Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = opportunistic sensor data collection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7467 KB  
Article
Bluetooth Protocol for Opportunistic Sensor Data Collection on IoT Telemetry Applications
by Pablo García-Rivada, Ángel Niebla-Montero, Paula Fraga-Lamas and Tiago M. Fernández-Caramés
Electronics 2025, 14(16), 3281; https://doi.org/10.3390/electronics14163281 - 18 Aug 2025
Viewed by 287
Abstract
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource [...] Read more.
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource usage and energy consumption. Among such IoT devices, this article focuses on Bluetooth-based beacons due to their low latency and the advantage of not requiring pairing for communications. Specifically, to tackle the limitations of beacons in terms of bandwidth and transmission frequency, this article proposes a protocol that modifies beacon frames to include up to three parameters per frame and that allows for making use of configurable beaconing intervals based on the specific requirements of the communications scenario. Moreover, the use of the proposed protocol leads to increased data rates for beaconing transmissions, providing a low latency and a flexible configuration that permits adjusting different parameters. The proposed solution enables end-to-end interoperability in Opportunistic Edge Computing (OEC) networks by integrating a lightweight bridge module to transparently manage BLE advertisement segments. To demonstrate the performance of the devised opportunistic protocol, it is evaluated across multiple scenarios (i.e., in a short-distance reference scenario, inside a home with diverse obstacles, inside a building, outdoors and in an industrial scenario), showing its flexibility and ability to collect substantial data volumes from heterogeneous IoT devices. Full article
(This article belongs to the Special Issue Applications of Sensor Networks and Wireless Communications)
Show Figures

Figure 1

20 pages, 3028 KB  
Article
Multitemporal Analysis Using Remote Sensing and GIS to Monitor Wetlands Changes and Degradation in the Central Andes of Ecuador (Period 1986–2022)
by Juan Carlos Carrasco Baquero, Daisy Carolina Carrasco López, Jorge Daniel Córdova Lliquín, Adriana Catalina Guzmán Guaraca, David Alejandro León Gualán, Vicente Javier Parra León and Verónica Lucía Caballero Serrano
Resources 2025, 14(4), 61; https://doi.org/10.3390/resources14040061 - 4 Apr 2025
Cited by 1 | Viewed by 2119
Abstract
Wetlands are transitional lands between terrestrial and aquatic systems that provide various ecosystem services. The objective of this study was to evaluate the change in wetlands in the Chimborazo Wildlife Reserve (CR) in the period 1986–2022 using geographic information systems (GISs), multitemporal satellite [...] Read more.
Wetlands are transitional lands between terrestrial and aquatic systems that provide various ecosystem services. The objective of this study was to evaluate the change in wetlands in the Chimborazo Wildlife Reserve (CR) in the period 1986–2022 using geographic information systems (GISs), multitemporal satellite data, and field data from the 16 wetlands of the reserve. Images from Landsat satellite collections (five from Thematic Mapper, seven from Enhanced Thematic Mapper, and eight from Operational Land Imager and Thermal Infrared Sensor) were used. Image analysis and processing was performed, and the resulting maps were evaluated in a GIS environment to determine the land cover change and growth rate of hydrophilic opportunistic vegetation (HOV) according to hillside orientation. The results show that there are negative annual anomalies in the water-covered areas, which coincide with the increase in HOV. This shows that the constancy or increase in the rate of increase in HOV, which varies between 0.0018 and 0.0028, causes the disappearance of these ecosystems. The importance of the study lies in its potential contribution to the decision-making process in the management of the CR. Full article
Show Figures

