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Abstract: In recent years, the green chemistry based-approach for the synthesis of nanoparticles has
shown tremendous promise as an alternative to the costly and environmentally unfriendly chemically
synthesized nanoparticles. In this study, copper oxide nanoparticles (CuO NPs) were synthesized
through a green approach using the water extract of papaya (Carica papaya L.) peel biowaste as
reducing as well as stabilizing agents, and copper (II) nitrate trihydrate salt as a precursor. The struc-
tural properties, crystallinity, purity, morphology, and the chemical composition of as-synthesized
CuO NPs were analyzed using different analytical methods. The analytical results revealed that
the synthesized CuO was observed as spherical-like in particles with measured sizes ranging from
85–140 nm and has monoclinic crystalline phase with good purity. The Fourier transform infrared
(FTIR) spectroscopic results confirmed the formation of the Cu-O bond through the involvement of
the potential functional groups of biomolecules in papaya peel extract. Regarding photocatalytic
activity, the green-synthesized CuO NPs were employed as a photocatalyst for the degradation of
palm oil mill effluent (POME) beneath the ultraviolet (UV) light and results showed 66% degradation
of the POME was achieved after 3 h exposure to UV irradiation. The phytotoxicity experiment using
mung bean (Vigna radiata L.) seed also showed a reduction of toxicity after photodegradation.

Keywords: CuO nanoparticles; green synthesis; palm oil mill effluent (POME); papaya peel; biowaste;
photocatalyst

1. Introduction

Due to the high demand for economical, nutritional, and edible vegetable oil, the
palm oil industry has become one of the fast-growing industries in the world. Malaysia has
become the second largest palm oil producer in the world after Indonesia since 2006 and
the palm oil industry is vigorously contributing to this country’s economy. Nevertheless,
the palm oil industry is generating a large amount of brownish colloidal liquid waste
known as palm oil mill effluent (POME) and previous research studies suggest that 0.5–
0.75 tons of POME is generated for every tonnage of fresh fruit bunch processed [1].
POME is typically acidic (pH 4.5–5) with 95–96% water, 4–5% total solids including 2–4%
suspended solids, as well as 0.6–0.7% of oil and grease [2]. Moreover, POME also contains
organic matters such as lignin (4700 ppm), phenolics (5800 ppm), pectin (3400 ppm), and
amino acids [3]. Consequently, POME can cause a severely destructive impact on the
environment if discharged directly to water sources owing to its high chemical oxygen
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demand (COD) (40,000 to 100,000 ppm) and biochemical oxygen demand (BOD) (25,000
to 65,000 ppm) [4]. In order to keep the aquatic environment safe, the POME must be
treated according to the permissible discharge limit set by the Department of Environment
(DOE) and Environmental Quality Act (EQA) 1974 of Malaysia’s authorities [5]. Various
methods and technologies such as aerobic and anaerobic biological treatment, adsorption,
solvent extraction, chemical–biological sedimentation, coagulation–flocculation, microalgae
treatment, membrane technology, etc. have been adopted in mitigating the polluting effects
of POME in aquatic life [2,6–9]. Treatment of POME using advanced oxidation processes
(AOP) such as the Fenton process and photocatalysis has gained significant attention and
is still developing [10].

In particular, semiconductor nanostructured-based photocatalysis displayed high
potential for degradation of various organic pollutants including dyes, surfactants, sol-
vents, pesticides, phenolic compounds, etc. into harmless products under light irradiation.
Among nanostructured oxides, copper (II) oxide (CuO) is classified as a semiconductor
material type-p with a narrow band gap energy of 1.2 eV and possessing excellent opti-
cal, electrical, magnetic, catalytic, and biological properties. Owing to these fascinating
properties CuO nanostructures have been reported to be used for a variety of practical
applications, such as catalysis, magnetic storage media, biosensor, solar cell, gas sensor,
lithium battery, antifungal/anti-microbial agents in the agriculture and health sectors,
photocatalysts for wastewater treatment, etc. [11]. Therefore, the synthesis of CuO nanos-
tructures has provoked proficient attention to scientists and researchers. Currently, there
are several methods reported in the literature for obtaining CuO nanostructures, such
as sol-gel, sonochemical methods, chemical precipitation, hydrothermal, γ-irradiation,
electrochemical reduction, solid-state reaction, and so on [12]. Nevertheless, there are a lot
of significant problems associated with these conventional physical and chemical synthesis
methods, namely usage of noxious chemicals and solvents, consumption of high energy,
generation of toxic waste, high cost, need of special and expensive equipment, along with
the tedious procedure. On the contrary, green synthesis of CuO nanostructures using plant
extracts has offered a promising choice owing to its simplicity, nontoxicity, low cost, energy
efficiency, and environmentally friendliness. The plant extracts contain various phytocon-
stituents such as alkaloids, terpenoids, flavonoids, polyphenols, sugars, proteins, etc. with
a wide range of reductive capacities acting as reducing as well as stabilizing agents during
green synthesis. In the past, green synthesis of CuO nanostructures using different plant
extracts such as Bauhinia tomentosa (leaf) [13], Euphorbia pulcherrima (flower) [14], Madhuca
longifolia (flower and seed) [15], Lantana camara (flower) [16], Capparis spinosa (leaf) [17],
Aloe vera (leaf) [18], Allium cepa, L. (peel) [19], and banana peel [12] have been demonstrated.
In this study, we investigated the use of the water extract of waste papaya peel as reducing
and stabilizing agents for the synthesis of copper oxide nanoparticles (CuO NPs).

