Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = oligomerization of indole derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2741 KiB  
Article
Overexpression of the Arabidopsis MACPF Protein AtMACP2 Promotes Pathogen Resistance by Activating SA Signaling
by Xue Zhang, Yang-Shuo Dai, Yu-Xin Wang, Ze-Zhuo Su, Lu-Jun Yu, Zhen-Fei Zhang, Shi Xiao and Qin-Fang Chen
Int. J. Mol. Sci. 2022, 23(15), 8784; https://doi.org/10.3390/ijms23158784 - 7 Aug 2022
Cited by 15 | Viewed by 3203
Abstract
Immune response in plants is tightly regulated by the coordination of the cell surface and intracellular receptors. In animals, the membrane attack complex/perforin-like (MACPF) protein superfamily creates oligomeric pore structures on the cell surface during pathogen infection. However, the function and molecular mechanism [...] Read more.
Immune response in plants is tightly regulated by the coordination of the cell surface and intracellular receptors. In animals, the membrane attack complex/perforin-like (MACPF) protein superfamily creates oligomeric pore structures on the cell surface during pathogen infection. However, the function and molecular mechanism of MACPF proteins in plant pathogen responses remain largely unclear. In this study, we identified an Arabidopsis MACP2 and investigated the responsiveness of this protein during both bacterial and fungal pathogens. We suggest that MACP2 induces programmed cell death, bacterial pathogen resistance, and necrotrophic fungal pathogen sensitivity by activating the biosynthesis of tryptophan-derived indole glucosinolates and the salicylic acid signaling pathway dependent on the activity of enhanced disease susceptibility 1 (EDS1). Moreover, the response of MACP2 mRNA isoforms upon pathogen attack is differentially regulated by a posttranscriptional mechanism: alternative splicing. In comparison to previously reported MACPFs in Arabidopsis, MACP2 shares a redundant but nonoverlapping role in plant immunity. Thus, our findings provide novel insights and genetic tools for the MACPF family in maintaining SA accumulation in response to pathogens in Arabidopsis. Full article
Show Figures

Figure 1

12 pages, 3373 KiB  
Article
ESeroS-GS Protects Neuronal Cells from Oxidative Stress by Stabilizing Lysosomes
by Na Yang, Qianqian Chen, Xiaolong He, Xingyu Zhao and Taotao Wei
Molecules 2016, 21(6), 637; https://doi.org/10.3390/molecules21060637 - 25 May 2016
Cited by 3 | Viewed by 5688
Abstract
γ-l-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl]oxy]carbonyl]-3-[[2-(1H-indol-3-yl)ethyl]amino]-3-oxopropyl]-l-cysteinylglycine sodium salt (ESeroS-GS) is a water-soluble derivative of α-tocopherol (vitamin E). We reported previously that ESeroS-GS can act as an anti-inflammatory agent and can induce cell death in breast cancer cells. However, [...] Read more.
γ-l-glutamyl-S-[2-[[[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl]oxy]carbonyl]-3-[[2-(1H-indol-3-yl)ethyl]amino]-3-oxopropyl]-l-cysteinylglycine sodium salt (ESeroS-GS) is a water-soluble derivative of α-tocopherol (vitamin E). We reported previously that ESeroS-GS can act as an anti-inflammatory agent and can induce cell death in breast cancer cells. However, the potential antioxidant capacities of ESeroS-GS remain elusive. Here, we measured its scavenging effects on free radicals and evaluated its protective effects on neuronal cells against oxidative stress. The results indicated that ESeroS-GS effectively scavenged both 2,2’-azinobis(3-ethylbenzothiazoline)-6-sulfonate free radicals (ABTS•+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals, and attenuated H2O2-induced neuronal cell death. H2O2 treatment induced lysosomal membrane permeabilization rapidly, and caused the redistribution of lysosomal proteases, which were responsible for the neuronal cell death. ESeroS-GS abolished the interaction between tBid and the lysosomal membranes, blocked the translocation of tBid to the lysosomal membranes, decreased its oligomerization within the membrane circumstances, prevented the lysosomal membrane permeabilization, and thus attenuated the neuronal cell death. These data suggest that ESeroS-GS protected the neuronal cells from oxidative stress by stabilizing lysosomal membranes, and thus might act as a novel neuroprotector for neuronal diseases associated with oxidative stress. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 424 KiB  
Article
Oligomerization of Indole Derivatives with Incorporation of Thiols
by Felikss Mutulis, Adolf Gogoll, Ilze Mutule, Sviatlana Yahorava, Aleh Yahorau, Edvards Liepinsh and Jarl E.S. Wikberg
Molecules 2008, 13(8), 1846-1863; https://doi.org/10.3390/molecules13081846 - 26 Aug 2008
Cited by 1 | Viewed by 11667
Abstract
Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl)-1-(2-mercaptoethylthio)ethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl) ethane-1,1-diyl]bis(1H-indole-5-carboxylic [...] Read more.
Two molecules of indole derivative, e.g. indole-5-carboxylic acid, reacted with one molecule of thiol, e.g. 1,2-ethanedithiol, in the presence of trifluoroacetic acid to yield adducts such as 3-[2-(2-amino-5-carboxyphenyl)-1-(2-mercaptoethylthio)ethyl]-1Hindole-5-carboxylic acid. Parallel formation of dimers, such as 2,3-dihydro-1H,1'H-2,3'-biindole-5,5'-dicarboxylic acid and trimers, such as 3,3'-[2-(2-amino-5-carboxyphenyl) ethane-1,1-diyl]bis(1H-indole-5-carboxylic acid) of the indole derivatives was also observed. Reaction of a mixture of indole and indole-5-carboxylic acid with 2-phenylethanethiol proceeded in a regioselective way, affording 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-1H-indole-5-carboxylic acid. An additional product of this reaction was 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-2,3-dihydro-1H,1'H-2,3'-biindole-5'-carboxylic acid, which upon standing in DMSO-d6 solution gave 3-[2-(2-aminophenyl)-1-(phenethylthio)ethyl]-1H,1'H-2,3'-biindole-5'-carboxylic acid. Structures of all compounds were elucidated by NMR, and a mechanism for their formation was suggested. Full article
Show Figures

Figure 1

Back to TopTop