Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = pancreatic cancer chemoprevention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2827 KiB  
Review
Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery
by Iliyana Sazdova, Milena Keremidarska-Markova, Daniela Dimitrova, Vadim Mitrokhin, Andre Kamkin, Nikola Hadzi-Petrushev, Jane Bogdanov, Rudolf Schubert, Hristo Gagov, Dimiter Avtanski and Mitko Mladenov
Cancers 2023, 15(22), 5478; https://doi.org/10.3390/cancers15225478 - 20 Nov 2023
Cited by 11 | Viewed by 3124
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of [...] Read more.
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24’s remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application. Full article
(This article belongs to the Special Issue Polyphenols in Cancer Treatment)
Show Figures

Graphical abstract

14 pages, 1741 KiB  
Review
Potential Effects of Geraniol on Cancer and Inflammation-Related Diseases: A Review of the Recent Research Findings
by Rebai Ben Ammar
Molecules 2023, 28(9), 3669; https://doi.org/10.3390/molecules28093669 - 23 Apr 2023
Cited by 30 | Viewed by 5982
Abstract
Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of [...] Read more.
Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of pharmacological activities including anti-inflammatory, anticancer, antimicrobial, antioxidant, and neuroprotective activities. It represents a potential anti-inflammatory agent and a promising cancer chemopreventive agent, as it has been found to be effective against a broad range of cancers, including colon, prostate, breast, lung, skin, kidney, liver, and pancreatic cancer. Moreover, GNL scavenges free radicals and preserves the activity of antioxidant enzymes. In addition, GNL induces apoptosis and cell cycle arrest, modulates multiple molecular targets, including p53 and STAT3, activates caspases, and modulates inflammation via transcriptional regulation. In the present study, different modes of action are described for GNL’s activity against cancer and inflammatory diseases. This compound protects various antioxidant enzymes, such as catalase, glutathione-S-transferase, and glutathione peroxidase. Experiments using allergic encephalomyelitis, diabetes, asthma, and carcinogenesis models showed that GNL treatment had beneficial effects with low toxicity. GNL has been shown to be effective in animal models and tumor cell lines, but there have not been any clinical studies carried out for it. The aim of the present review is to provide updated data on the potential effects of GNL on cancer and inflammation, and to enhance our understanding of molecular targets, involved pathways, and the possible use of GNL for clinical studies and therapeutic purposes in the treatment of cancer and inflammation-related diseases. Full article
(This article belongs to the Special Issue Bioactivities and In Silico Study of Phytochemicals)
Show Figures

Figure 1

15 pages, 2354 KiB  
Article
Antiproliferative and Proapoptotic Effects of Erucin, a Diet-Derived H2S Donor, on Human Melanoma Cells
by Daniela Claudia Maresca, Lia Conte, Benedetta Romano, Angela Ianaro and Giuseppe Ercolano
Antioxidants 2023, 12(1), 41; https://doi.org/10.3390/antiox12010041 - 26 Dec 2022
Cited by 6 | Viewed by 3131
Abstract
Melanoma is the most dangerous form of skin cancer and is characterized by chemotherapy resistance and recurrence despite the new promising therapeutic approaches. In the last years, erucin (ERU), the major isothiocyanate present in Eruca sativa, commonly known as rocket salads, has [...] Read more.
Melanoma is the most dangerous form of skin cancer and is characterized by chemotherapy resistance and recurrence despite the new promising therapeutic approaches. In the last years, erucin (ERU), the major isothiocyanate present in Eruca sativa, commonly known as rocket salads, has demonstrated great efficacy as an anticancer agent in different in vitro and in vivo models. More recently, the chemopreventive effects of ERU have been associated with its property of being a H2S donor in human pancreatic adenocarcinoma. Here, we investigated the effects of ERU in modulating proliferation and inducing human melanoma cell death by using multiple in vitro approaches. ERU significantly reduced the proliferation of different human melanoma cell lines. A flow cytometry analysis with annexin V/PI demonstrated that ERU was able to induce apoptosis and cell cycle arrest in A375 melanoma cells. The proapoptotic effect of ERU was associated with the modulation of the epithelial-to-mesenchymal transition (EMT)-related cadherins and transcription factors. Moreover, ERU thwarted the migration, invasiveness and clonogenic abilities of A375 melanoma cells. These effects were associated with melanogenesis impairment and mitochondrial fitness modulation. Therefore, we demonstrated that ERU plays an important role in inhibiting the progression of melanoma and could represent a novel add-on therapy for the treatment of human melanoma. Full article
(This article belongs to the Special Issue Reactive Sulfur Species in Biology and Medicine)
Show Figures

