Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = olive rhizobacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2668 KiB  
Article
Genotype-Dependent Response of Root Microbiota and Leaf Metabolism in Olive Seedlings Subjected to Drought Stress
by Rahma Azri, Myriam Lamine, Asma Bensalem-Fnayou, Zohra Hamdi, Ahmed Mliki, Juan Manuel Ruiz-Lozano and Ricardo Aroca
Plants 2024, 13(6), 857; https://doi.org/10.3390/plants13060857 - 15 Mar 2024
Cited by 6 | Viewed by 2463
Abstract
Under stress or in optimum conditions, plants foster a specific guild of symbiotic microbes to strengthen pivotal functions including metabolic regulation. Despite that the role of the plant genotype in microbial selection is well documented, the potential of this genotype-specific microbial assembly in [...] Read more.
Under stress or in optimum conditions, plants foster a specific guild of symbiotic microbes to strengthen pivotal functions including metabolic regulation. Despite that the role of the plant genotype in microbial selection is well documented, the potential of this genotype-specific microbial assembly in maintaining the host homeostasis remains insufficiently investigated. In this study, we aimed to assess the specificity of the foliar metabolic response of contrasting olive genotypes to microbial inoculation with wet-adapted consortia of plant-growth-promoting rhizobacteria (PGPR), to see if previously inoculated plants with indigenous or exogenous microbes would display any change in their leaf metabolome once being subjected to drought stress. Two Tunisian elite varieties, Chetoui (drought-sensitive) and Chemleli (drought-tolerant), were tested under controlled and stressed conditions. Leaf samples were analyzed by gas chromatography–mass spectrometry (GC-TOFMS) to identify untargeted metabolites. Root and soil samples were used to extract microbial genomic DNA destined for bacterial community profiling using 16S rRNA amplicon sequencing. Respectively, the score plot analysis, cluster analysis, heat map, Venn diagrams, and Krona charts were applied to metabolic and microbial data. Results demonstrated dynamic changes in the leaf metabolome of the Chetoui variety in both stress and inoculation conditions. Under the optimum state, the PGPR consortia induced noteworthy alterations in metabolic patterns of the sensitive variety, aligning with the phytochemistry observed in drought-tolerant cultivars. These variations involved fatty acids, tocopherols, phenols, methoxyphenols, stilbenoids, triterpenes, and sugars. On the other hand, the Chemleli variety displaying comparable metabolic profiles appeared unaffected by stress and inoculation probably owing to its tolerance capacity. The distribution of microbial species among treatments was distinctly uneven. The tested seedlings followed variety-specific strategies in selecting beneficial soil bacteria to alleviate stress. A highly abundant species of the wet-adapted inoculum was detected only under optimum conditions for both cultivars, which makes the moisture history of the plant genotype a selective driver shaping microbial community and thereby a useful tool to predict microbial activity in large ecosystems. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Resources and Omics)
Show Figures

Figure 1

14 pages, 1857 KiB  
Article
Identification of Volatile Organic Compounds Emitted by Two Beneficial Endophytic Pseudomonas Strains from Olive Roots
by Nuria Montes-Osuna, Tomislav Cernava, Carmen Gómez-Lama Cabanás, Gabriele Berg and Jesús Mercado-Blanco
Plants 2022, 11(3), 318; https://doi.org/10.3390/plants11030318 - 25 Jan 2022
Cited by 25 | Viewed by 4995
Abstract
The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is [...] Read more.
The production of volatile organic compounds (VOCs) represents a promising strategy of plant-beneficial bacteria to control soil-borne phytopathogens. Pseudomonas sp. PICF6 and Pseudomonas simiae PICF7 are two indigenous inhabitants of olive roots displaying effective biological control against Verticillium dahliae. Additionally, strain PICF7 is able to promote the growth of barley and Arabidopsis thaliana, VOCs being involved in the growth of the latter species. In this study, the antagonistic capacity of these endophytic bacteria against relevant phytopathogens (Verticillium spp., Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum f.sp. lycopersici) was assessed. Under in vitro conditions, PICF6 and PICF7 were only able to antagonize representative isolates of V. dahliae and V. longisporum. Remarkably, both strains produced an impressive portfolio of up to twenty VOCs, that included compounds with reported antifungal (e.g., 1-undecene, (methyldisulfanyl) methane and 1-decene) or plant growth promoting (e.g., tridecane, 1-decene) activities. Moreover, their volatilomes differed strongly in the absence and presence of V. dahliae. For example, when co incubated with the defoliating pathotype of V. dahliae, the antifungal compound 4-methyl-2,6-bis(2-methyl-2-propanyl)phenol was produced. Results suggest that volatiles emitted by these endophytes may differ in their modes of action, and that potential benefits for the host needs further investigation in planta. Full article
Show Figures

