Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = p-methoxy benzyl

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5103 KiB  
Article
Development of pH-Responsive N-benzyl-N-O-succinyl Chitosan Micelles Loaded with a Curcumin Analog (Cyqualone) for Treatment of Colon Cancer
by Sasikarn Sripetthong, Fredrick Nwude Eze, Warayuth Sajomsang and Chitchamai Ovatlarnporn
Molecules 2023, 28(6), 2693; https://doi.org/10.3390/molecules28062693 - 16 Mar 2023
Cited by 14 | Viewed by 2690
Abstract
This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in [...] Read more.
This work aimed at preparing nanomicelles from N-benzyl-N,O-succinyl chitosan (NBSCh) loaded with a curcumin analog, 2,6-bis((3-methoxy-4-hydroxyphenyl) methylene) cyclohexanone, a.k.a. cyqualone (CL), for antineoplastic colon cancer chemotherapy. The CL-loaded NBSCh micelles were spherical and less than 100 nm in size. The entrapment efficiency of CL in the micelles ranged from 13 to 39%. Drug release from pristine CL was less than 20% in PBS at pH 7.4, whereas the release from CL-NBSCh micelles was significantly higher. The release study of CL-NBSCh revealed that around 40% of CL content was released in simulated gastric fluid at pH 1.2; 79 and 85% in simulated intestinal fluids at pH 5.5 and 6.8, respectively; and 75% in simulated colonic fluid at pH 7.4. CL-NBSCh showed considerably high selective cytotoxicity towards mucosal epithelial human colon cancer (HT-29) cells and lower levels of toxicity towards mouse connective tissue fibroblasts (L929). CL-NBSCh was also more cytotoxic than the free CL. Furthermore, compared to free CL, CL-NBSCh micelles were found to be more efficient at arresting cell growth at the G2/M phase, and induced apoptosis earlier in HT-29 cells. Collectively, these results indicate the high prospective potential of CL-loaded NBSCh micelles as an oral therapeutic intervention for colon cancer. Full article
(This article belongs to the Special Issue Advances on Nanomedicine and Nanoparticle-Based Drug Delivery)
Show Figures

Figure 1

8 pages, 1115 KiB  
Communication
Antiplasmodial Activity of p-Substituted Benzyl Thiazinoquinone Derivatives and Their Potential against Parasitic Infections
by Marcello Casertano, Marialuisa Menna, Caterina Fattorusso, Nicoletta Basilico, Silvia Parapini, Marco Persico and Concetta Imperatore
Molecules 2020, 25(7), 1530; https://doi.org/10.3390/molecules25071530 - 27 Mar 2020
Cited by 5 | Viewed by 2650
Abstract
Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This [...] Read more.
Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This paper describes a continuation of our ongoing efforts to investigate the effects against Plasmodium falciparum strains and human microvascular endothelial cells (HMEC-1) of a series of methoxy p-benzyl-substituted thiazinoquinones designed starting from a pointed antimalarial lead candidate. The data obtained from the newly tested compounds expanded the structure–activity relationships (SARs) of the thiazinoquinone scaffold, indicating that antiplasmodial activity is not affected by the inductive effect but rather by the resonance effect of the introduced group at the para position of the benzyl substituent. Indeed, the current survey was based on the evaluation of antiparasitic usefulness as well as the selectivity on mammalian cells of the tested p-benzyl-substituted thiazinoquinones, upgrading the knowledge about the active thiazinoquinone scaffold. Full article
(This article belongs to the Special Issue Purposing and Repurposing of Antimalarial Agents)
Show Figures

Graphical abstract

12 pages, 1745 KiB  
Article
Synthesis and In Vitro Antibacterial Activity of Quaternized 10-Methoxycanthin-6-one Derivatives
by Na Li, Dan Liu, Jiang-Kun Dai, Jin-Yi Wang and Jun-Ru Wang
Molecules 2019, 24(8), 1553; https://doi.org/10.3390/molecules24081553 - 19 Apr 2019
Cited by 9 | Viewed by 5038
Abstract
Background: Based on our previous work, we found that 10-methoxycanthin-6-one displayed potential antibacterial activity and quaternization was an available method for increasing the antibacterial activity. Here, we explored the antibacterial activity of quaternized 10-methoxy canthin-6-one derivatives. Methods and Results: Twenty-two new 3-N [...] Read more.
Background: Based on our previous work, we found that 10-methoxycanthin-6-one displayed potential antibacterial activity and quaternization was an available method for increasing the antibacterial activity. Here, we explored the antibacterial activity of quaternized 10-methoxy canthin-6-one derivatives. Methods and Results: Twenty-two new 3-N-benzylated 10-methoxy canthin-6-ones were designed and synthesized through quaternization reaction. The in vitro antibacterial activity against three bacteria was evaluated by the double dilution method. Moreover, the structure–activity relationships (SARs) were carefully summarized in order to guide the development of antibacterial canthin-6-one agents. Two highly active compounds (6p and 6t) displayed 8-fold superiority (MIC = 3.91 µg/mL) against agricultural pathogenic bacteria R. solanacearum and P. syringae compared to agrochemical streptomycin sulfate, and showed potential activity against B. cereus. Moreover, these two compounds exhibited good “drug-like” properties, low cytotoxicity, and no inhibition on seed germination. Conclusions: This work provides two new effective quaternized canthin-6-one derivatives as candidate bactericide, promoting the development of natural-sourced bactericides and preservatives. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

11 pages, 1041 KiB  
Article
Cytotoxicity of the Essential Oil of Fennel (Foeniculum vulgare) from Tajikistan
by Farukh Sharopov, Abdujabbor Valiev, Prabodh Satyal, Isomiddin Gulmurodov, Salomudin Yusufi, William N. Setzer and Michael Wink
Foods 2017, 6(9), 73; https://doi.org/10.3390/foods6090073 - 28 Aug 2017
Cited by 56 | Viewed by 10993
Abstract
The essential oil of fennel (Foeniculum vulgare) is rich in lipophilic secondary metabolites, which can easily cross cell membranes by free diffusion. Several constituents of the oil carry reactive carbonyl groups in their ring structures. Carbonyl groups can react with amino [...] Read more.
The essential oil of fennel (Foeniculum vulgare) is rich in lipophilic secondary metabolites, which can easily cross cell membranes by free diffusion. Several constituents of the oil carry reactive carbonyl groups in their ring structures. Carbonyl groups can react with amino groups of amino acid residues in proteins or in nucleotides of DNA to form Schiff’s bases. Fennel essential oil is rich in anise aldehyde, which should interfere with molecular targets in cells. The aim of the present study was to investigate the chemical composition of the essential oil of fennel growing in Tajikistan. Gas chromatographic-mass spectrometric analysis revealed that the main components of F. vulgare oil were trans-anethole (36.8%); α-ethyl-p-methoxy-benzyl alcohol (9.1%); p-anisaldehyde (7.7%); carvone (4.9%); 1-phenyl-penta-2,4-diyne (4.8%) and fenchyl butanoate (4.2%). The oil exhibited moderate antioxidant activities. The potential cytotoxic activity was studied against HeLa (human cervical cancer), Caco-2 (human colorectal adenocarcinoma), MCF-7 (human breast adenocarcinoma), CCRF-CEM (human T lymphoblast leukaemia) and CEM/ADR5000 (adriamycin resistant leukaemia) cancer cell lines; IC50 values were between 30–210 mg L−1 and thus exhibited low cytotoxicity as compared to cytotoxic reference compounds. Full article
(This article belongs to the Special Issue Application of Essential Oils in Food Systems)
Show Figures

Figure 1

14 pages, 1754 KiB  
Article
Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues
by Eva Heřmánková-Vavříková, Alena Křenková, Lucie Petrásková, Christopher Steven Chambers, Jakub Zápal, Marek Kuzma, Kateřina Valentová and Vladimír Křen
Int. J. Mol. Sci. 2017, 18(5), 1074; https://doi.org/10.3390/ijms18051074 - 17 May 2017
Cited by 20 | Viewed by 6121
Abstract
Isoquercitrin, (IQ, quercetin-3-O-β-d-glucopyranoside) is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of [...] Read more.
Isoquercitrin, (IQ, quercetin-3-O-β-d-glucopyranoside) is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of IQ derivatives at the C-6″. IQ benzoate, phenylacetate, phenylpropanoate and cinnamate were prepared from respective vinyl esters using Novozym 435 (Lipase B from Candida antarctica immobilized on acrylic resin). The enzymatic procedure gave no products with “hydroxyaromatic” acids, their vinyl esters nor with their benzyl-protected forms. A chemical protection/deprotection method using Steglich reaction yielded IQ 4-hydroxybenzoate, vanillate and gallate. In case of p-coumaric, caffeic, and ferulic acid, the deprotection lead to the saturation of the double bonds at the phenylpropanoic moiety and yielded 4-hydroxy-, 3,4-dihydroxy- and 3-methoxy-4-hydroxy-phenylpropanoates. Reducing capacity of the cinnamate, gallate and 4-hydroxyphenylpropanoate towards Folin-Ciocalteau reagent was significantly lower than that of IQ, while other derivatives displayed slightly better or comparable capacity. Compared to isoquercitrin, most derivatives were less active in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, but they showed significantly better 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, ABTS) scavenging activity and were substantially more active in the inhibition of tert-butylhydroperoxide induced lipid peroxidation of rat liver microsomes. The most active compounds were the hydroxyphenylpropanoates. Full article
(This article belongs to the Special Issue Molecular Transformations of Natural Products)
Show Figures

Graphical abstract

13 pages, 583 KiB  
Article
Synthesis and in Vitro Antiproliferative Evaluation of C-13 Epimers of Triazolyl-d-Secoestrone Alcohols: The First Potent 13α-d-Secoestrone Derivative
by Johanna Szabó, Nóra Jerkovics, Gyula Schneider, János Wölfling, Noémi Bózsity, Renáta Minorics, István Zupkó and Erzsébet Mernyák
Molecules 2016, 21(5), 611; https://doi.org/10.3390/molecules21050611 - 12 May 2016
Cited by 30 | Viewed by 5691
Abstract
The syntheses of C-13 epimeric 3-[(1-benzyl-1,2,3-triazol-4-yl)methoxy]-d-secoestrones are reported. Triazoles were prepared from 3-(prop-2-inyloxy)-d-secoalcohols and p-substituted benzyl azides via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The antiproliferative activities of the products and their precursors were determined in vitro against a panel [...] Read more.
The syntheses of C-13 epimeric 3-[(1-benzyl-1,2,3-triazol-4-yl)methoxy]-d-secoestrones are reported. Triazoles were prepared from 3-(prop-2-inyloxy)-d-secoalcohols and p-substituted benzyl azides via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The antiproliferative activities of the products and their precursors were determined in vitro against a panel of human adherent cervical (HeLa, SiHa and C33A), breast (MCF-7, MDA-MB-231, MDA-MB-361 and T47D) and ovarian (A2780) cell lines by means of MTT assays. The orientation of the angular methyl group and the substitution pattern of the benzyl group of the azide greatly influenced the cell growth-inhibitory potential of the compounds. The 13β derivatives generally proved to be more potent than their 13α counterparts. Introduction of a benzyltriazolylmethyl group onto the 3-OH position seemed to be advantageous. One 13α compound containing an unsubstituted benzyltriazolyl function displayed outstanding antiproliferative activities against three cell lines. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

11 pages, 832 KiB  
Article
Total Synthesis and Antifungal Activity of Palmarumycin CP17 and Its Methoxy Analogues
by Ruina Wang, Guoyue Liu, Mingyan Yang, Mingan Wang and Ligang Zhou
Molecules 2016, 21(5), 600; https://doi.org/10.3390/molecules21050600 - 7 May 2016
Cited by 15 | Viewed by 6090
Abstract
Total synthesis of naturally occurring spirobisnaphthalene palmarumycin CP17 and its methoxy analogues was first achieved through Friedel-Crafts acylation, Wolff-Kishner reduction, intramolecular cyclization, ketalization, benzylic oxidation, and demethylation using the inexpensive and readily available methoxybenzene, 1,2-dimethoxybenzene and 1,4-dimethoxybenzene and 1,8-dihydroxynaphthalene as raw materials. [...] Read more.
Total synthesis of naturally occurring spirobisnaphthalene palmarumycin CP17 and its methoxy analogues was first achieved through Friedel-Crafts acylation, Wolff-Kishner reduction, intramolecular cyclization, ketalization, benzylic oxidation, and demethylation using the inexpensive and readily available methoxybenzene, 1,2-dimethoxybenzene and 1,4-dimethoxybenzene and 1,8-dihydroxynaphthalene as raw materials. Demethylation with (CH3)3SiI at ambient temperature resulted in ring A aromatization and acetal cleavage to give rise to binaphthyl ethers. The antifungal activities of these spirobisnaphthalene derivatives were evaluated, and the results revealed that 5 and 9b exhibit EC50 values of 9.34 µg/mL and 12.35 µg/mL, respectively, against P. piricola. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

6 pages, 821 KiB  
Communication
The Synthesis and Molecular Structure of 2-(4-Methoxybenzyl)-4-nitro-2H-indazole
by Kristin Ebert, Martin Köckerling and Constantin Mamat
Crystals 2012, 2(2), 176-181; https://doi.org/10.3390/cryst2020176 - 10 Apr 2012
Cited by 1 | Viewed by 6091
Abstract
Two novel indazole derivatives protected with p-methoxybenzyl group were synthesized and characterized. The crystal and molecular structure of 2-(4-methoxybenzyl)-4-nitro-2H-indazole as one out of the two regioisomers is reported. The compound was obtained from a saturated petroleum ether/ethyl acetate mixture and [...] Read more.
Two novel indazole derivatives protected with p-methoxybenzyl group were synthesized and characterized. The crystal and molecular structure of 2-(4-methoxybenzyl)-4-nitro-2H-indazole as one out of the two regioisomers is reported. The compound was obtained from a saturated petroleum ether/ethyl acetate mixture and crystallizes in the triclinic space group P`1. The unit cell parameters are: a = 6.8994(1) Å, b = 9.8052(2) Å, c = 11.1525(2) Å; α = 71.729(1)°, β = 79.436(1)°, γ = 74.349(1)° and V = 685.83(2) Å3. There are two independent molecules found in the asymmetric unit. Full article
Show Figures

Figure 1

Back to TopTop