Figure 1

28 pages, 9250 KiB  
Article
Sorafenib Chemosensitization by Caryophyllane Sesquiterpenes in Liver, Biliary, and Pancreatic Cancer Cells: The Role of STAT3/ABC Transporter Axis
by Silvia Di Giacomo, Marco Gullì, Roberta Facchinetti, Marco Minacori, Romina Mancinelli, Ester Percaccio, Caterina Scuderi, Margherita Eufemi and Antonella Di Sotto
Pharmaceutics 2022, 14(6), 1264; https://doi.org/10.3390/pharmaceutics14061264 - 14 Jun 2022
Cited by 12 | Viewed by 3242
Abstract
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability [...] Read more.
A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies. Full article
(This article belongs to the Special Issue The Role of SLC and ABC Transporters in Anti-cancer Drug Delivery)
Show Figures

Figure 1

14 pages, 717 KiB  
Review
The Impact of Epithelial–Mesenchymal Transition and Metformin on Pancreatic Cancer Chemoresistance: A Pathway towards Individualized Therapy
by Aiste Gulla, Urte Andriusaityte, Gabrielius Tomas Zdanys, Elena Babonaite, Kestutis Strupas and Helena Kelly
Medicina 2022, 58(4), 467; https://doi.org/10.3390/medicina58040467 - 23 Mar 2022
Cited by 9 | Viewed by 4198
Abstract
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial–mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative [...] Read more.
Globally, pancreatic ductal adenocarcinoma remains among the most aggressive forms of neoplastic diseases, having a dismal prognostic outcome. Recent findings elucidated that epithelial–mesenchymal transition (EMT) can play an important role in pancreatic tumorigenic processes, as it contributes to the manifestation of malignant proliferative masses, which impede adequate drug delivery. An organized literature search with PubMed, Scopus, Microsoft Academic and the Cochrane library was performed for articles published in English from 2011 to 2021 to review and summarize the latest updates and knowledge on the current understanding of EMT and its implications for tumorigenesis and chemoresistance. Furthermore, in the present paper, we investigate the recent findings on metformin as a possible neoadjuvant chemotherapy agent, which affects EMT progression and potentially provides superior oncological outcomes for PDAC patients. Our main conclusions indicate that selectively suppressing EMT in pancreatic cancer cells has a promising therapeutic utility by selectively targeting the chemotherapy-resistant sub-population of cancer stem cells, inhibiting tumor growth via EMT pathways and thereby improving remission in PDAC patients. Moreover, given that TGF-β1-driven EMT generates the migration of tumor-initiating cells by directly linking the acquisition of abnormal cellular motility with the maintenance of tumor initiating potency, the chemoprevention of TGF-β1-induced EMT may have promising clinical applications in the therapeutic management of PDAC outcomes. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

