Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = old layer hen meat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 521 KB  
Article
Effects of Dandelion Flavonoid Extract on the Accumulation of Flavonoids in Layer Hen Meat, Slaughter Performance and Blood Antioxidant Indicators of Spent Laying Hens
by Yuyu Wei, Jingwen Zhang, Yiming Zhang, Dingkuo Liu, Chunxue You, Wenjuan Zhang, Chaoqi Ren, Xin Zhao, Liu’an Li and Xiaoxue Yu
Animals 2025, 15(6), 886; https://doi.org/10.3390/ani15060886 - 20 Mar 2025
Cited by 2 | Viewed by 1575
Abstract
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying [...] Read more.
This study aimed to investigate the effects of different supplemental amounts of dandelion flavonoid extracts (DFE) in diets on nutrients in chicken, slaughtering performance, blood biochemical indexes and antioxidant capacity of spent laying hens. A total of 180 560-day-old spent Hy-Line Brown laying hens were randomly divided into five groups. The control group was fed the basal diet, while the experimental groups were supplemented with DFE at levels of 1000, 2000, 4000, and 8000 mg/kg (as T1, T2, T3, and T4 group) in the basal diet, respectively. The variables measured included the content of dandelion flavonoids in layer hen thigh meat and breast meat, slaughter performance, blood biochemical indexes, and antioxidant capacity. Data were subjected to a one-way analysis of variance (one-way ANOVA) to assess the impact of DFE supplementation compared to the control group on study outcomes. The results showed that dietary supplementation with DFE can increase the content of dandelion flavonoids in layer hen meat. The contents of rutin in layer hen breast meat of groups T1, T2, T3, and T4 were 1.37, 4.41, 16.26, and 36.03 ng/g, respectively, and the contents of quercetin was 2.58, 1.36, 4.98, 12.48 ng/g. In layer hen thigh meat of groups T1, T2, T3, and T4, the contents of rutin were 11.48, 15.98, 44.43, 122.32 ng/g, and the contents of quercetin were 9.96, 13.14, 23.15, 38.09 ng/g, respectively. The addition of DFE increased the total phenol content of the feed and highly significantly elevated the total phenol content of layer hen meat (p < 0.01), and the total phenol content of chicken meat was strongly and positively correlated with the total phenol content of the feed. DFE supplementation significantly decreased abdominal fat percentage (p < 0.05) and increased crude fat content in chicken (p < 0.05). The addition of DFE reduced aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities (p < 0.05), decreased triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) cholesterol (LDL-C), glucose (GLU), and malondialdehyde (MDA) contents (p < 0.05), and increased the content of albumin (ALB), total antioxidant (T-AOC) capacity and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity (p < 0.05). Dietary supplementation of DFE at different concentrations could significantly increase the content of dandelion flavonoids in the muscle of spent laying hens, reduce the abdominal fat rate in hens, effectively reduce blood lipid levels, effectively increase crude fat content in thigh muscle, and enhance the body’s antioxidant capacity and liver function. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

