Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = papaya seed oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5186 KiB  
Article
Development of Natural Fungicidal Agricultural Defensives Using Microbial Glycolipid and Vegetable Oil Blends
by Anderson O. de Medeiros, Maria da Gloria C. da Silva, Attilio Converti, Fabiola Carolina G. de Almeida and Leonie A. Sarubbo
Surfaces 2024, 7(4), 879-897; https://doi.org/10.3390/surfaces7040058 - 16 Oct 2024
Cited by 1 | Viewed by 1482
Abstract
The use of pesticides causes significant environmental problems, which drives the search for natural and non-toxic alternatives. In this study, a glycolipid biosurfactant (BS), produced by the yeast Starmerella bombicola ATCC 22214, was utilized as an active ingredient in natural agricultural defensive blends. [...] Read more.
The use of pesticides causes significant environmental problems, which drives the search for natural and non-toxic alternatives. In this study, a glycolipid biosurfactant (BS), produced by the yeast Starmerella bombicola ATCC 22214, was utilized as an active ingredient in natural agricultural defensive blends. The mixtures were tested for their fungicidal potential against phytopathogenic fungi isolated from fruits such as papaya, orange, and banana, demonstrating strong inhibition of fungal growth. The genera Penicillium, Colletotrichum, and Aspergillus were the pathogens present in the deterioration of the fruits used in the experiment. The biosurfactant was produced in a fermenter, yielding 10 g/L and reducing the surface tension to 31.56 mN/m, with a critical micelle concentration (CMC) of 366 mg/L. Blends of BS with oleic acid (T1) and lemongrass oil (T2) were found to be effective in controlling fungi. Additionally, the phytotoxicity of these formulations was assessed using Cucumis anguria (gherkin) seeds, where the blend of BS with castor oil (T4) showed the best performance, promoting seed germination. These results indicate the potential of such mixtures as natural alternatives for fungal control in plants and for application in sustainable agricultural systems. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

19 pages, 4895 KiB  
Article
Integrative Analysis of Oleosin Genes Provides Insights into Lineage-Specific Family Evolution in Brassicales
by Zhi Zou, Li Zhang and Yongguo Zhao
Plants 2024, 13(2), 280; https://doi.org/10.3390/plants13020280 - 18 Jan 2024
Cited by 2 | Viewed by 2056
Abstract
Oleosins (OLEs) are a class of small but abundant structural proteins that play essential roles in the formation and stabilization of lipid droplets (LDs) in seeds of oil crops. Despite the proposal of five oleosin clades (i.e., U, SL, SH, T, and M) [...] Read more.
Oleosins (OLEs) are a class of small but abundant structural proteins that play essential roles in the formation and stabilization of lipid droplets (LDs) in seeds of oil crops. Despite the proposal of five oleosin clades (i.e., U, SL, SH, T, and M) in angiosperms, their evolution in eudicots has not been well-established. In this study, we employed Brassicales, an economically important order of flowering plants possessing the lineage-specific T clade, as an example to address this issue. Three to 10 members were identified from 10 species representing eight plant families, which include Caricaceae, Moringaceae, Akaniaceae, Capparaceae, and Cleomaceae. Evolutionary and reciprocal best hit-based homologous analyses assigned 98 oleosin genes into six clades (i.e., U, SL, SH, M, N, and T) and nine orthogroups (i.e., U1, U2, SL, SH1, SH2, SH3, M, N, and T). The newly identified N clade represents an ancient group that has already appeared in the basal angiosperm Amborella trichopoda, which are constitutively expressed in the tree fruit crop Carica papaya, including pulp and seeds of the fruit. Moreover, similar to Clade N, the previously defined M clade is actually not Lauraceae-specific but an ancient and widely distributed group that diverged before the radiation of angiosperm. Compared with A. trichopoda, lineage-specific expansion of the family in Brassicales was largely contributed by recent whole-genome duplications (WGDs) as well as the ancient γ event shared by all core eudicots. In contrast to the flower-preferential expression of Clade T, transcript profiling revealed an apparent seed/embryo/endosperm-predominant expression pattern of most oleosin genes in Arabidopsis thaliana and C. papaya. Moreover, the structure and expression divergence of paralogous pairs was frequently observed, and a good example is the lineage-specific gain of an intron. These findings provide insights into lineage-specific family evolution in Brassicales, which facilitates further functional studies in nonmodel plants such as C. papaya. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops)
Show Figures