17 pages, 6084 KiB  
Article
Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells
by Wataru Murase, Yukino Kamakura, Serina Kawakami, Ayaka Yasuda, Momoka Wagatsuma, Atsuhito Kubota, Hiroyuki Kojima, Tohru Ohta, Mami Takahashi, Michihiro Mutoh, Takuji Tanaka, Hayato Maeda, Kazuo Miyashita and Masaru Terasaki
Int. J. Mol. Sci. 2021, 22(24), 13620; https://doi.org/10.3390/ijms222413620 - 19 Dec 2021
Cited by 11 | Viewed by 4253
Abstract
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J [...] Read more.
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J mice that received allogenic and orthotopic transplantations of cancer cells (KMPC44) derived from a pancreatic cancer murine model (Ptf1aCre/+; LSL-krasG12D/+). Using microarray, immunofluorescence, western blot, and siRNA analyses, alterations in cancer-related genes and protein expression were evaluated in pancreatic tumors of Fx-administered mice. Fx administration prevented the adenocarcinoma (ADC) development of pancreatic and parietal peritoneum tissues in a pancreatic cancer murine model, but not the incidence of ADC. Gene and protein expressions showed that the suppression of chemokine (C-C motif) ligand 21 (CCL21)/chemokine receptor 7 (CCR7) axis, its downstream of Rho A, B- and T-lymphocyte attenuator (BTLA), N-cadherin, αSMA, pFAK(Tyr397), and pPaxillin(Tyr31) were significantly suppressed in the pancreatic tumors of mice treated with Fx. In addition, Ccr7 knockdown significantly attenuated the growth of KMPC44 cells. These results suggest that Fx is a promising candidate for pancreatic cancer chemoprevention that mediates the suppression of the CCL21/CCR7 axis, BTLA, tumor microenvironment, epithelial mesenchymal transition, and adhesion. Full article
(This article belongs to the Special Issue Inflammation and Cancer 2021)
Show Figures

Figure 1

13 pages, 4076 KiB  
Article
Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation
by Kenta Kachi, Hiroyuki Kato, Aya Naiki-Ito, Masayuki Komura, Aya Nagano-Matsuo, Itaru Naitoh, Kazuki Hayashi, Hiromi Kataoka, Shingo Inaguma and Satoru Takahashi
Int. J. Mol. Sci. 2021, 22(14), 7444; https://doi.org/10.3390/ijms22147444 - 12 Jul 2021
Cited by 7 | Viewed by 2782
Abstract
Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster [...] Read more.
Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster pancreatic carcinogenesis model. Among the three anti-allergic drugs administered, montelukast showed a tendency to suppress the incidence of pancreatic cancer. Further animal study revealed a significantly decreased incidence of pancreatic cancer in the high-dose montelukast group compared with controls. The development of the pancreatic intraepithelial neoplasia lesions was also significantly suppressed. The Ki-67 labeling index was significantly lower in pancreatic carcinomas in the high-dose montelukast group than in controls. In vitro experiments revealed that montelukast suppressed proliferation of pancreatic cancer cells in a dose-dependent manner with decreased expression of phospho-ERK1/2. Montelukast induced G1 phase arrest. Conversely, leukotriene D4 (LTD4), an agonist of CYSLTR1, increased cellular proliferation of pancreatic cancer cells with an accumulation of phospho-ERK1/2. In our cohort, pancreatic ductal adenocarcinoma patients with high CYSLTR1 expression showed a significantly unfavorable clinical outcome compared with those with low expression. Our results indicate that montelukast exerts a chemopreventive effect on pancreatic cancer via the LTD4–CYSLTR1 axis and has potential for treatment of pancreatic carcinogenesis. Full article
(This article belongs to the Special Issue Cancer Chemoprevention: New Knowledge)
Show Figures