Papaya (Carica papaya L.) is one of the most common fruits distributed throughout
the world. Papaya is a rich source of vitamins including β-carotene, vitamin B (thiamine,
riboflavin, niacin and folate), vitamin C, vitamin E, minerals (Na, K, Fe, Ca), and fiber [20].
Papaya juice is consumed for the treatment of various diseases like constipation, dyspep-
sia, diabetes, cancer, heart stroke, blood pressure, etc. [21]. Owing to high nutritive and
medicinal values, a huge amount of papaya is consumed across the world, resulting in the
generation of a large amount of waste such as peels and seeds, and this could be a significant
source of pollution if these wastes are not being disposed of properly. Utilization of these
wastes in various areas could help in mitigating environmental pollution. Keeping this
in mind, herein CuO NPs were synthesized in an eco-friendly manner using the aqueous
extract of papaya peel waste. The crystallinity, purity, morphology, structural features, and
the chemical composition of the green-synthesized CuO NPs were systematically charac-
terized using various analytical tools. The photocatalytic activity of the green-synthesized
CuO NPs was also investigated by photodegradation of POME under ultraviolet (UV)
irradiation, and photodegradation was monitored by measuring chemical oxygen demand
(COD) values. A phytotoxicity test was also conducted with photo-irradiated POME using
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mung bean (Vigna radiata L.) seed to evaluate residual toxicity and the impact to the aquatic
ecosystem.

2. Materials and Methods
2.1. Materials

Ripened papaya fruits were collected from a local fruit shop in Kampar, Malaysia.
Copper (II) nitrate trihydrate [Cu(NO3)2.3H2O] was purchased from Quality Reagent
Chemical, QRëC, New Zealand, and used without further purification. All glassware was
washed with deionized water and dried in an oven before use. The POME sample for this
study was directly collected from a local palm oil mill located in the province of Selangor,
Malaysia. POME was stored in a black, air-tight container in order to avoid light exposure
during transportation.

2.2. Preparation of Papaya Peel Extract (PPE)

The ripened papaya peels were washed with deionized water to eliminate dust and
organic contaminants. Approximately 100 g of small slices of papaya peels were added to
a 500-mL beaker filled with 150 mL of deionized water and heated at 70–80 ◦C for 20 min.
A light yellow-colored solution was formed during the heating period. Upon cooling, the
light yellow-colored solution was filtered through vacuum filtration at room temperature.
The filtrate (extract) was collected in a 100-mL beaker which was used directly for the
synthesis of CuO NPs.

2.3. Synthesis of CuO NPs

Scheme 1 shows the synthesis of CuO NPs from copper (II) nitrate trihydrate salt and
waste papaya peels. Initially, 40 mL of freshly prepared PPE was heated at 70–80 ◦C. Then,
about 1 g (~0.004 mol) of copper (II) nitrate trihydrate was gradually added into the hot
PPE, and the greenish-blue-colored solution was formed immediately. This solution was
heated at 70–80 ◦C with constant stirring as a result the color of the solution gradually
changed from greenish-blue to green and the heating was continued until a dark green
paste was formed, as shown in Scheme 1. Subsequently, the dark green paste was cooled to
room temperature and transferred to a ceramic crucible. Finally, the paste was calcinated
in a temperature-controlled muffle furnace at 450 ◦C for 2 h. After calcination, a fine black-
colored powder was obtained, and this was carefully collected andstored in a desiccator at
room temperature for characterization using various analytical tools.
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2.4. Characterization