Figure 1

29 pages, 44436 KB  
Article
Pragmatically Mapping Phragmites with Unoccupied Aerial Systems: A Comparison of Invasive Species Land Cover Classification Using RGB and Multispectral Imagery
by Alexandra Danielle Evans, Jennifer Cramer, Victoria Scholl and Erika Lentz
Remote Sens. 2024, 16(24), 4691; https://doi.org/10.3390/rs16244691 - 16 Dec 2024
Cited by 1 | Viewed by 1869
Abstract
Unoccupied aerial systems (UASs) are increasingly being deployed in coastal environments to rapidly map and monitor changes to geomorphology, vegetation, and infrastructure, particularly in difficult to access areas. UAS data, relative to airplane or satellite data, typically have higher spatial resolution, sensor customization, [...] Read more.
Unoccupied aerial systems (UASs) are increasingly being deployed in coastal environments to rapidly map and monitor changes to geomorphology, vegetation, and infrastructure, particularly in difficult to access areas. UAS data, relative to airplane or satellite data, typically have higher spatial resolution, sensor customization, and increased flexibility in temporal resolution, which benefits monitoring applications. UAS data have been used to map and monitor invasive species occurrence and expansion, such as Phragmites australis, a reed species in wetlands throughout the eastern United States. To date, the work on this species has been largely opportunistic or ad hoc. Here, we statistically and qualitatively compare results from several sensors and classification workflows to develop baseline understanding of the accuracy of different approaches used to map Phragmites. Two types of UAS imagery were collected in a Phragmites-invaded salt marsh setting—natural color red-green-blue (RGB) imagery and multispectral imagery spanning visible and near infrared wavelengths. We evaluated whether one imagery type provided significantly better classification results for mapping land cover than the other, also considering trade-offs like overall accuracy, financial costs, and effort. We tested the transferability of classification workflows that provided the highest thematic accuracy to another barrier island environment with known Phragmites stands. We showed that both UAS sensor types were effective in classifying Phragmites cover, with neither resulting in significantly better classification results than the other for Phragmites detection (overall accuracy up to 0.95, Phragmites recall up to 0.86 at the pilot study site). We also found the highest accuracy workflows were transferrable to sites in a barrier island setting, although the quality of results varied across these sites (overall accuracy up to 0.97, Phragmites recall up to 0.90 at the additional study sites). Full article
(This article belongs to the Special Issue Remote Sensing for Management of Invasive Species)
Show Figures

Graphical abstract

14 pages, 1933 KB  
Article
Deep Reinforcement Learning for UAV-Based SDWSN Data Collection
by Pejman A. Karegar, Duaa Zuhair Al-Hamid and Peter Han Joo Chong
Future Internet 2024, 16(11), 398; https://doi.org/10.3390/fi16110398 - 30 Oct 2024
Cited by 1 | Viewed by 1703
Abstract
Recent advancements in Unmanned Aerial Vehicle (UAV) technology have made them effective platforms for data capture in applications like environmental monitoring. UAVs, acting as mobile data ferries, can significantly improve ground network performance by involving ground network representatives in data collection. These representatives [...] Read more.
Recent advancements in Unmanned Aerial Vehicle (UAV) technology have made them effective platforms for data capture in applications like environmental monitoring. UAVs, acting as mobile data ferries, can significantly improve ground network performance by involving ground network representatives in data collection. These representatives communicate opportunistically with accessible UAVs. Emerging technologies such as Software Defined Wireless Sensor Networks (SDWSN), wherein the role/function of sensor nodes is defined via software, can offer a flexible operation for UAV data-gathering approaches. In this paper, we introduce the “UAV Fuzzy Travel Path”, a novel approach that utilizes Deep Reinforcement Learning (DRL) algorithms, which is a subfield of machine learning, for optimal UAV trajectory planning. The approach also involves the integration between UAV and SDWSN wherein nodes acting as gateways (GWs) receive data from the flexibly formulated group members via software definition. A UAV is then dispatched to capture data from GWs along a planned trajectory within a fuzzy span. Our dual objectives are to minimize the total energy consumption of the UAV system during each data collection round and to enhance the communication bit rate on the UAV-Ground connectivity. We formulate this problem as a constrained combinatorial optimization problem, jointly planning the UAV path with improved communication performance. To tackle the NP-hard nature of this problem, we propose a novel DRL technique based on Deep Q-Learning. By learning from UAV path policy experiences, our approach efficiently reduces energy consumption while maximizing packet delivery. Full article
Show Figures

