Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = p.(Arg2His), R2H

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12903 KiB  
Article
Biochemical and Structural Characterization of Glyoxylate Reductase/Hydroxypyruvate Reductase from Bacillus subtilis
by Thang Quyet Nguyen, Thai Huu Duong, Jin Kuk Yang and Wonchull Kang
Crystals 2025, 15(4), 298; https://doi.org/10.3390/cryst15040298 - 25 Mar 2025
Viewed by 519
Abstract
D-2-hydroxyacid dehydrogenases (2HADHs) catalyze the reversible reaction of 2-ketocarboxylic acid to the corresponding (R)-2-hydroxycarboxylic acids using NAD(P)H cofactor. As the preference of the cofactor and substrate varies among homologs, biochemical characterization is required to understand this enzyme. Here, we analyzed the biochemical properties [...] Read more.
D-2-hydroxyacid dehydrogenases (2HADHs) catalyze the reversible reaction of 2-ketocarboxylic acid to the corresponding (R)-2-hydroxycarboxylic acids using NAD(P)H cofactor. As the preference of the cofactor and substrate varies among homologs, biochemical characterization is required to understand this enzyme. Here, we analyzed the biochemical properties of Bacillus subtilis glyoxylate reductase/hydroxypyruvate reductase (BsGRHPR), which catalyzes the reduction of both glyoxylate (EC 1.1.1.26) and hydroxypyruvate (EC 1.1.1.81). Enzyme kinetics showed a preference for hydroxypyruvate over glyoxylate, with a seven-fold higher specificity constant. In addition, BsGRHPR displayed a strict preference for NADPH over NADH as a cofactor. The crystal structures of BsGRHPR in complex with formate were determined in the presence and absence of the cofactor at near-atomic resolution. Structural comparisons revealed conformational changes upon cofactor binding and key residues, such as Asp80, R157, R179, R239, Asp263, and Arg296. In addition, substrate-binding analysis highlighted conserved residues, including Val77, Gly78, His287, and S290. Our structures suggest that Glu137, His287, Ser290, and Arg296 serve as gatekeepers at the entrance of the tunnel. This comprehensive characterization of BsGRHPR elucidates its substrate specificity, cofactor preference, and catalytic mechanism, contributing to a broader understanding of GRHPR family enzymes, with potential implications for metabolic engineering applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

17 pages, 1508 KiB  
Article
Diagnosis of Prostate Cancer with a Neurotensin–Bombesin Radioligand Combination—First Preclinical Results
by Maria Bibika, Panagiotis Kanellopoulos, Maritina Rouchota, George Loudos, Berthold A. Nock, Eric P. Krenning and Theodosia Maina
Pharmaceutics 2024, 16(9), 1223; https://doi.org/10.3390/pharmaceutics16091223 - 19 Sep 2024
Viewed by 1497
Abstract
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity [...] Read more.
Background: The concept of radiotheranostics relies on the overexpression of a biomolecular target on malignant cells to direct diagnostic/therapeutic radionuclide-carriers specifically to cancer lesions. The concomitant expression of more than one target in pathological lesions may be elegantly exploited to improve diagnostic sensitivity and therapeutic efficacy. Toward this goal, we explored a first example of a combined application of [99mTc]Tc-DT11 (DT11, N4-Lys(MPBA-PEG4)-Arg-Arg-Pro-Tyr-Ile-Leu-OH; NTS1R-specific) and [99mTc]Tc-DB7(DB7, N4-PEG2-DPhe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; GRPR-specific) in prostate cancer models. Methods: Accordingly, the behavior of [99mTc]Tc-DT11 was compared with that of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture in prostate adenocarcinoma PC-3 cells and xenografts in mice. The impact of stabilizing both radiotracers by Entresto®, as a source of the potent neprilysin inhibitor sacubitrilat, was also investigated. Results: The PC-3 cell binding of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture surpassed that of [99mTc]Tc-DT11. Likewise, the PC-3 tumor uptake of the [99mTc]Tc-DT11+[99mTc]Tc-DB7 mixture at 4 h post-injection was superior (7.70 ± 0.89%IA/g) compared with [99mTc]Tc-DT11 (4.23 ± 0.58%IA/g; p < 0.0001). Treatment with Entresto® led to further enhancement of the tumor uptake (to 11.57 ± 1.92%IA/g; p < 0.0001). Conclusions: In conclusion, this first preclinical study on prostate cancer models revealed clear advantages of dual NTS1R/GRPR targeting, justifying further assessment of this promising concept in other cancer models. Full article
(This article belongs to the Special Issue Peptide–Drug Conjugates for Targeted Delivery)
Show Figures