8 pages, 251 KB  
Article
Carcass Characteristics, Digestive System Traits of Spent Broiler Breeder and Dual-Purpose Hens
by Karol Włodarczyk, Dariusz Kokoszyński, Mohamed Saleh and Dariusz Piwczyński
Animals 2022, 12(10), 1320; https://doi.org/10.3390/ani12101320 - 22 May 2022
Cited by 9 | Viewed by 3086
Abstract
Raising dual-purpose hens for meat is believed to bring more economic benefits to farmers selling products directly to consumers. The aim of the study was to determine the differences between the carcass features and the digestive system of multipurpose hens and spent broiler [...] Read more.
Raising dual-purpose hens for meat is believed to bring more economic benefits to farmers selling products directly to consumers. The aim of the study was to determine the differences between the carcass features and the digestive system of multipurpose hens and spent broiler breeders. In the experiment, 20 carcasses of 70-week-old Rosa 1 dual-purpose hens and 20 carcasses of 62-week-old Ross 308 broiler breeders were used. Measurements of the length of various sections of the intestine and the diameter of individual intestinal segments were made. During the gutting, proventriculus, gizzard, liver, heart, and spleen were separated and then weighed. Dual-purpose hens differed significantly (p < 0.05) from broiler breeders in weight and carcass dimensions. Multipurpose hens were characterized by significantly lower (p < 0.05) percentages of breast muscles, leg muscles, skin with subcutaneous fat, wings, and carcass remainders. Broiler breeders were characterized by significantly longer (p > 0.05) total intestinal length, duodenum, jejunum, ileum, and terminal intestine. Significant differences were confirmed in terms of the diameter of some segments of the intestine. Broiler breeder hens also had a greater mass of internal organs compared to the dual-purpose layer hens. Full article
(This article belongs to the Section Animal Physiology)
13 pages, 1567 KB  
Article
Technological and Sensory Quality and Microbiological Safety of RIR Chicken Breast Meat Marinated with Fermented Milk Products
by Zofia Sokołowicz, Anna Augustyńska-Prejsnar, Józefa Krawczyk, Miroslava Kačániová, Maciej Kluz, Paweł Hanus and Jadwiga Topczewska
Animals 2021, 11(11), 3282; https://doi.org/10.3390/ani11113282 - 16 Nov 2021
Cited by 16 | Viewed by 4171
Abstract
The aim of the study was to determine the effect of marinating with fermented milk products (buttermilk and sour milk) on the physical characteristics, microbiological quality, and sensory acceptability of Rhode Island Red (RIR) hen meat after the first year of laying use. [...] Read more.
The aim of the study was to determine the effect of marinating with fermented milk products (buttermilk and sour milk) on the physical characteristics, microbiological quality, and sensory acceptability of Rhode Island Red (RIR) hen meat after the first year of laying use. The hen breast meat was marinated with fermented dairy products, buttermilk and sour milk, by the immersion method for 12 h at 4 °C. The assessed features included the quality of raw and roasted marinated and non-marinated meat in terms of physical characteristics (marinade absorption, water absorption, pH, L*, a*, b* colour, shear strength, texture profile analysis (TPA) test), microbiological parameters, and sensory characteristics. Bacteria were identified by the mass spectrometry method (MALDI-TOF MS Biotyper). Marinating meat with fermented dairy products lightened the colour, decreased the value of shear force, reduced hardness and chewiness, and limited the growth of aerobic bacteria and Pseudomonas spp. Additionally, after heat treatment, the number of identified aerobic bacteria families in the marinated in buttermilk and marinated in sour milk groups was smaller than in the non-marinated muscle group. The sensory evaluation showed a beneficial effect of marinating with buttermilk and sour milk on the tenderness, juiciness, and colour of roasted meat. Full article
Show Figures

Figure 1

16 pages, 2609 KB  
Article
Dual-Purpose Poultry in Organic Egg Production and Effects on Egg Quality Parameters
by Marianne Hammershøj, Gitte Hald Kristiansen and Sanna Steenfeldt
Foods 2021, 10(4), 897; https://doi.org/10.3390/foods10040897 - 19 Apr 2021
Cited by 20 | Viewed by 6674 | Correction
Abstract
Egg laying genotypes have been selected for generations due to their high yield and egg quality, resulting in efficient feed utilization and low body weight; hence, they are not suitable for meat production. This imposes an issue for the male layer chicks, which [...] Read more.
Egg laying genotypes have been selected for generations due to their high yield and egg quality, resulting in efficient feed utilization and low body weight; hence, they are not suitable for meat production. This imposes an issue for the male layer chicks, which are killed at one day old. Because of ethical and food waste concerns, the search for suitable dual-purpose genotypes in order to avoid euthanasia of male day-old chicks has intensified. The aim of the present study is to evaluate potential dual-purpose genotypes for their egg quality compared to a representative egg laying genotype. Two dual-purpose genotypes with divergent characteristics were evaluated: genotype A represented an experimental crossbreed based on a broiler type male and an egg layer female, and genotype C was a crossbreed of a layer type. These were compared to a rustic genotype B and a control genotype D, which was an egg layer. Eggs were collected six times during the period of 21–54 weeks of hen age, i.e., a total of 990 shell eggs were analyzed. Examined parameters were weights of egg, shell, yolk, and albumen, by calculating their relative proportions. Shell quality was assessed by shell strength, shell stiffness, and shell thickness. Yolk quality was determined as yolk color and inclusions of blood and meat spots, and albumen quality was evaluated in terms of pH and dry matter (DM) content. The egg layer genotype produced the smallest eggs with least blood and meat spot inclusions compared to that produced by the three dual-purpose genotypes. Shell quality was superior for the layer genotype. However, the experimental genotype A laid eggs of comparable shell quality, albumen DM, and yolk weight, but also with the darkest and most red-yellow colored yolk. The two other dual-purpose genotypes produced eggs of low-medium quality. In conclusion, the genotype A could serve as dual-purpose genotype from an egg quality perspective. Full article
(This article belongs to the Special Issue Eggs and Eggproducts: Unravelling the Secrets)
Show Figures