Figure 1

21 pages, 1556 KB  
Article
Deep Learning for Opportunistic Rain Estimation via Satellite Microwave Links
by Giovanni Scognamiglio, Andrea Rucci, Attilio Vaccaro, Elisa Adirosi, Fabiola Sapienza, Filippo Giannetti, Giacomo Bacci, Sabina Angeloni, Luca Baldini, Giacomo Roversi, Alberto Ortolani, Andrea Antonini and Samantha Melani
Sensors 2024, 24(21), 6944; https://doi.org/10.3390/s24216944 - 29 Oct 2024
Cited by 2 | Viewed by 1554
Abstract
Accurate precipitation measurement is critical for managing flood and drought risks. Traditional meteorological tools, such as rain gauges and remote sensors, have limitations in resolution, coverage, and cost-effectiveness. Recently, the opportunistic use of microwave communication signals has been explored to improve precipitation estimation. [...] Read more.
Accurate precipitation measurement is critical for managing flood and drought risks. Traditional meteorological tools, such as rain gauges and remote sensors, have limitations in resolution, coverage, and cost-effectiveness. Recently, the opportunistic use of microwave communication signals has been explored to improve precipitation estimation. While there is growing interest in using satellite-to-earth microwave links (SMLs) for machine learning-based precipitation estimation, direct rainfall estimation from raw signal-to-noise ratio (SNR) data via deep learning remains underexplored. This study investigates a range of machine learning (ML) approaches, including deep learning (DL) models and traditional methods like gradient boosting machine (GBM), for estimating rainfall rates from SNR data collected by interactive satellite receivers. We develop real-time models for rainfall detection and estimation using downlink SNR signals from satellites to user terminals. By leveraging a year-long dataset from multiple locations—including SNR measurements paired with disdrometer and rain-gauge data—we explore and evaluate various ML models. Our final models include ensemble approaches for both rainfall detection and cumulative rainfall estimation. The proposed models provide a reliable solution for estimating precipitation using Earth–satellite microwave links, potentially improving precipitation monitoring. Compared to the state-of-the-art power-law-based models applied to similar datasets reported in the literature, our ML models achieve a 46% reduction in the root mean squared error (RMSE) for event-based cumulative precipitation predictions. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

23 pages, 2063 KB  
Article
The Role of Environments and Sensing Strategies in Unmanned Aerial Vehicle Crowdsensing
by Yaqiong Zhou, Cong Hu, Yong Zhao, Zhengqiu Zhu, Rusheng Ju and Sihang Qiu
Drones 2024, 8(10), 526; https://doi.org/10.3390/drones8100526 - 26 Sep 2024
Cited by 1 | Viewed by 1810
Abstract
Crowdsensing has gained popularity across various domains such as urban transportation, environmental monitoring, and public safety. Unmanned aerial vehicle (UAV) crowdsensing is a novel approach that collects extensive data from targeted environments using UAVs equipped with built-in sensors. Unlike conventional methods that rely [...] Read more.
Crowdsensing has gained popularity across various domains such as urban transportation, environmental monitoring, and public safety. Unmanned aerial vehicle (UAV) crowdsensing is a novel approach that collects extensive data from targeted environments using UAVs equipped with built-in sensors. Unlike conventional methods that rely on fixed sensor networks or the mobility of humans, UAV crowdsensing offers high flexibility and scalability. With the rapid advancement of artificial intelligence techniques, UAV crowdsensing is becoming increasingly intelligent and autonomous. Previous studies on UAV crowdsensing have predominantly focused on algorithmic sensing strategies without considering the impact of different sensing environments. Thus, there is a research gap regarding the influence of environmental factors and sensing strategies in this field. To this end, we designed a 4×3 empirical study, classifying sensing environments into four major categories: open, urban, natural, and indoor. We conducted experiments to understand how these environments influence three typical crowdsensing strategies: opportunistic, algorithmic, and collaborative. The statistical results reveal significant differences in both environments and sensing strategies. We found that an algorithmic strategy (machine-only) is suitable for open and natural environments, while a collaborative strategy (human and machine) is ideal for urban and indoor environments. This study has crucial implications for adopting appropriate sensing strategies for different environments of UAV crowdsensing tasks. Full article
Show Figures