The crystallinity and crystal phase were characterized using a X-Ray diffractometer
(Shimadzu XRD 6000, Japan) with CuKα radiation in the 2θ range of 20–80◦. A field
emission scanning electron microscope (FESEM, JEOL JSM-6710F, Japan combined with
EDX (X-max, 150 Oxford Instruments)) and a high-resolution transmission electron mi-
croscope (HRTEM) (JEOL JEM-3010) were used for morphological and microstructural
analysis. UV-vis absorption spectra were recorded using a UV-vis spectrophotometer
(Thermo Scientific GENESYS 10S). The FTIR spectra of the CuO sample and PPE extract
were recorded by KBr pellet method using a FTIR spectrophotometer (Perkin Elmer RX1) in
the region between 4000 to 400 cm−1. The X-ray photoelectron spectra were obtained using
Perkin Elmer PHI5600 (ULVAC-PHI, Inc.). A micro-Raman spectrometer equipped with
an optical microscope (Olympus BX51), a CW 532 nm DPSS laser, a Peltier-cooled CCD
camera (DV401, Andor Technology), and a monochromator (MS257, Oriel Instruments Co.)
were used to measure the Raman spectra.

2.5. Photocatalytic Activity of CuO NPs

Prior to investigating the photocatalytic activity of green-synthesized CuO NPs on
POME sample, POME was filtered to remove suspended solids using a filtration system
reported in our previous study [22]. The photocatalytic activity of the CuO NPs was
evaluated by photodegradation of POME under the illumination of an 18 W UV lamp
(Roxin, 220–240 V, 50 Hz) in a fully-covered box. In a typical procedure, 150 mg of CuO
NPs was added into a beaker containing 300 mL POME and prior to the exposure to UV
irradiation, the suspension was magnetically stirred in dark conditions for 30 min to achieve
adsorption–desorption equilibrium between POME and photocatalyst. The suspension
was then exposed to UV irradiation over 3 h duration while being stirred continuously and
was sampled (10 mL) at every 30 min interval for measuring COD using a low-range COD
(HACH 21258 vial digestion solution COD-LR) vial from HACH Company, Germany. Then
2 mL of POME (unirradiated and irradiated) was injected into the COD-LR vial which was
then digested at 150 ◦C for 2 h using the HACH DRB 200 COD digital reactor. Subsequently,
the COD values of unirradiated and irradiated POME were measured using a Hach UV-vis
spectrophotometer DR6000 (Hach, Germany). The efficiency (%) of the COD removal was
calculated using the below equation:

% COD removal =
COD0 − CODt

COD0
× (1)

where COD0 is the initial COD value of the POME (mg/L) and CODt is the COD value of
the POME after photodegradation (mg/L) at different times.

2.6. Phytotoxicity Evaluation

The phytotoxicity of POME samples was assessed using mung bean (Vigna radiata
L.) seed before and after photocatalytic degradation. Prior to the experiment, 0.5 (w/v)
% NaOCl solution was used to sterilize the mung bean seeds (mung bean seeds with
healthy and uniform size were used) and then washed thoroughly with distilled water.
Afterwards, cotton pads and mung bean seeds (ten selected seeds) were placed evenly in
each sterilized petri dishes (diameter 90 mm). Three different sets of petri dishes were set
up and soaked with 5 mL of tap water (control) and 5 mL of POME solutions (before and
after photodegradation) at a fixed interval time of 12 h for 7 continuous days at an ambient
temperature. After 7 days, the radicle lengths were measured and the phytotoxicity of the
POME samples was calculated using the following equation [23]:

Phytotoxicity =
(Lc − Ls)

Lc
× 100 % (2)

where Lc is the radicle length of control and Ls is the radicle length of samples.
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3. Results and Discussion
3.1. Structural Analysis of CuO

The crystal phase and crystallinity of the green-synthesized CuO NPs were studied
using XRD. Figure 1 represents the XRD pattern of green-synthesized CuO NPs. The
specific diffraction peaks at 2θ = 32.51◦, 35.53◦, 38.75◦, 46.26◦, 48.78◦, 53.50◦, 58.34◦, 61.57◦,
66.28◦, 68.04◦, 72.46◦, and 75.0◦ were assigned to (−110), (002), (111), (−112), (−202), (020),
(202), (−113), (022), (−220), (311), and (004) lattice planes, respectively, which were well-
matched with International Centre for Diffraction Data (ICDD): Entry number-00-045-0937.
The diffraction peaks in Figure 1 indicate that the CuO has monoclinic phase with lattice
parameters a = 4.6853 Å, b = 3.4257 Å, c = 5.1303 Å, and β = 99.549 Å. The green-synthesized
CuO NPs were well-crystalline that was confirmed by the well-defined and high intensity
diffraction reflection peaks. The crystalline size (D) of the CuO NPs was calculated using
Debye–Scherrer’s equation [24]:

D =
0.9 λ

β cos θ
(3)

where λ is the wavelength (CuKα), β the full-width half maximum (FWHM), and θ the
diffraction angle. The average crystalline size of green-synthesized CuO NPs was found
to be 28.06 nm. Raman spectroscopy is a common analysis carried out to analyze the
local atomic arrangements and vibrations of the materials in order to study the structural
nature of the nanomaterials [25]. The Raman spectrum of the green-synthesized CuO NPs
is illustrated in Figure 2. There were three one-phonon modes observed at 289, 323, and
623 cm−1, respectively. These peaks can be assigned to the Ag mode of vibration (289 cm−1)
and Bg mode of vibration (323 and 623 cm−1) [26]. In this study, the wavenumbers detected
were close to the reported values of monoclinic CuO nanomaterials in previous studies
(282, 330, 616 cm−1) [27].
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The chemical composition and purity of the CuO NPs were further investigated by
XPS (Figure 3). As shown in Figure 3a, the high-resolution XPS spectrum for the Cu 2p core
level shows two peaks at 931.77 and 951.65 eV were identified as the Cu 2p3/2 and Cu 2p1/2,
respectively [28]. There were two peaks located at 941.40 and 961.40 eV higher in binding
energy than the main spin-orbit components that corresponded to the shake-up satellites
of the Cu2+ peaks [29]. Figure 3b shows the O 1s XPS spectra of the sample and according
to the O 1s peaks, the O2- in CuO was assigned to the lower energy peak at 528.77 eV
while the higher energy peak at 530.52 eV indicated the O that adsorbed on the surface
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of the CuO NPs [28,30]. Hence, the XPS measurements excluded the presence of Cu2O
and Cu(OH)2 impurities in the green-synthesized CuO NPs as there would be no satellite
peaks observed in Cu 2p3/2 and Cu 2p1/2 of Cu+ [31,32]. The appearance of satellite peaks
proved to be the presence of the fingerprint of the d9 Cu2+ species that were caused by the
relaxation phenomenon of the strong configuration interaction in the final state [28]. To
further confirm the formation of CuO, EDX analysis was carried out as depicted in Figure 4.
The finding indicates the presence strong signals of Cu and O elements in the sample which
further revealed the good quality and purity of the green-synthesized CuO NPs.
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FTIR spectroscopy analysis was carried out to identify the functional groups involved
in the formation of CuO NPs. In order to have a good understanding of the formation
of CuO NPs, the papaya peel extract (PPE) was executed for FTIR to compare with that
of CuO NPs. Figure 5 shows the spectra for the PPE and CuO NPs. The FTIR spectra
of biosynthesized CuO NPs showed a sharp and intense absorption peak at 532 cm−1,
which was not observed in PPE, expressing the stretching vibration of Cu-O in CuO NPs.
The bands at 1412 cm−1 for PPE, shifted band at 1384 cm−1 for CuO NPs, and peaks at
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around 618 cm−1 showed the O-H bending of the phenolic group [33]. Stretching of C-O
was identified at 1076 cm−1 in the spectra of PPE while at a shifted peak of 1120 cm−1 for
CuO NPs. Absorption bands at 1636 and 1647 cm−1 for PPE and CuO NPs, respectively,
proved the presence of primary amide groups. The presence of primary amide contributed
from the protein content of the Carica papaya further proved that protein in the fruit’s peel
acted as a capping and stabilizing agent in the synthesis of CuO NPs [34]. The absorption
bands at 3400 and 3368 cm−1 from PPE to CuO NPs indicated the O-H stretching. The
C-H stretching observed in PPE (2937 cm−1) was not present in CuO NPs. Other weak
absorption bands were spotted at 1261, 921, and 778 cm−1 in PPE and 833 cm−1 in CuO NPs.
Finally, natural products in papaya such as phenolic compounds, flavonoids, catechin, etc.
could be claimed to be the important chemicals acting as bioreducing agents in synthesizing
CuO NPs [35].
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The detailed morphological and size analyses of green-synthesized CuO NPs were
studied using electron microscopy (FESEM and TEM) and the results are shown in
Figures 6 and 7. Based on Figure 6a,b, the CuO NPs formed were almost agglomerated
spherical in shape with a discrete rough appearance. The particle sizes measured from SEM
ranged from 85–140 nm. Figure 7a,b showed papaya peel-derived CuO NPs have different
particle sizes and proved that the biosynthesized CuO NPs were densely agglomerated in
lump as illustrated by SEM images with a diameter of 277–500 nm. The agglomeration of
the nanoparticles was due to the high surface tension [36]. As reported in the literature,
CuO NPs have a high tendency to aggregate in ultrapure water during the preparation step
before being subjected to TEM measurement [37,38]. Table 1 summarizes the comparison
of papaya peel extract-derived CuO NPs with other literatures.
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Table 1. Comparison of papaya peel extract-derived CuO NPs with literature.