Figure 1

25 pages, 3582 KiB  
Article
Evaluation of Indigenous Olive Biocontrol Rhizobacteria as Protectants against Drought and Salt Stress
by Nuria Montes-Osuna, Carmen Gómez-Lama Cabanás, Antonio Valverde-Corredor, Garikoitz Legarda, Pilar Prieto and Jesús Mercado-Blanco
Microorganisms 2021, 9(6), 1209; https://doi.org/10.3390/microorganisms9061209 - 3 Jun 2021
Cited by 12 | Viewed by 3900
Abstract
Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the [...] Read more.
Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions. Full article
Show Figures

Figure 1

17 pages, 337 KiB  
Review
The Role of Microbial Inoculants on Plant Protection, Growth Stimulation, and Crop Productivity of the Olive Tree (Olea europea L.)
by Georgios Bizos, Efimia M. Papatheodorou, Theocharis Chatzistathis, Nikoletta Ntalli, Vassilis G. Aschonitis and Nikolaos Monokrousos
Plants 2020, 9(6), 743; https://doi.org/10.3390/plants9060743 - 12 Jun 2020
Cited by 65 | Viewed by 8215
Abstract
The olive tree (Olea europaea L.) is an emblematic, long-living fruit tree species of profound economic and environmental importance. This study is a literature review of articles published during the last 10 years about the role of beneficial microbes [Arbuscular Mycorrhizal Fungi [...] Read more.
The olive tree (Olea europaea L.) is an emblematic, long-living fruit tree species of profound economic and environmental importance. This study is a literature review of articles published during the last 10 years about the role of beneficial microbes [Arbuscular Mycorrhizal Fungi (AMF), Plant Growth Promoting Rhizobacteria (PGPR), Plant Growth Promoting Fungi (PGPF), and Endophytes] on olive tree plant growth and productivity, pathogen control, and alleviation from abiotic stress. The majority of the studies examined the AMF effect using mostly Rhizophagus irregularis and Glomus mosseae species. These AMF species stimulate the root growth improving the resistance of olive plants to environmental and transplantation stresses. Among the PGPR, the nitrogen-fixing bacteria Azospirillum sp. and potassium- and phosphorous-solubilizing Bacillus sp. species were studied extensively. These PGPR species were combined with proper cultural practices and improved considerably olive plant’s growth. The endophytic bacterial species Pseudomonas fluorescens and Bacillus sp., as well as the fungal species Trichoderma sp. were identified as the most effective biocontrol agents against olive tree diseases (e.g., Verticillium wilt, root rot, and anthracnose). Full article
(This article belongs to the Special Issue Biostimulants in Plants Science)
Show Figures

Graphical abstract

15 pages, 2878 KiB  
Article
Management of Plant Physiology with Beneficial Bacteria to Improve Leaf Bioactive Profiles and Plant Adaptation under Saline Stress in Olea europea L.
by Estrella Galicia-Campos, Beatriz Ramos-Solano, Mª. Belén Montero-Palmero, F. Javier Gutierrez-Mañero and Ana García-Villaraco
Foods 2020, 9(1), 57; https://doi.org/10.3390/foods9010057 - 7 Jan 2020
Cited by 15 | Viewed by 4387
Abstract
Global climate change has increased warming with a concomitant decrease in water availability and increased soil salinity, factors that compromise agronomic production. On the other hand, new agronomic developments using irrigation systems demand increasing amounts of water to achieve an increase in yields. [...] Read more.
Global climate change has increased warming with a concomitant decrease in water availability and increased soil salinity, factors that compromise agronomic production. On the other hand, new agronomic developments using irrigation systems demand increasing amounts of water to achieve an increase in yields. Therefore, new challenges appear to improve plant fitness and yield, while limiting water supply for specific crops, particularly, olive trees. Plants have developed several innate mechanisms to overcome water shortage and the use of beneficial microorganisms to ameliorate symptoms appears as a challenging alternative. Our aim is to improve plant fitness with beneficial bacterial strains capable of triggering plant metabolism that targets several mechanisms simultaneously. Our secondary aim is to improve the content of molecules with bioactive effects to valorize pruning residues. To analyze bacterial effects on olive plantlets that are grown in saline soil, photosynthesis, photosynthetic pigments, osmolytes (proline and soluble sugars), and reactive oxygen species (ROS)-scavenging enzymes (superoxide dismutase-SOD and ascorbate peroxidase-APX) and molecules (phenols, flavonols, and oleuropein) were determined. We found photosynthetic pigments, antioxidant molecules, net photosynthesis, and water use efficiency to be the most affected parameters. Most strains decreased pigments and increased osmolytes and phenols, and only one strain increased the antihypertensive molecule oleuropein. All strains increased net photosynthesis, but only three increased water use efficiency. In conclusion, among the ten strains, three improved water use efficiency and one increased values of pruning residues. Full article
Show Figures