Figure 1

12 pages, 894 KB  
Communication
Opportunistic Sensor-Based Authentication Factors in and for the Internet of Things
by Marc Saideh, Jean-Paul Jamont and Laurent Vercouter
Sensors 2024, 24(14), 4621; https://doi.org/10.3390/s24144621 - 17 Jul 2024
Cited by 2 | Viewed by 1230
Abstract
Communication between connected objects in the Internet of Things (IoT) often requires secure and reliable authentication mechanisms to verify identities of entities and prevent unauthorized access to sensitive data and resources. Unlike other domains, IoT offers several advantages and opportunities, such as the [...] Read more.
Communication between connected objects in the Internet of Things (IoT) often requires secure and reliable authentication mechanisms to verify identities of entities and prevent unauthorized access to sensitive data and resources. Unlike other domains, IoT offers several advantages and opportunities, such as the ability to collect real-time data through numerous sensors. These data contains valuable information about the environment and other objects that, if used, can significantly enhance authentication processes. In this paper, we propose a novel idea to building opportunistic sensor-based authentication factors by leveraging existing IoT sensors in a system of systems approach. The objective is to highlight the promising prospects of opportunistic authentication factors in enhancing IoT security. We claim that sensors can be utilized to create additional authentication factors, thereby reinforcing existing object-to-object authentication mechanisms. By integrating these opportunistic sensor-based authentication factors into multi-factor authentication schemes, IoT security can be substantially improved. We demonstrate the feasibility and effectivenness of our idea through illustrative experiments in a parking entry scenario, involving both mobile robots and cars, achieving high identification accuracy. We highlight the potential of this novel method to improve IoT security and suggest future research directions for formalizing and comparing our approach with existing techniques. Full article
Show Figures

Figure 1

26 pages, 8373 KB  
Article
Swarm Intelligence Internet of Vehicles Approaches for Opportunistic Data Collection and Traffic Engineering in Smart City Waste Management
by Gerald K. Ijemaru, Li-Minn Ang and Kah Phooi Seng
Sensors 2023, 23(5), 2860; https://doi.org/10.3390/s23052860 - 6 Mar 2023
Cited by 20 | Viewed by 3859
Abstract
Recent studies have shown the efficacy of mobile elements in optimizing the energy consumption of sensor nodes. Current data collection approaches for waste management applications focus on exploiting IoT-enabled technologies. However, these techniques are no longer sustainable in the context of smart city [...] Read more.
Recent studies have shown the efficacy of mobile elements in optimizing the energy consumption of sensor nodes. Current data collection approaches for waste management applications focus on exploiting IoT-enabled technologies. However, these techniques are no longer sustainable in the context of smart city (SC) waste management applications due to the emergence of large-scale wireless sensor networks (LS-WSNs) in smart cities with sensor-based big data architectures. This paper proposes an energy-efficient swarm intelligence (SI) Internet of Vehicles (IoV)-based technique for opportunistic data collection and traffic engineering for SC waste management strategies. This is a novel IoV-based architecture exploiting the potential of vehicular networks for SC waste management strategies. The proposed technique involves deploying multiple data collector vehicles (DCVs) traversing the entire network for data gathering via a single-hop transmission. However, employing multiple DCVs comes with additional challenges including costs and network complexity. Thus, this paper proposes analytical-based methods to investigate critical tradeoffs in optimizing energy consumption for big data collection and transmission in an LS-WSN such as (1) finding the optimal number of data collector vehicles (DCVs) required in the network and (2) determining the optimal number of data collection points (DCPs) for the DCVs. These critical issues affect efficient SC waste management and have been overlooked by previous studies exploring waste management strategies. Simulation-based experiments using SI-based routing protocols validate the efficacy of the proposed method in terms of the evaluation metrics. Full article
Show Figures