Figure 1

11 pages, 683 KiB  
Review
Cytoguardin: A Tryptophan Metabolite against Cancer Growth and Metastasis
by Kenneth K. Wu
Int. J. Mol. Sci. 2021, 22(9), 4490; https://doi.org/10.3390/ijms22094490 - 26 Apr 2021
Cited by 20 | Viewed by 5400
Abstract
Cytoguardin was identified in the conditioned medium of fibroblasts as a tryptophan metabolite, 5-methoxytryptophan (5-MTP). It is synthesized via two enzymatic steps: tryptophan hydroxylase (TPH) and hydroxyindole O-methyltransferase (HIOMT). A truncated HIOMT isoform, HIOMT298, catalyzes 5-MTP synthesis. Cancer cells produce scarce 5-MTP due [...] Read more.
Cytoguardin was identified in the conditioned medium of fibroblasts as a tryptophan metabolite, 5-methoxytryptophan (5-MTP). It is synthesized via two enzymatic steps: tryptophan hydroxylase (TPH) and hydroxyindole O-methyltransferase (HIOMT). A truncated HIOMT isoform, HIOMT298, catalyzes 5-MTP synthesis. Cancer cells produce scarce 5-MTP due to defective HIOMT298 expression. 5-MTP inhibits cancer cell COX-2 expression and thereby reduces COX-2-mediated cell proliferation and migration. 5-MTP also inhibits MMP-9 expression and thereby reduces cancer cell invasion. 5-MTP exerts its anti-cancer effect by blocking p38 MAPK and p38-mediated NF-κB and p300 HAT activation. The stable transfection of A549 cells with HIOMT298 restores 5-MTP production which renders cancer cells less aggressive. The implantation of HIOMT-transfected A549 into subcutaneous tissues of a murine xenograft tumor model shows that HIOMT-transduced A549 cells form smaller tumors and generate fewer metastatic lung nodules than control A549 cells. HIOMT298 transfection suppresses aromatic amino acid decarboxylase (AADC) expression and serotonin production. Serotonin is a cancer-promoting factor. By restoring 5-MTP and suppressing serotonin production, HIOMT298 overexpression converts cancer cells into less malignant phenotypes. The analysis of HIOMT expression in a human cancer tissue array showed reduced HIOMT levels in a majority of colorectal, pancreatic, and breast cancer. HIOMT298 may be a biomarker of human cancer progression. Furthermore, 5-MTP has the potential to be a lead compound in the development of new therapy for the chemoprevention of certain cancers such as hepatocellular cancer. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

13 pages, 2910 KiB  
Article
Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells
by Salim Albukhaty, Sharafaldin Al-Musawi, Salih Abdul Mahdi, Ghassan M. Sulaiman, Mona S. Alwahibi, Yaser Hassan Dewir, Dina A. Soliman and Humaira Rizwana
Molecules 2020, 25(20), 4721; https://doi.org/10.3390/molecules25204721 - 15 Oct 2020
Cited by 62 | Viewed by 4439
Abstract
In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate [...] Read more.
In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and −45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis. Full article
(This article belongs to the Special Issue Translational Approach to Antitumor Drugs)
Show Figures

Figure 1

20 pages, 7352 KiB  
Review
Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer
by Anita Thyagarajan, Andrew S. Forino, Raymond L. Konger and Ravi P. Sahu
Antioxidants 2020, 9(8), 651; https://doi.org/10.3390/antiox9080651 - 23 Jul 2020
Cited by 21 | Viewed by 5082
Abstract
Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently [...] Read more.
Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention. Full article
(This article belongs to the Special Issue Anticancer Antioxidants)
Show Figures