Figure 1

16 pages, 3759 KiB  
Article
Identification of Protein–Phenol Adducts in Meat Proteins: A Molecular Probe Technology Study
by Fenhong Yang, Yingying Zhu, Xiaohan Li, Fengtao Xiang, Moru Deng, Wei Zhang, Wei Song, Hao Sun and Changbo Tang
Foods 2023, 12(23), 4225; https://doi.org/10.3390/foods12234225 - 23 Nov 2023
Cited by 4 | Viewed by 2230
Abstract
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed [...] Read more.
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts were separated via sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of 51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline (P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely to form via C-N bonding than C-S bonding. This study provides new insights into the covalent interaction of plant polyphenols and meat proteins, which has important implications for the rational use of plant polyphenols in the meat processing industry. Full article
(This article belongs to the Special Issue Development of Functional and Fortified Foods)
Show Figures

Figure 1

16 pages, 6702 KiB  
Article
Selective and Effective Gold Recovery from Printed Circuit Boards and Gold Slag Using Amino-Acid-Functionalized Cellulose Microspheres
by Fulai Hao, Jifu Du, Lifang Peng, Manman Zhang, Zhen Dong, Yanbai Shen and Long Zhao
Polymers 2023, 15(2), 321; https://doi.org/10.3390/polym15020321 - 8 Jan 2023
Cited by 14 | Viewed by 2691
Abstract
The hydrometallurgical recovery of gold from electronic waste and gold slag is a hot research topic. To develop a cost-effective and environmentally friendly adsorbent for gold recovery, four types of amino-acid (arginine, histidine, methionine, and cysteine)-functionalized cellulose microspheres were prepared via a radiation [...] Read more.
The hydrometallurgical recovery of gold from electronic waste and gold slag is a hot research topic. To develop a cost-effective and environmentally friendly adsorbent for gold recovery, four types of amino-acid (arginine, histidine, methionine, and cysteine)-functionalized cellulose microspheres were prepared via a radiation technique. The adsorption performance of the amino acid resins toward Au(III) ions was systematically investigated by batch experiments. The amino acid resins could absorb Au(III) ions at a wide pH range. The adsorption process was followed by the pseudo-second-order model and Langmuir model. The theoretical maximum adsorption capacity was calculated as 396.83 mg/g, 769.23 mg/g, 549.45 mg/g, and 636.94 mg/g for ArgR, HisR, MetR, and CysR, respectively. The amino acid resins could effectively and selectively recover trace Au(III) ions from the leaching solutions of printed circuit board and gold slag waste. Lastly, the mechanism underlying amino acid resin’s Au(III) ion recovery capability was investigated by FTIR, XRD, and XPS analyses. This work describes a series of cost-effective gold adsorbents with excellent selectivity and adsorption capacity to boost their practical application. Full article
(This article belongs to the Special Issue Organic Polymer Functional Adsorption Materials)
Show Figures