Figure 1

14 pages, 1280 KiB  
Article
Study of the Chemical Composition of Carica papaya L. Seed Oils of Various Geographic Origins
by Sergey Goriainov, Svetlana Orlova, Elena Nikitina, Viktor Vandishev, Vasiliy Ivlev, Cesar Esparza, Vasiliy Vasil’ev, Evgeniy Platonov, Anzhelika Sheremeta and Gennadiy Kalabin
Horticulturae 2023, 9(11), 1227; https://doi.org/10.3390/horticulturae9111227 - 14 Nov 2023
Cited by 4 | Viewed by 8910
Abstract
The papaya plant (Carica papaya L.) is tree-like fruit plant cultivated throughout the tropics and subtropics. The aim of this study was to compare the physicochemical properties, fatty acid, sterols, and triterpenic alcohols composition of Carica papaya L. seed oils grown in [...] Read more.
The papaya plant (Carica papaya L.) is tree-like fruit plant cultivated throughout the tropics and subtropics. The aim of this study was to compare the physicochemical properties, fatty acid, sterols, and triterpenic alcohols composition of Carica papaya L. seed oils grown in a typical geographical location and Carica papaya L. seed oils grown in an untypical geographical location in greenhouse conditions (Saratov Region, Russia). The oils were extracted from the seeds of Carica papaya L. fruits collected in Kenya, the Dominican Republic, Angola, Ghana, and Brazil, as well as from the seeds of fruit plants grown in a similar environment (Russian Federation, Saratov). Parameters such as the oil yield, refractive index, peroxide value, iodine value, saponification value, and acid value of the extracted Carica papaya L. seed oils were determined. The qualitative and quantitative chemical compositions of the seed oils were determined by a combination of mass spectrometry and NMR spectroscopy. The profiles as well as the content of fatty acids, sterols, triterpenic alcohols, and benzyl isothiocyanate were established. The saponifiable fraction of the oils is mainly represented by triglycerides (98.7–99.4%), while di-(0.4–1.1%) and monoglycerides (0.1–0.3%) are also present but in smaller amounts. The content of sterols and triterpene alcohols was (537.5–918.2) mg/100 g of oil (0.54–0.92%), and up to 75% of the fraction was represented by β-sitosterol (55.9–66.7%) and its saturated analogue-sitostanol (11.0–15.7%). The physicochemical properties and the fatty acid, sterol, and triterpenic alcohol composition of seed oils from Carica papaya L. fruits, cultivated in Russia, is in the quantitative range of other samples, which suggests that Carica papaya L. can be grown in Russia for obtaining the seed oil. Full article
(This article belongs to the Special Issue Phytochemical Composition and Bioactivity of Horticultural Products)
Show Figures