Part of Plant Used. Size (nm) Shape References

Flowers (Anthemis nobilis) 18.02–61.29 Irregular [39]
Peel (Musa acuminata) 50–85 Spherical [12]
Leaves (Carica papaya) <100 Square and rectangle [40]

Leaves (Tinospora cordifolia) ~6–8 Agglomerated spherical [41]
Leaves (Psidium guajava) 19.19 Elongated spherical [42]

Leaves/stems (Gundelia tournefortii) - Spherical [43]
Flowers/seeds (Madhuca longifolia) 30–120 Irregular and spherical [15]

Leaves (Abutilon indicum) 16.78 Agglomerated irregular and spherical [44]
Seeds (Caesalpinia bonducella) 13.07 Rice-shaped [45]

Peel (Carica papaya) 85–140 Agglomerated spherical Current work

The UV-vis absorption spectrum of the biosynthesized CuO NPs was recorded at room
temperature by dispersing the CuO NPs in deionized water with a concentration of 0.1 wt %
(Figure 8). The spectrum showed an absorption peak at 270 nm. This indicated a blue
shift occurred when compared to the value of 375 nm reported by Xu and co-workers [46].
Absorption of the CuO NPs at 270 nm resulted from the resonant oscillating of electrons at
the conduction band triggered by the incident electromagnetic radiation which is known
as surface plasmon resonance [47]. The band gap energy (Eg) of the biosynthesized CuO
NPs were evaluated by Tauc’s plot approach according to the equation [48]:

αhν = A(hν − Eg)n/2 (4)

where α is the absorption coefficient of the nanoparticles. The n represents the nature of
the transition of the electron between the valence and conduction band such that n = 1
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for the direct band gap while n = 4 for the indirect band gap [49]. Symbol A denotes as
constant and hν defines as the incident photon energy. A plot of (αhν)2 versus hν was
constructed and the band gap energy for the biosynthesized CuO NPs was estimated
through extrapolation of the straight-line part to the x-axis which is presented in the inset
of Figure 8. The Eg value of the CuO NPs was found to be 3.3 eV in this study. The feature of
the plot indicated that it had a direct transition due to the linear absorption at the end of the
plot [50]. The higher band gap energy of the CuO NPs than the reported value (1.9–2.1 eV)
could be related to the quantum confinement effect that is the band gap increase with a
reduction in particle size [51].
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3.2. Photocatalytic Activity of Green-Synthesized CuO NPs on POME