Figure 1

18 pages, 3224 KiB  
Article
Whole Exome Sequencing Identifies a Heterozygous Variant in the Cav1.3 Gene CACNA1D Associated with Familial Sinus Node Dysfunction and Focal Idiopathic Epilepsy
by Susanne Rinné, Birgit Stallmeyer, Alexandra Pinggera, Michael F. Netter, Lina A. Matschke, Sven Dittmann, Uwe Kirchhefer, Ulrich Neudorf, Joachim Opp, Jörg Striessnig, Niels Decher and Eric Schulze-Bahr
Int. J. Mol. Sci. 2022, 23(22), 14215; https://doi.org/10.3390/ijms232214215 - 17 Nov 2022
Cited by 13 | Viewed by 3138
Abstract
Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node [...] Read more.
Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction. Full article
(This article belongs to the Special Issue Molecular Effects of Mutations in Human Genetic Diseases 2.0)
Show Figures

Figure 1

9 pages, 656 KiB  
Article
TP53 Pathogenic Variants in Early-Onset Breast Cancer Patients Fulfilling Hereditary Breast and Ovary Cancer and Li-Fraumeni-like Syndromes
by Paula Francinete Faustino da Silva, Rebeca Mota Goveia, Thaís Bomfim Teixeira, Bruno Faulin Gamba, Aliny Pereira de Lima, Sílvia Regina Rogatto and Elisângela de Paula Silveira-Lacerda
Biomolecules 2022, 12(5), 640; https://doi.org/10.3390/biom12050640 - 27 Apr 2022
Cited by 2 | Viewed by 4014
Abstract
TP53 gene mutation is the most common genetic alteration in human malignant tumors and is mainly responsible for Li-Fraumeni syndrome. Among the several cancers related to this syndrome, breast cancer (BC) is the most common. The TP53 p.R337H germline pathogenic variant is highly [...] Read more.
TP53 gene mutation is the most common genetic alteration in human malignant tumors and is mainly responsible for Li-Fraumeni syndrome. Among the several cancers related to this syndrome, breast cancer (BC) is the most common. The TP53 p.R337H germline pathogenic variant is highly prevalent in Brazil’s South and Southeast regions, accounting for 0.3% of the general population. We investigated the prevalence of TP53 germline pathogenic variants in a cohort of 83 BC patients from the Midwest Brazilian region. All patients met the clinical criteria for hereditary breast and ovarian cancer syndrome (HBOC) and were negative for BRCA1 and BRCA2 mutations. Moreover, 40 index patients fulfilled HBOC and the Li-Fraumeni-like (LFL) syndromes criteria. The samples were tested using next generation sequencing for TP53. Three patients harbored TP53 missense pathogenic variants (p.Arg248Gln, p.Arg337His, and p.Arg337Cys), confirmed by Sanger sequencing. One (1.2%) patient showed a large TP53 deletion (exons 2–11), which was also confirmed. The p.R337H variant was detected in only one patient. In conclusion, four (4.8%) early-onset breast cancer patients fulfilling the HBOC and LFL syndromes presented TP53 pathogenic variants, confirming the relevance of genetic tests in this group of patients. In contrast to other Brazilian regions, TP53 p.R337H variant appeared with low prevalence. Full article
(This article belongs to the Collection p53 Function and Dysfunction in Human Health and Diseases)
Show Figures