Graphical abstract

29 pages, 10341 KiB  
Article
Olea europaea L. Root Endophyte Bacillus velezensis OEE1 Counteracts Oomycete and Fungal Harmful Pathogens and Harbours a Large Repertoire of Secreted and Volatile Metabolites and Beneficial Functional Genes
by Manel Cheffi, Ali Chenari Bouket, Faizah N. Alenezi, Lenka Luptakova, Marta Belka, Armelle Vallat, Mostafa E. Rateb, Slim Tounsi, Mohamed Ali Triki and Lassaad Belbahri
Microorganisms 2019, 7(9), 314; https://doi.org/10.3390/microorganisms7090314 - 3 Sep 2019
Cited by 63 | Viewed by 6627
Abstract
Oomycete and fungal pathogens, mainly Phytophthora and Fusarium species, are notorious causal agents of huge economic losses and environmental damages. For instance, Phytophthora ramorum, Phytophthora cryptogea, Phytophthora plurivora and Fusarium solani cause significant losses in nurseries and in forest ecosystems. Chemical [...] Read more.
Oomycete and fungal pathogens, mainly Phytophthora and Fusarium species, are notorious causal agents of huge economic losses and environmental damages. For instance, Phytophthora ramorum, Phytophthora cryptogea, Phytophthora plurivora and Fusarium solani cause significant losses in nurseries and in forest ecosystems. Chemical treatments, while harmful to the environment and human health, have been proved to have little or no impact on these species. Recently, biocontrol bacterial species were used to cope with these pathogens and have shown promising prospects towards sustainable and eco-friendly agricultural practices. Olive trees prone to Phytophthora and Fusarium disease outbreaks are suitable for habitat-adapted symbiotic strategies, to recover oomycetes and fungal pathogen biocontrol agents. Using this strategy, we showed that olive trees-associated microbiome represents a valuable source for microorganisms, promoting plant growth and healthy benefits in addition to being biocontrol agents against oomycete and fungal diseases. Isolation, characterization and screening of root microbiome of olive trees against numerous Phytophthora and other fungal pathogens have led to the identification of the Bacillus velezensis OEE1, with plant growth promotion (PGP) abilities and strong activity against major oomycete and fungal pathogens. Phylogenomic analysis of the strain OEE1 showed that B. velezensis suffers taxonomic imprecision that blurs species delimitation, impacting their biofertilizers’ practical use. Genome mining of several B. velezensis strains available in the GenBank have highlighted a wide array of plant growth promoting rhizobacteria (PGPR) features, metals and antibiotics resistance and the degradation ability of phytotoxic aromatic compounds. Strain OEE1 harbours a large repertoire of secreted and volatile secondary metabolites. Rarefaction analysis of secondary metabolites richness in the B. velezenis genomes, unambiguously documented new secondary metabolites from ongoing genome sequencing efforts that warrants more efforts in order to assess the huge diversity in the species. Comparative genomics indicated that B. velezensis harbours a core genome endowed with PGP features and accessory genome encoding diverse secondary metabolites. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of OEE1 Volatile Organic Compounds (VOCs) and Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS) analysis of secondary metabolites identified numerous molecules with PGP abilities that are known to interfere with pathogen development. Moreover, B. velezensis OEE1 proved effective in protecting olive trees against F. solani in greenhouse experiments and are able to inhabit olive tree roots. Our strategy provides an effective means for isolation of biocontrol agents against recalcitrant pathogens. Their genomic analysis provides necessary clues towards their efficient implementation as biofertilizers. Full article
(This article belongs to the Special Issue Plant Control of Symbiotic Microbe Behavior and Reproduction)
Show Figures

Graphical abstract

Back to TopTop