Figure 1

21 pages, 4876 KB  
Article
DOIDS: An Intrusion Detection Scheme Based on DBSCAN for Opportunistic Routing in Underwater Wireless Sensor Networks
by Rui Zhang, Jing Zhang, Qiqi Wang and Hehe Zhang
Sensors 2023, 23(4), 2096; https://doi.org/10.3390/s23042096 - 13 Feb 2023
Cited by 24 | Viewed by 2937
Abstract
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low [...] Read more.
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low end-to-end delay, and high energy efficiency are widely applied. However, OR in UWSNs is vulnerable to routing attacks. For example, sinkhole attack nodes can attract traffic from surrounding nodes by forging information such as the distance to the sink node. In order to reduce the negative impact of malicious nodes on data transmission, we propose an intrusion detection scheme (IDS) based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm for OR (DOIDS) in this paper. DOIDS is based on small-sample IDS and is suitable for UWSNs with sparse node deployment. In DOIDS, the local monitoring mechanism is adopted. Every node in the network running DOIDS can select the trusted next hop. Firstly, according to the behavior characteristics of common routing attack nodes and unreliable underwater acoustic channel characteristics, DOIDS selected the energy consumption, forwarding, and link quality information of candidate nodes as the detection feature values. Then, the collected feature information is used to detect potential abnormal nodes through the DBSCAN clustering algorithm. Finally, a decision function is defined according to the time decay function to reduce the false detection rate of DOIDS. It makes a final judgment on whether the potential abnormal node is malicious. The simulation results show that the algorithm can effectively improve the detection accuracy rate (3% to 15% for different scenarios) and reduce the false positive rate, respectively. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 22099 KB  
Article
Modeling Real-Life Urban Sensor Networks Based on Open Data
by Bartosz Musznicki, Maciej Piechowiak and Piotr Zwierzykowski
Sensors 2022, 22(23), 9264; https://doi.org/10.3390/s22239264 - 28 Nov 2022
Cited by 7 | Viewed by 3277
Abstract
Epidemics and pandemics dramatically affect mobility trends around the world, which we have witnessed recently and expect more of in the future. A global energy crisis is looming ahead on the horizon and will redefine the transportation and energy usage patterns, in particular [...] Read more.
Epidemics and pandemics dramatically affect mobility trends around the world, which we have witnessed recently and expect more of in the future. A global energy crisis is looming ahead on the horizon and will redefine the transportation and energy usage patterns, in particular in large cities and metropolitan areas. As the trend continues to expand, the need to efficiently monitor and manage smart city infrastructure, public transportation, service vehicles, and commercial fleets has become of higher importance. This, in turn, requires new methods for dissemination, collection, and processing of data from massive number of already deployed sensing devices. In order to transmit these data efficiently, it is necessary to optimize the connection structure in wireless networks. Emerging open access to real data from different types of networked and sensing devices should be leveraged. It enables construction of models based on frequently updated real data rather than synthetic models or test environments. Hence, the main objective of this article is to introduce the concept of network modeling based on publicly available geographic location data of heterogeneous nodes and to promote the use of real-life diverse open data sources as the basis of novel research related to urban sensor networks. The feasibility of designed modeling architecture is discussed and proved with numerous examples of modeled spatial and spatiotemporal graphs, which are essential in opportunistic routing-related studies using the methods which rely on graph theory. This approach has not been considered before in similar studies and in the literature. Full article
(This article belongs to the Special Issue Advanced Management for Full-Automized Networks in Post-COVID Era)
Show Figures

Figure 1

19 pages, 1486 KB  
Article
Identifying and Classifying Urban Data Sources for Machine Learning-Based Sustainable Urban Planning and Decision Support Systems Development
by Stéphane C. K. Tékouabou, Jérôme Chenal, Rida Azmi, Hamza Toulni, El Bachir Diop and Anastasija Nikiforova
Data 2022, 7(12), 170; https://doi.org/10.3390/data7120170 - 28 Nov 2022
Cited by 10 | Viewed by 5101
Abstract
With the increase in the amount and variety of data that are constantly produced, collected, and exchanged between systems, the efficiency and accuracy of solutions/services that use data as input may suffer if an inappropriate or inaccurate technique, method, or tool is chosen [...] Read more.
With the increase in the amount and variety of data that are constantly produced, collected, and exchanged between systems, the efficiency and accuracy of solutions/services that use data as input may suffer if an inappropriate or inaccurate technique, method, or tool is chosen to deal with them. This paper presents a global overview of urban data sources and structures used to train machine learning (ML) algorithms integrated into urban planning decision support systems (DSS). It contributes to a common understanding of choosing the right urban data for a given urban planning issue, i.e., their type, source and structure, for more efficient use in training ML models. For the purpose of this study, we conduct a systematic literature review (SLR) of all relevant peer-reviewed studies available in the Scopus database. More precisely, 248 papers were found to be relevant with their further analysis using a text-mining approach to determine (a) the main urban data sources used for ML modeling, (b) the most popular approaches used in relevant urban planning and urban problem-solving studies and their relationship to the type of data source used, and (c) the problems commonly encountered in their use. After classifying them, we identified the strengths and weaknesses of data sources depending on several predefined factors. We found that the data mainly come from two main categories of sources, namely (1) sensors and (2) statistical surveys, including social network data. They can be classified as (a) opportunistic or (b) non-opportunistic depending on the process of data acquisition, collection, and storage. Data sources are closely correlated with their structure and potential urban planning issues to be addressed. Almost all urban data have an indexed structure and, in particular, either attribute tables for statistical survey data and data from simple sensors (e.g., climate and pollution sensors) or vectors, mostly obtained from satellite images after large-scale spatio-temporal analysis. The paper also provides a discussion of the potential opportunities, emerging issues, and challenges that urban data sources face and should overcome to better catalyze intelligent/smart planning. This should contribute to the general understanding of the data, their sources and the challenges to be faced and overcome by those seeking data and integrating them into smart applications and urban-planning processes. Full article
(This article belongs to the Special Issue Data-Driven Approach on Urban Planning and Smart Cities)
Show Figures