Figure 1

20 pages, 2969 KiB  
Article
Effects of the Seed Oil of Carica papaya Linn on Food Consumption, Adiposity, Metabolic and Inflammatory Profile of Mice Using Hyperlipidic Diet
by Lidiani Figueiredo Santana, Bruna Larissa Spontoni do Espirito Santo, Mariana Bento Tatara, Fábio Juliano Negrão, Júlio Croda, Flávio Macedo Alves, Wander Fernando de Oliveira Filiú, Leandro Fontoura Cavalheiro, Carlos Eduardo Domingues Nazário, Marcel Arakaki Asato, Bernardo Bacelar de Faria, Valter Aragão do Nascimento, Rita de Cássia Avellaneda Guimarães, Karine de Cássia Freitas and Priscila Aiko Hiane
Molecules 2022, 27(19), 6705; https://doi.org/10.3390/molecules27196705 - 8 Oct 2022
Cited by 6 | Viewed by 3907
Abstract
Background: Studies indicate that different parts of Carica papaya Linn have nutritional properties that mean it can be used as an adjuvant for the treatment of various pathologies. Methods: The fatty acid composition of the oil extracted from the seeds of Carica papaya [...] Read more.
Background: Studies indicate that different parts of Carica papaya Linn have nutritional properties that mean it can be used as an adjuvant for the treatment of various pathologies. Methods: The fatty acid composition of the oil extracted from the seeds of Carica papaya Linn was evaluated by gas chromatography, and an acute toxicity test was performed. For the experiment, Swiss mice were fed a balanced or high-fat diet and supplemented with saline, soybean oil, olive oil, or papaya seed oil. Oral glucose tolerance and insulin sensitivity tests were performed. After euthanasia, adiposity, glycemia, total cholesterol and fractions, insulin, resistin, leptin, MCP-1, TNF-α, and IL-6 and the histology of the liver, pancreas, and adipose tissue were evaluated. Results: Papaya seed oil showed predominance of monounsaturated fatty acids in its composition. No changes were observed in the acute toxicity test. Had lower food intake in grams, and caloric intake and in the area of adipocytes without minimizing weight gain or adiposity and impacting the liver or pancreas. Reductions in total and non-HDL-c, LDL-c, and VLDL-c were also observed. The treatment had a hypoglycemic and protective effect on insulin resistance. Supplementation also resulted in higher leptin and lower insulin and cytokine resistance. Conclusions: Under these experimental conditions, papaya seed oil led to higher amounts of monounsaturated fatty acids and had hypocholesterolemic, hypotriglyceridemic, and hypoglycemic effects. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 2nd Edition)
Show Figures

Figure 1

15 pages, 5318 KiB  
Article
Green Synthesis and Characterization of CuO Nanoparticles Derived from Papaya Peel Extract for the Photocatalytic Degradation of Palm Oil Mill Effluent (POME)
by You-Kang Phang, Mohammod Aminuzzaman, Md. Akhtaruzzaman, Ghulam Muhammad, Sayaka Ogawa, Akira Watanabe and Lai-Hock Tey
Sustainability 2021, 13(2), 796; https://doi.org/10.3390/su13020796 - 15 Jan 2021
Cited by 115 | Viewed by 9019
Abstract
In recent years, the green chemistry based-approach for the synthesis of nanoparticles has shown tremendous promise as an alternative to the costly and environmentally unfriendly chemically synthesized nanoparticles. In this study, copper oxide nanoparticles (CuO NPs) were synthesized through a green approach using [...] Read more.
In recent years, the green chemistry based-approach for the synthesis of nanoparticles has shown tremendous promise as an alternative to the costly and environmentally unfriendly chemically synthesized nanoparticles. In this study, copper oxide nanoparticles (CuO NPs) were synthesized through a green approach using the water extract of papaya (Carica papaya L.) peel biowaste as reducing as well as stabilizing agents, and copper (II) nitrate trihydrate salt as a precursor. The structural properties, crystallinity, purity, morphology, and the chemical composition of as-synthesized CuO NPs were analyzed using different analytical methods. The analytical results revealed that the synthesized CuO was observed as spherical-like in particles with measured sizes ranging from 85–140 nm and has monoclinic crystalline phase with good purity. The Fourier transform infrared (FTIR) spectroscopic results confirmed the formation of the Cu-O bond through the involvement of the potential functional groups of biomolecules in papaya peel extract. Regarding photocatalytic activity, the green-synthesized CuO NPs were employed as a photocatalyst for the degradation of palm oil mill effluent (POME) beneath the ultraviolet (UV) light and results showed 66% degradation of the POME was achieved after 3 h exposure to UV irradiation. The phytotoxicity experiment using mung bean (Vigna radiata L.) seed also showed a reduction of toxicity after photodegradation. Full article
Show Figures

