
single distributions were chosen as the candidate models to analyze the characteristics of
the parking duration of temporary users, including normal, log-normal, gamma, Weibull,
log-logistic, Burr, and generalized extreme value (GEV) distributions, as shown in Table 2.

Table 2. Summary of candidate models.

Distribution Probability Density
Function Parameter

Normal f (x|µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 µ ∈ (−∞, ∞), σ > 0

Log-normal f (x|µ, σ) = 1
xσ
√

2π
e−

(ln x−µ)2

2σ2 µ ∈ (−∞, ∞), σ > 0

Gamma 1 f (x|α, β) = 1
βα ·Γ(α) xα−1e−

x
β α > 0, β > 0

Weibull f (x|α, β) = α
β

(
x
β

)α−1
e−(

x
β )

α
α > 0, β > 0

Log-logistic f (x|µ, σ) = 1
σx ·

e
ln x−µ

σ(
1−e

ln x−µ
σ

)2
µ > 0, σ > 0

Burr f (x|α, β, γ) =
βγ( x

α )
β

x
[
1+( x

α )
β
]γ+1

α > 0, β > 0, γ > 0

GEV
f (x|k, µ, σ) =

1
σ

(
1 + k x−µ

σ

)−1− 1
k ·e
−(1+k x−µ

σ )
− 1

k k 6= 0, 1 + k x−µ
σ > 0

GIG 2
f (x|µ, σ, ν) =(

c
µ

)ν
·
[

xν−1

2κv

(
1

σ2

)
]

e−
1

2σ2 (
cx
µ + µ

cx )

µ > 0,σ > 0,
ν ∈ (−∞, ∞)

1 Γ(α) represents the gamma function. 2 κv is the modified Bessel function of the third kind with order ν, and

c =
[
κv+1

(
1

σ2

)][
κv

(
1

σw

)]−1
.

In addition, several mixture models were chosen as candidate models to depict the
parking duration characteristics of long-term users. The general formulation of the mixture
model encompassing two components is formulated as

f (x|θ) =
2

∑
i=1

ω1· f1(x|θ1) + ω2· f2(x|θ2) (6)

where f (x|θ), f1(x|θ1), and f2(x|θ2) denote the probability density function of the mixture
model and the two components under the corresponding parameter vectors (i.e., θ, θ1, and
θ2), respectively. ω1 and ω2 are the weights for the two components, and ω1 + ω2 = 1.
Please note the parameter vector θ, which is represented as θ = [ω1, ω2, θ1, θ2]. In this study,
Gaussian (normal), log-normal, gamma, Weibull, log-logistic, and generalized inverse
Gaussian (GIG) distributions were chosen as components (the probability density functions
are provided in Table 1), and the corresponding mixture models are denoted as the Gaussian
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mixture model (GauMM), log-normal mixture model (LognMM), gamma mixture model
(GamMM), Weibull mixture model (WeiMM), log-logistic mixture model (LoglMM), and
GIG mixture model (GIGMM).

3.4. Posterior Model Probability Calculation

The final step in implementing the BMA approach is to calculate the posterior model
probability (see Equation (2)), but this is hard to obtain due to the difficulty in calculating
the marginal likelihood. In addition to the approaches outlined in Section 3.2 for the ap-
proximate estimation of marginal likelihoods, an alternative approach is to use information
criteria (e.g., Watanabe–Akaike’s information criterion (WAIC), Pareto-smoothed impor-
tance sampling leave-one-out cross-validation (LOO)) to calculate the posterior model
probability [41]. Nevertheless, the parameters of the candidate models were estimated
using maximum likelihood estimation, which rendered the computation of WAIC and
LOO challenging. To sum up, AIC was employed for calculating the posterior model
probability [42], as shown in Equation (7):

p(Mk|D) =
e−

1
2 (AICk−AICmin)

∑K
i=1 e−

1
2 (AICi−AICmin)

(7)

where AICmin = min{AICi}, i = 1, 2, · · · , K.

3.5. BMA Implementation Procedure

For a better understanding of the principles of the BMA approach, we provide the
implementation procedures of BMA:

Step 1: Determination of model space. This step is to determine a set of candidate models
as the model space. The details are described in Section 3.3.
Step 2: Parameter estimation and evaluation of candidate models. According to the parking
duration dataset, the parameters of candidate models are estimated using different meth-
ods. More specifically, the maximum likelihood estimation and the expectation-maximum
methods are applied to estimate the parameters of single models and mixture models, re-
spectively. Then, several goodness-of-fit metrics are calculated, including the log-likelihood,
Akaike information criterion (AIC), and Bayesian information criterion.
Step 3: Calculate the posterior model probability. According to the AIC values from step 2,
the posterior model probability of each candidate model can be calculated using Equation (7).
Step 4: Generate the probability density function of BMA. As per the posterior model prob-
ability and the probability density functions of candidate models, the derived probability
density function of BMA can be obtained using Equation (1).