Figure 1

14 pages, 934 KB  
Article
RSOnet: An Image-Processing Framework for a Dual-Purpose Star Tracker as an Opportunistic Space Surveillance Sensor
by Siddharth Dave, Ryan Clark and Regina S. K. Lee
Sensors 2022, 22(15), 5688; https://doi.org/10.3390/s22155688 - 29 Jul 2022
Cited by 12 | Viewed by 3399
Abstract
A catalogue of over 22,000 objects in Earth’s orbit is currently maintained, and that number is expected to double within the next decade. Novel data collection regimes are needed to scale our ability to detect, track, classify and characterize resident space objects in [...] Read more.
A catalogue of over 22,000 objects in Earth’s orbit is currently maintained, and that number is expected to double within the next decade. Novel data collection regimes are needed to scale our ability to detect, track, classify and characterize resident space objects in a crowded low Earth orbit. This research presents RSOnet, an image-processing framework for space domain awareness using star trackers. Star trackers are cost-effective, flight proven, and require basic image processing to be used as an attitude-determination sensor. RSOnet is designed to augment the capabilities of a star tracker by becoming an opportunistic space-surveillance sensor. Our research demonstrates that star trackers are a feasible source for RSO detections in LEO by demonstrating the performance of RSOnet on real detections from a star-tracker-like imager in space. RSOnet convolutional-neural-network model architecture, graph-based multi-object classifier and characterization results are described in this paper. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 8981 KB  
Article
DTN Trustworthiness for Permafrost Telemetry IoT Network
by Adrià Mallorquí, Agustín Zaballos and Alan Briones
Remote Sens. 2021, 13(22), 4493; https://doi.org/10.3390/rs13224493 - 9 Nov 2021
Cited by 7 | Viewed by 3016
Abstract
The SHETLAND-NET research project aims to build an Internet of Things (IoT) telemetry service in Antarctica to automatize the data collection of permafrost research studies on interconnecting remote wireless sensor networks (WSNs) through near vertical incidence skywave (NVIS) long fat networks (LFN). The [...] Read more.
The SHETLAND-NET research project aims to build an Internet of Things (IoT) telemetry service in Antarctica to automatize the data collection of permafrost research studies on interconnecting remote wireless sensor networks (WSNs) through near vertical incidence skywave (NVIS) long fat networks (LFN). The proposed architecture presents some properties from challenging networks that require the use of delay tolerant networking (DTN) opportunistic techniques that send the collected data during the night as a bulk data transfer whenever a link comes available. This process might result in network congestion and packet loss. This is a complex architecture that demands a thorough assessment of the solution’s viability and an analysis of the transport protocols in order to find the option which best suits the use case to achieve superior trustworthiness in network congestion situations. A heterogeneous layer-based model is used to measure and improve the trustworthiness of the service. The scenario and different transport protocols are modeled to be compared, and the system’s trustworthiness is assessed through simulations. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Regions)
Show Figures

Graphical abstract

17 pages, 8232 KB  
Article
Integration of Satellite InSAR with a Wireless Network of Geotechnical Sensors for Slope Monitoring in Urban Areas: The Pariana Landslide Case (Massa, Italy)
by Andrea Ciampalini, Paolo Farina, Luca Lombardi, Massimiliano Nocentini, Veronica Taurino, Roberto Guidi, Fernando della Pina and Davide Tavarini
Remote Sens. 2021, 13(13), 2534; https://doi.org/10.3390/rs13132534 - 29 Jun 2021
Cited by 12 | Viewed by 3353
Abstract
Slow to extremely slow landslides in urban areas may cause severe damage to buildings and infrastructure that can lead to the evacuation of local populations in case of slope accelerations. Monitoring the spatial and temporal evolution of this type of natural hazard represents [...] Read more.
Slow to extremely slow landslides in urban areas may cause severe damage to buildings and infrastructure that can lead to the evacuation of local populations in case of slope accelerations. Monitoring the spatial and temporal evolution of this type of natural hazard represents a major concern for the public authorities in charge of risk management. Pariana, a village with 400 residents located in the Apuan Alps (Massa, Tuscany, Italy), is an example of urban settlement where the population has long been forced to live with considerable slope instability. In the last 30 years, due to the slope movements associated with a slow-moving landslide that has affected a significant portion of the built-up area, several buildings have been damaged, including a school and the provincial road crossing the unstable area, leading to the need for an installation of a slope monitoring system with early warning capabilities, in parallel with the implementation of mitigation works. In this paper, we show how satellite multi-temporal interferometric synthetic aperture radar (MT-InSAR) data can be effectively used when coupled with a wireless sensor network made of several bar extensometers and a borehole inclinometer. In fact, thanks to their wide area coverage and opportunistic nature, satellite InSAR data allow one to clearly identify the spatial distribution of surface movements and their long-term temporal evolution. On the other hand, geotechnical sensors installed on specific elements at risk (e.g., private buildings, retaining walls, etc.), and collected through Wi-Fi dataloggers, provide near real-time data that can be used to identify sudden accelerations in slope movements, subsequently triggering alarms. The integration of those two-monitoring systems has been tested and assessed in Pariana. Results show how a hybrid slope monitoring program based on the two different technologies can be used to effectively monitor slow-moving landslides and to identify sudden accelerations and activate a response plan. Full article
Show Figures

Figure 1

20 pages, 4901 KB  
Article
An Online Calibration Method Based on n-Tuple and Opportunistic Communication for Mine Mass Portable Gas Sensors
by Gang Wang, Yang Zhao, Zeheng Ding and Xiaohu Zhao
Sensors 2021, 21(7), 2451; https://doi.org/10.3390/s21072451 - 2 Apr 2021
Cited by 1 | Viewed by 2698
Abstract
Due to the increasing deployment of the Internet of Things (IoT) in the mining industry, portable gas monitoring devices have been widely used. Sensor calibration of large-scale portable gas monitoring devices is becoming an urgent problem to be solved. An online sensor calibration [...] Read more.
Due to the increasing deployment of the Internet of Things (IoT) in the mining industry, portable gas monitoring devices have been widely used. Sensor calibration of large-scale portable gas monitoring devices is becoming an urgent problem to be solved. An online sensor calibration algorithm based on n-tuple and opportunistic communication is proposed based on the specific characteristics (i.e., ‘single-sensor, multi-position’ and ‘multi-sensor, single-position’) of each portable gas monitoring device employed. In this paper, data collected from portable and fixed sensors were defined as multi-dimensional data points and gas monitoring data pairs, respectively. The cluster-based self-adaptive weighted data fusion algorithm and multi-period single sensor reliability fusion algorithm were proposed and used for overall judging. The overall judgments were broadcast to each wireless access point by network, and the reliability of the calibration information transmission was enhanced by opportunistic communications. The simulation results revealed that efforts required for the calibration of portable sensors were reduced significantly, and their reliability was improved. Full article
(This article belongs to the Special Issue Multi-Sensor Measurement and Data Fusion)
Show Figures

Figure 1

Back to TopTop