Figure 1

11 pages, 2682 KiB  
Article
Endogenous Anti-Inflammatory Very-Long-Chain Dicarboxylic Acids: Potential Chemopreventive Lipids
by Paul L. Wood
Metabolites 2018, 8(4), 76; https://doi.org/10.3390/metabo8040076 - 3 Nov 2018
Cited by 7 | Viewed by 3781
Abstract
In a paradigm shift, cancer research efforts are being dedicated to the discovery of chemopreventive agents. The goal of this approach is to delay or prevent the progression of augmented cell division to established cancer. Research has focused on dietary supplements, drugs, and [...] Read more.
In a paradigm shift, cancer research efforts are being dedicated to the discovery of chemopreventive agents. The goal of this approach is to delay or prevent the progression of augmented cell division to established cancer. Research has focused on dietary supplements, drugs, and endogenous lipids that possess anti-inflammatory properties. We undertook a lipidomics analysis of potential endogenous anti-inflammatory/anti-proliferative lipids in human plasma. We performed high-resolution mass spectrometric lipidomics analyses of plasma samples from controls and patients with colorectal, kidney, pancreatic, glioblastoma, and breast cancers. We present evidence that endogenous very-long-chain dicarboxylic acids (VLCDCA) are anti-inflammatory lipids that possess chemopreventative properties. In a family of VLCDCAs, we characterized VLCDCA 28:4, which is decreased in the plasma of patients with colorectal, kidney, and pancreatic cancers. The structure of this biomarker was validated by derivatization strategies, synthesis of the analytical standard, and tandem mass spectrometry. Our data suggest that VLCDCA 28:4 may be a useful blood biomarker for a number of cancers and that resupplying this lipid, via a prodrug for example, may offer a new anti-inflammatory therapeutic strategy for delaying or preventing the progression of cancer and other inflammatory diseases. Full article
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Omega-3 Fatty Acids Prevent Early Pancreatic Carcinogenesis via Repression of the AKT Pathway
by Yongzeng Ding, Bhargava Mullapudi, Carolina Torres, Emman Mascariñas, Georgina Mancinelli, Andrew M. Diaz, Ronald McKinney, Morgan Barron, Michelle Schultz, Michael Heiferman, Mireille Wojtanek, Kevin Adrian, Brian DeCant, Sambasiva Rao, Michel Ouellette, Ming-Sound Tsao, David J. Bentrem and Paul J. Grippo
Nutrients 2018, 10(9), 1289; https://doi.org/10.3390/nu10091289 - 12 Sep 2018
Cited by 36 | Viewed by 6521
Abstract
Pancreatic cancer remains a daunting foe despite a vast number of accumulating molecular analyses regarding the mutation and expression status of a variety of genes. Indeed, most pancreatic cancer cases uniformly present with a mutation in the KRAS allele leading to enhanced RAS [...] Read more.
Pancreatic cancer remains a daunting foe despite a vast number of accumulating molecular analyses regarding the mutation and expression status of a variety of genes. Indeed, most pancreatic cancer cases uniformly present with a mutation in the KRAS allele leading to enhanced RAS activation. Yet our understanding of the many epigenetic/environmental factors contributing to disease incidence and progression is waning. Epidemiologic data suggest that diet may be a key factor in pancreatic cancer development and potentially a means of chemoprevention at earlier stages. While diets high in ω3 fatty acids are typically associated with tumor suppression, diets high in ω6 fatty acids have been linked to increased tumor development. Thus, to better understand the contribution of these polyunsaturated fatty acids to pancreatic carcinogenesis, we modeled early stage disease by targeting mutant KRAS to the exocrine pancreas and administered diets rich in these fatty acids to assess tumor formation and altered cell-signaling pathways. We discovered that, consistent with previous reports, the ω3-enriched diet led to reduced lesion penetrance via repression of proliferation associated with reduced phosphorylated AKT (pAKT), whereas the ω6-enriched diet accelerated tumor formation. These data provide a plausible mechanism underlying previously observed effects of fatty acids and suggest that administration of ω3 fatty acids can reduce the pro-survival, pro-growth functions of pAKT. Indeed, counseling subjects at risk to increase their intake of foods containing higher amounts of ω3 fatty acids could aid in the prevention of pancreatic cancer. Full article
Show Figures