To sum up, the derived probability density function of BMA integrates the probability den-
sity functions of candidate models by assigning weights (i.e., posterior model probability) that
can overcome the model uncertainty in depicting parking duration distribution characteristics.

4. Experiments and Results
4.1. Parameter Estimation of Candidate Models

In the process of fitting candidate models, the maximum likelihood estimation was
applied to estimate the parameters of the candidate models for temporary users, and the
expectation-maximum algorithm was adopted to determine the parameters of the mixture
models. The results of the parameter estimation are summarized in Tables 3 and 4. For
single distributions (see Table 3), the parameters of most distributions display a noticeable
distinction. For instance, the parameters of the normal distribution are µ = 2.638 and
σ = 2.884, while the parameters of the log-normal distribution are µ = 0.466 and σ = 1.031.
However, the distributions with equivalent parameters obtained similar estimation results.
For example, the parameters of the gamma distribution and Weibull distribution are
α = 1.097, β = 2.446 and α = 1.008, β = 2.693, respectively. Here, α is the shape parameter,
and β denotes the scale parameter.
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Table 3. Parameter estimation results of candidate models for temporary users.

Distribution Parameter Estimate Distribution Parameter Estimate

Normal
µ 2.683 Log-logistic µ 0.430
σ 2.844 σ 0.618

Log-normal µ 0.466
Burr

α 0.839
σ 1.031 β 2.233

Gamma
α 1.097 γ 0.496

β 2.446
GEV

k 0.902

Weibull
α 1.008 µ 0.864
β 2.693 σ 0.963

Table 4. Parameter estimation results of candidate models for long-term users.

Distribution Parameter Estimate Distribution Parameter Estimate

GauMM
(ω1, ω2 ) (0.273, 0.727)

WeiMM
(ω1, ω2 ) (0.256, 0.744)

(µ1, µ2 ) (1.890, 9.406) (α1, α2 ) (10.843, 0.943)
(σ1, σ2 ) (1.128, 7.278) (β1, β2 ) (9.044, 6.710)

LognMM
(ω1, ω2 ) (0.283, 0.717)

LoglMM
(ω1, ω2 ) (0.298, 0.702)

(µ1, µ2 ) (2.171, 1.298) (µ1, µ2 ) (2.172, 1.299)
(σ1, σ2 ) (0.107, 1.163) (σ1, σ2 ) (0.068, 0.971)

GamMM
(ω1, ω2 ) (0.248, 0.752)

GIGMM

(ω1, ω2 ) (0.271, 0.729)
(α1, α2 ) (87.373, 0.982) (µ1, µ2 ) (8.729, 6.816)
(β1, β2 ) (0.100, 7.007) (σ1, σ2 ) (0.111, 1.548)

(ν1, ν2 ) (46.972, 0.263)

For mixture models (see Table 4), the weight parameters ωi for each component are non-
negligible and exhibit relatively similar values. Take log-normal distribution as an illustrative
example; the parameters exhibit the following values: ω1 = 0.283, ω2 = 0.717, µ1 = 2.171,
µ2 = 1.298, σ1 = 0.107, and σ2 = 1.163. Here, ω1 and ω2 correspond to the weights of the two
components. Similar results are obtained from other mixture models. This implies that these
mixture models can effectively capture the bimodal trend in the data.

4.2. BMA Results

After fitting the candidate models, the log-likelihood can be obtained according to the
given data. Then, AIC and BIC can be calculated, and the posterior model probability is
calculated using Equation (7). The results are summarized in Table 5. Note that a higher
posterior model probability indicates superior fitting performance for parking duration, while
the values equal to 0 indicate that they are extremely small, specifically less than 0.001.

For the parking duration of temporary users, the log-normal distribution shows the
best performance in describing the characteristics of parking duration, since it has the
highest posterior model probability with a value of 0.910. However, normal distribution
displays the worst fitting performance in the parking duration modeling, attributable to
an exceptionally low posterior model probability (i.e., below 0.001), the minimum log-
likelihood (with a value of −3710.85), and the maximum AIC and BIC values (measuring
7425.69 and 7436.20, respectively). Furthermore, GEV distribution is a viable option for
characterizing parking duration features, exhibiting a posterior model probability of 0.090.
According to the parking duration of long-term users, GIGMM obtains the maximum
posterior model probability with a value of 0.897, indicating that GIGMM is the best model
for depicting the characteristics of parking duration. In addition, it is noteworthy that
multiple models exhibit substantial posterior model probabilities. The LognMM model,
with a posterior model probability of 0.103, is also a suitable choice for modeling parking
duration among long-term users. This indicates that both GIGMM and LognMM are viable
options for modeling parking duration data (the values of posterior model probability are
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both larger than 0.001). These models illustrate that there is model uncertainty in describing
parking duration distribution among different user groups.