Figure 1

14 pages, 5208 KiB  
Article
Overexpression of Orange Gene (OsOr-R115H) Enhances Heat Tolerance and Defense-Related Gene Expression in Rice (Oryza sativa L.)
by Yu Jin Jung, Ji Yun Go, Hyo Ju Lee, Jung Soon Park, Jin Young Kim, Ye Ji Lee, Mi-Jeong Ahn, Me-Sun Kim, Yong-Gu Cho, Sang-Soo Kwak, Ho Soo Kim and Kwon Kyoo Kang
Genes 2021, 12(12), 1891; https://doi.org/10.3390/genes12121891 - 26 Nov 2021
Cited by 15 | Viewed by 3442
Abstract
In plants, the orange (Or) gene plays roles in regulating carotenoid biosynthesis and responses to environmental stress. The present study investigated whether the expression of rice Or (OsOr) gene could enhance rice tolerance to heat stress conditions. The OsOr [...] Read more.
In plants, the orange (Or) gene plays roles in regulating carotenoid biosynthesis and responses to environmental stress. The present study investigated whether the expression of rice Or (OsOr) gene could enhance rice tolerance to heat stress conditions. The OsOr gene was cloned and constructed with OsOr or OsOr-R115H (leading to Arg to His substitution at position 115 on the OsOr protein), and transformed into rice plants. The chlorophyll contents and proline contents of transgenic lines were significantly higher than those of non-transgenic (NT) plants under heat stress conditions. However, we found that the levels of electrolyte leakage and malondialdehyde in transgenic lines were significantly reduced compared to NT plants under heat stress conditions. In addition, the levels of expression of four genes related to reactive oxygen species (ROS) scavenging enzymes (OsAPX2, OsCATA, OsCATB, OsSOD-Cu/Zn) and five genes (OsLEA3, OsDREB2A, OsDREB1A, OsP5CS, SNAC1) responded to abiotic stress was showed significantly higher in the transgenic lines than NT plants under heat stress conditions. Therefore, OsOr-R115H could be exploited as a promising strategy for developing new rice cultivars with improved heat stress tolerance. Full article
(This article belongs to the Special Issue Genetic Research and Plant Breeding)
Show Figures

Figure 1

31 pages, 3342 KiB  
Article
High Functioning Autism with Missense Mutations in Synaptotagmin-Like Protein 4 (SYTL4) and Transmembrane Protein 187 (TMEM187) Genes: SYTL4- Protein Modeling, Protein-Protein Interaction, Expression Profiling and MicroRNA Studies
by Syed K. Rafi, Alberto Fernández-Jaén, Sara Álvarez, Owen W. Nadeau and Merlin G. Butler
Int. J. Mol. Sci. 2019, 20(13), 3358; https://doi.org/10.3390/ijms20133358 - 9 Jul 2019
Cited by 17 | Viewed by 6422
Abstract
We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. [...] Read more.
We describe a 7-year-old male with high functioning autism spectrum disorder (ASD) and maternally-inherited rare missense variant of Synaptotagmin-like protein 4 (SYTL4) gene (Xq22.1; c.835C>T; p.Arg279Cys) and an unknown missense variant of Transmembrane protein 187 (TMEM187) gene (Xq28; c.708G>T; p. Gln236His). Multiple in-silico predictions described in our study indicate a potentially damaging status for both X-linked genes. Analysis of predicted atomic threading models of the mutant and the native SYTL4 proteins suggest a potential structural change induced by the R279C variant which eliminates the stabilizing Arg279-Asp60 salt bridge in the N-terminal half of the SYTL4, affecting the functionality of the protein’s critical RAB-Binding Domain. In the European (Non-Finnish) population, the allele frequency for this variant is 0.00042. The SYTL4 gene is known to directly interact with several members of the RAB family of genes, such as, RAB27A, RAB27B, RAB8A, and RAB3A which are known autism spectrum disorder genes. The SYTL4 gene also directly interacts with three known autism genes: STX1A, SNAP25 and STXBP1. Through a literature-based analytical approach, we identified three of five (60%) autism-associated serum microRNAs (miRs) with high predictive power among the total of 298 mouse Sytl4 associated/predicted microRNA interactions. Five of 13 (38%) miRs were differentially expressed in serum from ASD individuals which were predicted to interact with the mouse equivalent Sytl4 gene. TMEM187 gene, like SYTL4, is a protein-coding gene that belongs to a group of genes which host microRNA genes in their introns or exons. The novel Q236H amino acid variant in the TMEM187 in our patient is near the terminal end region of the protein which is represented by multiple sequence alignments and hidden Markov models, preventing comparative structural analysis of the variant harboring region. Like SYTL4, the TMEM187 gene is expressed in the brain and interacts with four known ASD genes, namely, HCFC1; TMLHE; MECP2; and GPHN. TMM187 is in linkage with MECP2, which is a well-known determinant of brain structure and size and is a well-known autism gene. Other members of the TMEM gene family, TMEM132E and TMEM132D genes are associated with bipolar and panic disorders, respectively, while TMEM231 is a known syndromic autism gene. Together, TMEM187 and SYTL4 genes directly interact with recognized important ASD genes, and their mRNAs are found in extracellular vesicles in the nervous system and stimulate target cells to translate into active protein. Our evidence shows that both these genes should be considered as candidate genes for autism. Additional biological testing is warranted to further determine the pathogenicity of these gene variants in the causation of autism. Full article
Show Figures