Figure 1

13 pages, 5226 KiB  
Article
Inhibition of Autophagy by Deguelin Sensitizes Pancreatic Cancer Cells to Doxorubicin
by Xiao Dong Xu, Yan Zhao, Min Zhang, Rui Zhi He, Xiu Hui Shi, Xing Jun Guo, Cheng Jian Shi, Feng Peng, Min Wang, Min Shen, Xin Wang, Xu Li and Ren Yi Qin
Int. J. Mol. Sci. 2017, 18(2), 370; https://doi.org/10.3390/ijms18020370 - 10 Feb 2017
Cited by 58 | Viewed by 8444
Abstract
Pancreatic cancer is the fourth most common cause of cancer mortality worldwide. Furthermore, patients with pancreatic cancer experience limited benefit from current chemotherapeutic approaches because of drug resistance. Therefore, an effective therapeutic strategy for patients with pancreatic cancer is urgently required. Deguelin is [...] Read more.
Pancreatic cancer is the fourth most common cause of cancer mortality worldwide. Furthermore, patients with pancreatic cancer experience limited benefit from current chemotherapeutic approaches because of drug resistance. Therefore, an effective therapeutic strategy for patients with pancreatic cancer is urgently required. Deguelin is a natural chemopreventive drug that exerts potent antiproliferative activity in solid tumors by inducing cell death. However, the molecular mechanisms underlying this activity have not been fully elucidated. Here we show that deguelin blocks autophagy and induces apoptosis in pancreatic cancer cells in vitro. Autophagy induced by doxorubicin plays a protective role in pancreatic cancer cells, and suppressing autophagy by chloroquine or silencing autophagy protein 5 enhanced doxorubicin-induced cell death. Similarly, inhibition of autophagy by deguelin also chemosensitized pancreatic cancer cell lines to doxorubicin. These findings suggest that deguelin has potent anticancer effects against pancreatic cancer and potentiates the anti-cancer effects of doxorubicin. These findings provide evidence that combined treatment with deguelin and doxorubicin represents an effective strategy for treating pancreatic cancer. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

44 pages, 771 KiB  
Review
Molecular Targeted Intervention for Pancreatic Cancer
by Altaf Mohammed, Naveena B. Janakiram, Shubham Pant and Chinthalapally V. Rao
Cancers 2015, 7(3), 1499-1542; https://doi.org/10.3390/cancers7030850 - 10 Aug 2015
Cited by 30 | Viewed by 8359
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet [...] Read more.
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. Full article
Show Figures

Figure 1

17 pages, 204 KiB  
Review
The Complexities of Epidemiology and Prevention of Gastrointestinal Cancers
by Saba Haq, Shadan Ali, Ramzi Mohammad and Fazlul H. Sarkar
Int. J. Mol. Sci. 2012, 13(10), 12556-12572; https://doi.org/10.3390/ijms131012556 - 1 Oct 2012
Cited by 20 | Viewed by 7257
Abstract
Cancer epidemiology and prevention is one of the most well studied fields today. The more we can understand about the incidence and pathogenesis of this disease, the better we will be able to prevent it. Effective prevention strategies can decrease the mortality rate [...] Read more.
Cancer epidemiology and prevention is one of the most well studied fields today. The more we can understand about the incidence and pathogenesis of this disease, the better we will be able to prevent it. Effective prevention strategies can decrease the mortality rate of cancer significantly; this is why it is important to delineate the underlying causes. It has been well recognized that genetic mutations, sporadic or hereditary, may lead to increased chance of tumorigenesis. Detecting genetic mutations can lead to the identification of high-risk individuals with hereditary cancer syndromes, which may assist in devising prevention strategies. Further, environmental factors are known to play important roles in epidemiology and suggest prevention tools that could be implemented to reduce cancer incidence and subsequent cancer-associated morbidity and mortality. Chemoprevention has been tried in colon cancer and is finding new advancements in other carcinomas as well. Out of many environmental cancer preventive agents, the most notable developments are the identification of the role of vitamins E, vitamin D and folic acid. Increased consumption of these vitamins has shown to be inversely correlated with cancer risk. This review will highlight important aspects of cancer epidemiology in the most aggressive carcinomas of the gastrointestinal system focusing on colorectal adenocarcinoma and pancreatic adenocarcinoma. Additionally, some of the well-known and evolving aspects of epidemiology of colorectal and pancreatic cancer along with current and new prevention strategies will also be reviewed. Full article
(This article belongs to the Special Issue Advances in Molecular Oncology (special issue))
Back to TopTop