Figure 1

19 pages, 588 KiB  
Review
Nutraceutical Potential of Carica papaya in Metabolic Syndrome
by Lidiani F. Santana, Aline C. Inada, Bruna Larissa Spontoni do Espirito Santo, Wander F. O. Filiú, Arnildo Pott, Flávio M. Alves, Rita de Cássia A. Guimarães, Karine de Cássia Freitas and Priscila A. Hiane
Nutrients 2019, 11(7), 1608; https://doi.org/10.3390/nu11071608 - 16 Jul 2019
Cited by 103 | Viewed by 20298
Abstract
Carica papaya L. is a well-known fruit worldwide, and its highest production occurs in tropical and subtropical regions. The pulp contains vitamins A, C, and E, B complex vitamins, such as pantothenic acid and folate, and minerals, such as magnesium and potassium, as [...] Read more.
Carica papaya L. is a well-known fruit worldwide, and its highest production occurs in tropical and subtropical regions. The pulp contains vitamins A, C, and E, B complex vitamins, such as pantothenic acid and folate, and minerals, such as magnesium and potassium, as well as food fibers. Phenolic compounds, such as benzyl isothiocyanate, glucosinolates, tocopherols (α and δ), β-cryptoxanthin, β-carotene and carotenoids, are found in the seeds. The oil extracted from the seed principally presents oleic fatty acid followed by palmitic, linoleic and stearic acids, whereas the leaves have high contents of food fibers and polyphenolic compounds, flavonoids, saponins, pro-anthocyanins, tocopherol, and benzyl isothiocyanate. Studies demonstrated that the nutrients present in its composition have beneficial effects on the cardiovascular system, protecting it against cardiovascular illnesses and preventing harm caused by free radicals. It has also been reported that it aids in the treatment of diabetes mellitus and in the reduction of cholesterol levels. Thus, both the pulp and the other parts of the plant (leaves and seeds) present antioxidant, anti-hypertensive, hypoglycemic, and hypolipidemic actions, which, in turn, can contribute to the prevention and treatment of obesity and associated metabolic disorders. Full article
(This article belongs to the Special Issue Nutraceutical, Nutrition Supplements and Human Health)
Show Figures

Figure 1

20 pages, 4196 KiB  
Article
A Systematic Multivariate Analysis of Carica papaya Biodiesel Blends and Their Interactive Effect on Performance
by Mohammad Anwar, Mohammad G. Rasul and Nanjappa Ashwath
Energies 2018, 11(11), 2931; https://doi.org/10.3390/en11112931 - 26 Oct 2018
Cited by 30 | Viewed by 5186
Abstract
This paper investigates the interactive relationship between three operating parameters (papaya seed oil (PSO) biodiesel blends, engine load, and engine speed) and four responses (brake power, BP; torque; brake specific fuel consumption, BSFC; and, brake thermal efficiency, BTE) for engine testing. A fully [...] Read more.
This paper investigates the interactive relationship between three operating parameters (papaya seed oil (PSO) biodiesel blends, engine load, and engine speed) and four responses (brake power, BP; torque; brake specific fuel consumption, BSFC; and, brake thermal efficiency, BTE) for engine testing. A fully instrumented four cylinder four-stroke, naturally aspirated agricultural diesel engine was used for all experiments. Three different blends: B5 (5% PSO biodiesel + 95% diesel), B10 (10% PSO biodiesel + 90% diesel), and B20 (20% PSO biodiesel + 80% diesel) were tested. Physicochemical properties of these blends and pure PSO biodiesel were characterised, and the engine’s performance characteristics were analysed. The results of the engine performance experiments showed that, in comparison with diesel, the three PSO biodiesel blends caused a slight reduction in BP, torque, and BTE, and an increase in BSFC. The analysis of variance and quadratic regression modelling showed that both load and speed were the most important parameters that affect engine performance, while PSO biodiesel blends had a significant effect on BSFC. Full article
(This article belongs to the Special Issue Biofuel and Bioenergy Technology)
Show Figures

Figure 1

14 pages, 539 KiB  
Article
Ultrasound-Assisted Extraction (UAE) and Solvent Extraction of Papaya Seed Oil: Yield, Fatty Acid Composition and Triacylglycerol Profile
by Shadi Samaram, Hamed Mirhosseini, Chin Ping Tan and Hasanah Mohd Ghazali
Molecules 2013, 18(10), 12474-12487; https://doi.org/10.3390/molecules181012474 - 10 Oct 2013
Cited by 86 | Viewed by 13900
Abstract
The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present [...] Read more.
The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%–74.7%), palmitic (16:0, 14.9%–17.9%), stearic (18:0, 4.50%–5.25%), and linoleic acid (18:2, 3.63%–4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop