Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = oxidative hair dye ingredients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1464 KiB  
Article
GC-MS Analysis with In Situ Derivatization for Managing Toxic Oxidative Hair Dye Ingredients in Hair Products
by Geon Park, Won-Young Cho, Jisu Park, Yujin Jeong, Jihwan Kim, Hyo Joon Park, Kyung Hyun Min and Wonwoong Lee
Chemosensors 2025, 13(3), 94; https://doi.org/10.3390/chemosensors13030094 - 6 Mar 2025
Cited by 1 | Viewed by 1285
Abstract
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been [...] Read more.
Hair care products that have oxidative hair dye ingredients have been widely used to permanently change hair color for the characteristic and younger appearance of people and/or their companion animals. In the European Union and the Republic of Korea, these ingredients have been carefully used or prohibited for cosmetic products according to their genotoxic potential. There is a growing demand for reliable quantification methods to monitor oxidative hair dye ingredients in hair care products. However, accurately quantifying oxidative dyes in cosmetic samples is challenging due to their high reactivity and chemical instability under both basic and ambient conditions. For this reason, for the quantification methods, elaborate sample preparation procedures should be accompanied by chemical derivatization to avoid chemical reactions between hair dye ingredients, before instrumental analysis. Therefore, this study utilized a gas chromatography–mass spectrometry (GC-MS) method combined with in situ chemical derivatization to quantify 26 oxidative hair dye ingredients in hair care products. In situ derivatization using acetic anhydride provided the characteristic [M-CH2CO]+ ions at m/z (M-42), produced by the loss of a ketene from the hair dye ingredient derivatives. These characteristic ions can be used to establish a selective ion monitoring (SIM) mode of GC-MS. The established method was successfully applied to hair dye products (n = 13) and hair coloring shampoos (n = 12). Most products contained unintended hair dye ingredients including catechol without labeling. It was cautiously speculated that these unintended hair dye ingredients might be caused by biodegradation due to various enzymes in natural product extracts. This study presents a reliable GC-MS method with in situ derivatization to quantify 26 oxidative hair dye ingredients in hair care products, addressing challenges related to their chemical instability. This method is crucial for public health and regulatory compliance. Full article
Show Figures

Figure 1

13 pages, 2802 KiB  
Article
Exploring the Use of Natural Ingredients for the Protection of Textured Hair from Ultraviolet Radiation: An In Vitro Study
by Ewa Markiewicz and Olusola C. Idowu
Cosmetics 2024, 11(3), 102; https://doi.org/10.3390/cosmetics11030102 - 19 Jun 2024
Viewed by 3365
Abstract
Human hair is characterized by significant diversity, which is dictated by the individual genetic makeup. It is estimated that up to 70% of the world’s population has textured hair, with a significant proportion also living in areas with high exposure to ultraviolet radiation [...] Read more.
Human hair is characterized by significant diversity, which is dictated by the individual genetic makeup. It is estimated that up to 70% of the world’s population has textured hair, with a significant proportion also living in areas with high exposure to ultraviolet radiation (UVR). This highlights the unique requirements for textured hair care products that can protect hair shafts from the harmful effects of the environment whilst enhancing the natural features of the fibre. In this study, we investigated the UV-protective effects of hair conditioner formulated from active ingredients, mangiferin, ferulic acid and naringin. The analysis of UV-irradiated straight and textured hair was performed by measurements of hair thickness and darkness, the uptake of the fluorescent dye, spectral absorbance of keratin extracts, ATR-FTIR and SEM. We found that textured hair was more sensitive to UVR-induced changes than straight hair, with the primary molecular targets represented by chemical groups in keratins. Pre-treatment of the hair with conditioner had protective effects against structural damage and oxidative stress caused by UVR. These data indicate the importance of the personalized approach to hair research and the formulation of hair care products tailored to the individual demands of textured hair types. Full article
Show Figures

Figure 1

10 pages, 1611 KiB  
Article
Analytical Method Development and Dermal Absorption of 4-Amino-3-Nitrophenol (4A3NP), a Hair Dye Ingredient under the Oxidative or Non-Oxidative Condition
by Hyang Yeon Kim, Yu Jin Kim, Jung Dae Lee, Hak Rim Kim and Dong-Wan Seo
Toxics 2024, 12(5), 340; https://doi.org/10.3390/toxics12050340 - 7 May 2024
Cited by 1 | Viewed by 1418
Abstract
The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and [...] Read more.
The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and 1.5%, respectively. Despite this widespread use, risk assessment of 4A3NP has not been completed due to the lack of proper dermal absorption data. Therefore, in this study, both the analytical method validation and in vitro dermal absorption study of 4A3NP were conducted following the guidelines provided by the Korea Ministry of Food and Drug Safety (MFDS). Before proceeding with the dermal absorption study, analytical methods were developed for the quantitation of 4A3NP through multiple reaction monitoring (MRM) via liquid chromatography-mass spectrometry (LC-MS) in various matrices, including swab wash (WASH), stratum corneum (SC), skin (SKIN, comprising the dermis and epidermis), and receptor fluid (RF). These developed methods demonstrated excellent linearity (R2 = 0.9962–0.9993), accuracy (93.5–111.73%), and precision (1.7–14.46%) in accordance with the validation guidelines.The dermal absorption of 4A3NP was determined using Franz diffusion cells with mini-pig skin as the barrier. Under both non-oxidative and oxidative (6% hydrogen peroxide (H2O2): water, 1:1) hair dye conditions, 1% and 1.5% concentrations of 4A3NP were applied to the skin at a rate of 10 μL/cm2, respectively. The total dermal absorption rates of 4A3NP under non-oxidative (1%) and oxidative (1.5%) conditions were determined to be 5.62 ± 2.19% (5.62 ± 2.19 μg/cm2) and 2.83 ± 1.48% (4.24 ± 2.21 μg/cm2), respectively. Full article
(This article belongs to the Special Issue Toxicokinetics of Chemicals in Consumer Products)
Show Figures

Figure 1

6 pages, 760 KiB  
Article
Iron Gall Ink Revisited: Natural Formulation for Black Hair-Dyeing
by Sang Yeong Han, Seok-Pyo Hong, Eunhye K. Kang, Beom Jin Kim, Hojae Lee, Won Il Kim and Insung S. Choi
Cosmetics 2019, 6(2), 23; https://doi.org/10.3390/cosmetics6020023 - 1 Apr 2019
Cited by 20 | Viewed by 15036
Abstract
Inspired by the iron gall ink that has been used since the Middle Ages, we formulated a hair-dyeing solution for blackening hair. The ingredients in the formulation have been approved as cosmetic ingredients, including tannic acid, gallic acid, and Fe(d-gluconate)2 [...] Read more.
Inspired by the iron gall ink that has been used since the Middle Ages, we formulated a hair-dyeing solution for blackening hair. The ingredients in the formulation have been approved as cosmetic ingredients, including tannic acid, gallic acid, and Fe(d-gluconate)2. The formulation does not require any harmful oxidizing agents, such as hydrogen peroxide—the Fe(II) cations bound to tannins are oxidized spontaneously upon exposure to air and form the blackish Fe(III)-tannin nanocomplex that coats hair firmly. In our study, we show that the dyed color did not fade under sunlight exposure for at least three months and after shampooing. This natural formulation for black hair-dyeing can have great impact in the hair cosmetic industry. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

16 pages, 1076 KiB  
Review
The Late Stages of Melanogenesis: Exploring the Chemical Facets and the Application Opportunities
by Lucia Panzella, Atsuko Ebato, Alessandra Napolitano and Kenzo Koike
Int. J. Mol. Sci. 2018, 19(6), 1753; https://doi.org/10.3390/ijms19061753 - 13 Jun 2018
Cited by 57 | Viewed by 8318
Abstract
In the last decade, the late stages of melanin biosynthesis involving the oxidative polymerization of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) have been extensively investigated. Most of the information derived from a biomimetic approach in which the oxidation of melanogenic indoles was carried [...] Read more.
In the last decade, the late stages of melanin biosynthesis involving the oxidative polymerization of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) have been extensively investigated. Most of the information derived from a biomimetic approach in which the oxidation of melanogenic indoles was carried out under conditions mimicking those occurring in the biological environment. Characterization of the early oligomers allowed for drawing a structural picture of DHI and DHICA melanins, providing also an interpretative basis for the different properties exhibited by these pigments, e.g., the chromophore and the antioxidant ability. The improved knowledge has opened new perspectives toward the exploitation of the unique chemistry of melanins and its precursors in cosmetic and health care applications. A noticeable example is the development of an innovative hair dyeing system that is based on the marked ease of DHI to give rise to black melanin on air oxidation under slightly alkaline conditions. The advantage of this method for a step-wise coverage of gray hair with a natural shade pigmentation on repeated treatment with a DHI-based formulation with respect to traditional dyes is presented. A variant of DHICA melanin combining solubility in water-miscible organic solvents, an intense chromophore in the UltraViolet-A UV-A region, and a marked antioxidant potency was evaluated as an ingredient for cosmetic formulations. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis: From Nature to Applications)
Show Figures

Graphical abstract

9 pages, 1792 KiB  
Article
Hair Dye–DNA Interaction: Plausible Cause of Mutation
by Swati Maiti, Sudarson Sekhar Sinha and Mukesh Singh
Cosmetics 2015, 2(4), 313-321; https://doi.org/10.3390/cosmetics2040313 - 25 Sep 2015
Cited by 6 | Viewed by 10643
Abstract
Hair dye is one of the most popular cosmetic products which are used more widely and frequently to improve an individual’s appearance. Although the genotoxic effects of dye ingredients are widely reported, hair dye in its usable form is not reported extensively. In [...] Read more.
Hair dye is one of the most popular cosmetic products which are used more widely and frequently to improve an individual’s appearance. Although the genotoxic effects of dye ingredients are widely reported, hair dye in its usable form is not reported extensively. In this contribution, we report the possible mode of interaction of hair dye with DNA which leads to genotoxicity. The effect of dye DNA interaction was studied on the most popular and globally used hair dye with Calf Thymus DNA and plasmid DNA. This interaction of dye DNA was studied by spectroscopic analyses and gel electrophoresis. The result had shown positive interaction of dye with DNA. Gel electrophoresis study confirms the binding of dye with DNA which results in linearization and fragmentation of the plasmid DNA. Dye–DNA interaction causes fragmentation and oxidation of DNA in absence of any catalyst, implies high toxicity of commercial hair dyes. Thus, it can be deduced from the present studies that hair dye in its usable form may lead to its penetration through skin affecting genomic DNA possesses genotoxic property and can be treated as one of the most common mutagen. Full article
Show Figures

Graphical abstract

Back to TopTop