Figure 1

12 pages, 2216 KiB  
Article
Clinical and Functional Characterization of the Recurrent TUBA1A p.(Arg2His) Mutation
by Jennifer F. Gardner, Thomas D. Cushion, Georgios Niotakis, Heather E. Olson, P. Ellen Grant, Richard H. Scott, Neil Stoodley, Julie S. Cohen, Sakkubai Naidu, Tania Attie-Bitach, Maryse Bonnières, Lucile Boutaud, Férechté Encha-Razavi, Sheila M. Palmer-Smith, Hood Mugalaasi, Jonathan G. L. Mullins, Daniela T. Pilz and Andrew E. Fry
Brain Sci. 2018, 8(8), 145; https://doi.org/10.3390/brainsci8080145 - 7 Aug 2018
Cited by 17 | Viewed by 6834
Abstract
The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations [...] Read more.
The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause a range of brain malformations. We describe four unrelated patients with the same de novo missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing. Detailed comparison revealed similar brain phenotypes with mild variability. Shared features included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation by computer-based protein structure modelling and heterologous expression in HEK-293 cells. The results suggest the mutation subtly impairs microtubule function, potentially by affecting inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors (such as genetic background or environmental conditions) to influence phenotypic outcome, thus explaining the mild variability in clinical manifestations. Full article
Show Figures

Figure 1

18 pages, 3026 KiB  
Article
The Effect of Conformational Variability of Phosphotriesterase upon N-acyl-L-homoserine Lactone and Paraoxon Binding: Insights from Molecular Dynamics Studies
by Dongling Zhan, Zhenhuan Zhou, Shanshan Guan and Weiwei Han
Molecules 2013, 18(12), 15501-15518; https://doi.org/10.3390/molecules181215501 - 12 Dec 2013
Cited by 11 | Viewed by 5838
Abstract
The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a [...] Read more.
The organophosphorous hydrolase (PTE) from Brevundimonas diminuta is capable of degrading extremely toxic organophosphorous compounds with a high catalytic turnover and broad substrate specificity. Although the natural substrate for PTE is unknown, its loop remodeling (loop 7-2/H254R) led to the emergence of a homoserine lactonase (HSL) activity that is undetectable in PTE (kcat/km values of up to 2 × 104), with only a minor decrease in PTE paraoxonase activity. In this study, homology modeling and molecular dynamics simulations have been undertaken seeking to explain the reason for the substrate specificity for the wild-type and the loop 7-2/H254R variant. The cavity volume estimated results showed that the active pocket of the variant was almost two fold larger than that of the wild-type (WT) enzyme. pKa calculations for the enzyme (the WT and the variant) showed a significant pKa shift from WT standard values (ΔpKa = 3.5 units) for the His254residue (in the Arg254 variant). Molecular dynamics simulations indicated that the displacement of loops 6 and 7 over the active site in loop 7-2/H254R variant is useful for N-acyl-L-homoserine lactone (C4-HSL) with a large aliphatic chain to site in the channels easily. Thence the expanding of the active pocket is beneficial to C4-HSL binding and has a little effect on paraoxon binding. Our results provide a new theoretical contribution of loop remodeling to the rapid divergence of new enzyme functions. Full article
(This article belongs to the Special Issue In-Silico Drug Design and In-Silico Screening)
Show Figures

Graphical abstract

Back to TopTop