Table 5. Summary of BMA results for temporary users and long-term users.

User Type Distribution Log-
Likelihood AIC 1 BIC 1 PMP 2

Temporary
users

Normal −3710.85 7425.69 7436.20 0.000
Log-normal −2884.97 5773.94 5784.45 0.910

Gamma −2988.53 5981.06 5991.57 0.000
Weibull −2992.44 5988.88 5999.39 0.000

Log-logistic −2941.78 5887.56 5898.07 0.000
Burr −2933.35 5872.69 5881.20 0.000
GEV −2887.29 5780.58 5789.09 0.090

Long-term
users

GauMM −4761.90 9533.81 9560.62 0.000
LognMM −4447.30 8904.60 8931.41 0.103
GamMM −4497.93 9005.86 9032.68 0.000
WeiMM −4494.62 8999.23 9026.05 0.000
LoglMM −4472.90 8955.80 8982.62 0.000
GIGMM −4445.13 8900.27 8927.08 0.897

1 AIC = 2m− 2ln(L), BIC = mln(n)− 2ln(L), where m is the number of parameters, n denotes the number of
data samples, and L represents the likelihood. 2 PMP is posterior model probability.

In summary, it is difficult to find a certain distribution form to describe the characteris-
tics of parking duration for both temporary and long-term users. Due to the uncertainty in
parking duration, it exhibits various distributional characteristics, making it challenging to
characterize its properties with a specific distribution. It is important to highlight that the
dissimilarity between log-normal distribution and GEV distribution for temporary users
(LognMM and GIGMM for long-term users) is minimal, and one must exercise caution
when considering a distribution as the best model, as a distinct goodness-of-fit function
(e.g., WAIC, LOO) may yield different best models in depicting parking duration character-
istics. However, the BMA approach always integrates the strengths of acceptable candidate
models based on posterior model probability and provides universally reliable and robust
modeling of parking duration distribution with high accuracy.

According to the posterior model probability, the derived probability density function
and cumulative density function of the BMA approach can be determined using Equation
(1). The fitting performance of the parking duration of temporary and long-term users is
illustrated in Figures 3 and 4. The histogram and dotted line (black) are the probability
density function and cumulative density function of the observed data, and the dotted
lines (green) and the curves (red) represent those of the best model and derived BMA
approach. It can be observed that the parking duration distribution of temporary users
is skewed and unimodal; the distribution of long-term users is long-tailed and exhibits
a bimodal skewness. The log-normal distribution provides a precise fitting performance
to parking duration data for temporary users compared with other candidate models. In
contrast, GIGMM exhibits superior fitting performance compared with other models for
long-term users. The derived BMA approach seamlessly integrates acceptable candidate
models and provides accurate depictions of parking duration data for both temporary and
long-term users. These findings illustrate the universal reliability and robustness of the
BMA approach in modeling parking duration distribution.
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5. Conclusions

An accurate description of parking duration distribution serves as a specific reflection
of parking demand characteristics, which can enhance parking efficiency and parking
facility planning and support parking delicacy management. This study aimed to describe
the characteristics of parking duration distribution using the BMA approach for two groups
of users (i.e., temporary users and long-term users). The main conclusions are summarized
as follows: (1) The log-normal distribution is the best model for depicting the parking dura-
tion of temporary users, with a posterior model probability of 0.910, while GIGMM is more
suitable for characterizing the parking duration distribution of long-term users due to ob-
taining the largest posterior model probability of 0.897. (2) The BMA approach consistently
exhibits universal reliability in accurately characterizing parking duration distribution by
assigning weights to candidate models based on their posterior model probability, which
can integrate the advantages of acceptable models. The accurate description of parking
duration distribution is essential not only for supporting the planning and maneuverability
of parking resources, but also for guiding policies related to parking fees. More specifically,
the proportion of short-term and long-term parking spots can be reasonably allocated
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according to the parking duration distribution, and differential charging strategies can be
implemented to encourage short-term parking or restrict long-term parking.

Although the BMA approach yields favorable results in modeling parking duration
and offers an intriguing alternative for exploring parking demand characteristics, there is a
minor limitation that the candidate models considered in modeling the parking duration
may not be exhaustive. In future work, additional parking demand datasets from different
parking facilities and locations (e.g., surface parking lots in business zones) and a broader
selection of suitable distributions will be considered as candidate models. This will serve
to further validate the effectiveness and robustness of the BMA approach in the accurate
depiction of parking duration distribution characteristics.
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