The heterogeneous photocatalytic treatment of POME was carried out utilizing the
biosynthesized CuO NPs as photocatalyst. A blank analysis was also run by exposing the
POME sample under direct UV light without adding the photocatalyst. In this study, the
blank was used as a control and to prove the potentiality of CuO NPs as a photocatalyst
for the degradation of POME. Figure 9 represents the degradation activities of CuO NPs
under various experimental conditions. It was noticed that when the POME solution
with green-synthesized CuO NPs under dark conditions for 3 h, there was a reduction of
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about 10% COD, which could be attributed to the adsorption of organic matter such as
carbohydrates, amino acid, lignin, phenolic, etc. within POME on the surface of CuO NPs.
In the case of photolysis, the POME solution was irradiated in the absence of CuO NPs, and
about 17% COD was reduced after 3 h, indicating the strong resistance of POME solution
against UV irradiation. On the other hand, in the presence of CuO NPs, about 66% of COD
had been reduced after 3 h UV light irradiation and this reduction in COD was achieved
by the degradation of the soluble protein and carbohydrate in POME [52]. The appearance
of the POME solution is also shown in the inset of Figure 9. As can be observed, before UV
irradiation, the POME had a dark brown color and this POME became pale yellow after
exposure to UV light irradiation for 3 h due to photocatalytic degradation of POME.
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CuO NP is a semiconductor which is able to generate electron-hole pairs (e−/h+) due
to the transition of excited electrons from the valence band to the conduction band, creating
holes in the valence band, after absorbing the photon energy (hν) upon the irradiation
of UV light (Equation (5)). The oxygen and water molecules in the POME reacted with
the electron-hole pairs and subsequently formed hydroxyl radical (OH•), which was re-
sponsible for breaking down the organic complex in POME. The oxygen (O2) reacted with
the excited electrons (e−) and dissociated hydrogen ions (H+) from water molecules to
form hydrogen peroxide (H2O2) (Equation (6)). Under the irradiation of UV, the hydrogen
peroxide was generated, which further reduced to hydroxyl radicals and hydroxide ions
(Equation (7)). The hydroxyl radicals were involved in degrading the organic materials in
the POME into simple harmless degradation products. In the end, the possible products of
the photocatalytic degradation process could be water, carbon dioxide, methane gas, and
other simple molecules (Equation (8)) [52]. A similar mechanism has been proposed for the
photocatalytic degradation of organic pollutants in aqueous media using CuO nanomateri-
als [53,54]. The schematic diagram of POME photocatalytic degradation mechanism over
green-synthesized CuO NPs is illustrated in Scheme 2.

CuO NPs + hv (UV light)→ CuO NPs (e− + h+) (5)

2e− + O2 + 2H+ → H2O2 (6)

e− + H2O2 → OH• + OH− (7)

OH• + POME→ intermediates→ H2O + CO2 + CH4 (8)
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As the photo-treated POME was going to be discharged into water resources at the
end, hence, phytotoxicity test using mung bean seed was performed as shown in Figure 10
to evaluate the impact on the aquatic ecosystem.
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showing mung bean (Vigna radiata L.) seed germination in the sample: 1. control, 2. before degradation, 3. after degradation.

Compared with tap water (control), the untreated POME solution strongly inhibited
the germination of mung bean seed, where the initial was phytotoxicity 45.5%. Interestingly,
the phytotoxicity level reduced significantly to 3.0% when mung bean seed was exposed
to the photo-treated POME solution. The radicle length in mung bean also indicated the
reduction in phytotoxicity. The average radicle length was found to be 9.0 cm for the
untreated POME solution, but the radicle length was greater when the seed was grown
in photo-treated POME solution (16.0 cm) as well as tap water (16.5 cm). Therefore, these
results indicated that green-synthesized CuO NPs have good photocatalytic activity to re-
duce phytotoxicity of industrial wastewater. The organic pollutant degradation efficiencies
of the CuO photocatalyst are compared in Table 2.
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Table 2. Comparison of photocatalytic performance of CuO nanomaterials on the degradation of organic pollutants.

Precursor Synthesis Pathway Pollutants Irradiation Source Time (min) Efficiency (%) References

CuSO4.5H2O Biologically 4-Nitrophenol UV light 20 99.5 [55]
CuSO4.5H2O Biologically Crystal violet Visible light 300 97 [56]

Cu(NO3)2 Chemically Rhodamine B Visible light 180 97.6 [57]
Cu(NO3)2·3H2O Biologically Bromothymol blue Sunlight 180 100 [58]

CuCl2.2H2O Biologically Methylene blue Sunlight 120 99.3 [59]
CuSO4.5H2O Biologically Vat Red 13 UV light 60 90 [60]

Cu(NO3)2·3H2O Biologically POME UV light 180 66 Current work

4. Conclusions

In summary, a green and cost-effective method for the synthesis of CuO NPs using
the waste papaya peel extract which focused on the utilization of waste was demonstrated.
We synthesized CuO NPs using the nontoxic and renewable aqueous extract of waste
papaya peel and copper (II) nitrate trihydrate salt as a precursor. Waste papaya peel extract-
mediated synthesized CuO NPs are pure, crystalline with band gap energy of 3.3 eV. The
photocatalytic activity of the green-synthesized has been assessed by the photodegradation
of POME. The results revealed that CuO NPs have a significant photocatalytic performance
in degrading POME with reduced phytotoxicity and can thus be used as a promising
photocatalyst in POME wastewater treatment.
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