Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = palladium diselenide (PdSe2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8494 KiB  
Review
Advances in Group-10 Transition Metal Dichalcogenide PdSe2-Based Photodetectors: Outlook and Perspectives
by Tawsif Ibne Alam, Kunxuan Liu, Sumaiya Umme Hani, Safayet Ahmed and Yuen Hong Tsang
Sensors 2024, 24(18), 6127; https://doi.org/10.3390/s24186127 - 22 Sep 2024
Cited by 4 | Viewed by 2529
Abstract
The recent advancements in low-dimensional material-based photodetectors have provided valuable insights into the fundamental properties of these materials, the design of their device architectures, and the strategic engineering approaches that have facilitated their remarkable progress. This review work consolidates and provides a comprehensive [...] Read more.
The recent advancements in low-dimensional material-based photodetectors have provided valuable insights into the fundamental properties of these materials, the design of their device architectures, and the strategic engineering approaches that have facilitated their remarkable progress. This review work consolidates and provides a comprehensive review of the recent progress in group-10 two-dimensional (2D) palladium diselenide (PdSe2)-based photodetectors. This work first offers a general overview of the various types of PdSe2 photodetectors, including their operating mechanisms and key performance metrics. A detailed examination is then conducted on the physical properties of 2D PdSe2 material and how these metrics, such as structural characteristics, optical anisotropy, carrier mobility, and bandgap, influence photodetector device performance and potential avenues for enhancement. Furthermore, the study delves into the current methods for synthesizing PdSe2 material and constructing the corresponding photodetector devices. The documented device performances and application prospects are thoroughly discussed. Finally, this review speculates on the existing trends and future research opportunities in the field of 2D PdSe2 photodetectors. Potential directions for continued advancement of these optoelectronic devices are proposed and forecasted. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2024)
Show Figures

Figure 1

14 pages, 3105 KiB  
Article
Multi-Layer Palladium Diselenide as a Contact Material for Two-Dimensional Tungsten Diselenide Field-Effect Transistors
by Gennadiy Murastov, Muhammad Awais Aslam, Simon Leitner, Vadym Tkachuk, Iva Plutnarová, Egon Pavlica, Raul D. Rodriguez, Zdenek Sofer and Aleksandar Matković
Nanomaterials 2024, 14(5), 481; https://doi.org/10.3390/nano14050481 - 6 Mar 2024
Cited by 2 | Viewed by 3276
Abstract
Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on–off ratio. However, engineering the contacts to WSe2 [...] Read more.
Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on–off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal–oxide–semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices. Full article
Show Figures

Figure 1

13 pages, 3686 KiB  
Article
Insights into Structural, Electronic, and Transport Properties of Pentagonal PdSe2 Nanotubes Using First-Principles Calculations
by Nguyen Thanh Tien, Pham Thi Bich Thao, Nguyen Hai Dang, Nguyen Duy Khanh and Vo Khuong Dien
Nanomaterials 2023, 13(11), 1728; https://doi.org/10.3390/nano13111728 - 25 May 2023
Cited by 5 | Viewed by 2092
Abstract
One-dimensional (1D) novel pentagonal materials have gained significant attention as a new class of materials with unique properties that could influence future technologies. In this report, we studied the structural, electronic, and transport properties of 1D pentagonal PdSe2 nanotubes (p-PdSe2 NTs). [...] Read more.
One-dimensional (1D) novel pentagonal materials have gained significant attention as a new class of materials with unique properties that could influence future technologies. In this report, we studied the structural, electronic, and transport properties of 1D pentagonal PdSe2 nanotubes (p-PdSe2 NTs). The stability and electronic properties of p-PdSe2 NTs with different tube sizes and under uniaxial strain were investigated using density functional theory (DFT). The studied structures showed an indirect-to-direct bandgap transition with slight variation in the bandgap as the tube diameter increased. Specifically, (5 × 5) p-PdSe2 NT, (6 × 6) p-PdSe2 NT, (7 × 7) p-PdSe2 NT, and (8 × 8) p-PdSe2 NT are indirect bandgap semiconductors, while (9 × 9) p-PdSe2 NT exhibits a direct bandgap. In addition, under low uniaxial strain, the surveyed structures were stable and maintained the pentagonal ring structure. The structures were fragmented under tensile strain of 24%, and compression of −18% for sample (5 × 5) and −20% for sample (9 × 9). The electronic band structure and bandgap were strongly affected by uniaxial strain. The evolution of the bandgap vs. the strain was linear. The bandgap of p-PdSe2 NT experienced an indirect–direct–indirect or a direct–indirect–direct transition when axial strain was applied. A deformability effect in the current modulation was observed when the bias voltage ranged from about 1.4 to 2.0 V or from −1.2 to −2.0 V. Calculation of the field effect I–V characteristic showed that the on/off ratio was large with bias potentials from 1.5 to 2.0 V. This ratio increased when the inside of the nanotube contained a dielectric. The results of this investigation provide a better understanding of p-PdSe2 NTs, and open up potential applications in next-generation electronic devices and electromechanical sensors. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 2596 KiB  
Article
Air Pressure, Gas Exposure and Electron Beam Irradiation of 2D Transition Metal Dichalcogenides
by Antonio Di Bartolomeo, Aniello Pelella, Alessandro Grillo, Francesca Urban and Filippo Giubileo
Appl. Sci. 2020, 10(17), 5840; https://doi.org/10.3390/app10175840 - 23 Aug 2020
Cited by 6 | Viewed by 3018
Abstract
In this study, we investigate the electrical transport properties of back-gated field-effect transistors in which the channel is realized with two-dimensional transition metal dichalcogenide nanosheets, namely palladium diselenide (PdSe2) and molybdenum disulfide (MoS2). The effects of the environment (pressure, [...] Read more.
In this study, we investigate the electrical transport properties of back-gated field-effect transistors in which the channel is realized with two-dimensional transition metal dichalcogenide nanosheets, namely palladium diselenide (PdSe2) and molybdenum disulfide (MoS2). The effects of the environment (pressure, gas type, electron beam irradiation) on the electrical properties are the subject of an intense experimental study that evidences how PdSe2-based devices can be reversibly tuned from a predominantly n-type conduction (under high vacuum) to a p-type conduction (at atmospheric pressure) by simply modifying the pressure. Similarly, we report that, in MoS2-based devices, the transport properties are affected by pressure and gas type. In particular, the observed hysteresis in the transfer characteristics is explained in terms of gas absorption on the MoS2 surface due to the presence of a large number of defects. Moreover, we demonstrate the monotonic (increasing) dependence of the width of the hysteresis on decreasing the gas adsorption energy. We also report the effects of electron beam irradiation on the transport properties of two-dimensional field-effect transistors, showing that low fluences of the order of few e-/nm2 are sufficient to cause appreciable modifications to the transport characteristics. Finally, we profit from our experimental setup, realized inside a scanning electron microscope and equipped with piezo-driven nanoprobes, to perform a field emission characterization of PdSe2 and MoS2 nanosheets at cathode–anode separation distances as small as 200 nm. Full article
(This article belongs to the Special Issue 10th Anniversary of Applied Sciences: Invited Papers in Materials)
Show Figures

Figure 1

Back to TopTop