Graphical abstract

16 pages, 293 KB  
Article
Effects of Supplementation of Microalgae (Aurantiochytrium sp.) to Laying Hen Diets on Fatty Acid Content, Health Lipid Indices, Oxidative Stability, and Quality Attributes of Meat
by Bing Liu, Jiang Jiang, Dongyou Yu, Gang Lin and Youling L. Xiong
Foods 2020, 9(9), 1271; https://doi.org/10.3390/foods9091271 - 10 Sep 2020
Cited by 18 | Viewed by 3800
Abstract
The present study is conducted to investigate the effects of dietary docosahexaenoic acid (DHA)-rich microalgae (MA, Aurantiochytrium sp.) on health lipid indices, stability, and quality properties of meat from laying hens. A total of 450 healthy 50-wk-old Hy-Line Brown layers were randomly allotted [...] Read more.
The present study is conducted to investigate the effects of dietary docosahexaenoic acid (DHA)-rich microalgae (MA, Aurantiochytrium sp.) on health lipid indices, stability, and quality properties of meat from laying hens. A total of 450 healthy 50-wk-old Hy-Line Brown layers were randomly allotted to 5 groups (6 replicates of 15 birds each), which received diets supplemented with 0, 0.5, 1.0, 1.5, and 2.0% MA for 15 weeks. Fatty acid contents and quality properties of breast and thigh muscles from two randomly selected birds per replicate (n = 12) were measured. The oxidative stability of fresh, refrigerated, frozen, and cooked meat was also determined. Results indicated that supplemental MA produced dose-dependent enrichments of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), predominantly DHA, in breast and thigh muscles, with more health-promoting n-6/n-3 ratios (1.87–5.27) and favorable lipid health indices (p < 0.05). MA supplementation did not affect tenderness (shear force) and color (L*, a*, and b* values) of hen meat nor muscle endogenous antioxidant enzymes and fresh meat oxidation (p > 0.05). However, the n-3 LC-PUFA deposition slightly increased lipid oxidation in cooked and stored (4 °C) meat (p < 0.05). In conclusion, MA supplementation improves the nutritional quality of hen meat in terms of lipid profile without compromising meat quality attributes. Appropriate antioxidants are required to mitigate oxidation when such DHA-enriched meat is subjected to cooking and storage. Full article
(This article belongs to the Section Meat)
21 pages, 2325 KB  
Article
AFB1 Induced Transcriptional Regulation Related to Apoptosis and Lipid Metabolism in Liver of Chicken
by Xueqin Liu, Shailendra Kumar Mishra, Tao Wang, Zhongxian Xu, Xiaoling Zhao, Yan Wang, Huadong Yin, Xiaolan Fan, Bo Zeng, Mingyao Yang, Deying Yang, Qingyong Ni, Yan Li, Mingwang Zhang, Qing Zhu, Feng Chen and Diyan Li
Toxins 2020, 12(5), 290; https://doi.org/10.3390/toxins12050290 - 4 May 2020
Cited by 56 | Viewed by 6111
Abstract
Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at [...] Read more.
Aflatoxin B1 (AFB1) leads to a major risk to poultry and its residues in meat products can also pose serious threat to human health. In this study, after feeding 165-day-old Roman laying hens for 35 days, the toxic effects of aflatoxin B1 at different concentrations were evaluated. The purpose of this study was to explore the mechanism of liver toxicosis responses to AFB1. We found that highly toxic group exposure resulted in liver fat deposition, increased interstitial space, and hepatocyte apoptosis in laying hens. Furthermore, a total of 164 differentially expressed lnRNAs and 186 differentially expressed genes were found to be highly correlated (Pearson Correlation Coefficient > 0.80, p-value < 0.05) by sequencing the transcriptome of control (CB) and highly toxic group (TB3) chickens. We also identify 29 differentially expressed genes and 19 miRNAs that have targeted regulatory relationships. Based on the liver cell apoptosis and fatty liver syndrome that this research focused on, we found that the highly toxic AFB1 led to dysregulation of the expression of PPARG and BCL6. They are cis-regulated by TU10057 and TU45776, respectively. PPARG was the target gene of gga-miR-301a-3p, gga-miR-301b-3p, and BCL6 was the target gene of gga-miR-190a-3p. In summary, highly toxic AFB1 affects the expression levels of protein-coding genes and miRNAs in the liver of Roman layer hens, as well as the expression level of long non-coding RNA in the liver, which upregulates the expression of PPARG and downregulates the expression of Bcl-6. Our study provides information on possible genetic regulatory networks in AFB1-induced hepatic fat deposition and hepatocyte apoptosis. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Figure 1

14 pages, 625 KB  
Article
The Dual-Purpose Hen as a Chance: Avoiding Injurious Pecking in Modern Laying Hen Husbandry
by Mona Franziska Giersberg, Birgit Spindler, Bas Rodenburg and Nicole Kemper
Animals 2020, 10(1), 16; https://doi.org/10.3390/ani10010016 - 19 Dec 2019
Cited by 13 | Viewed by 5024
Abstract
Dual-purpose strains, with hens housed for egg laying and roosters kept for meat production are one alternative to the killing of male day-old chickens. However, dual-purpose hens seem to have additional advantages compared to conventional layers, for instance, a lower tendency to develop [...] Read more.
Dual-purpose strains, with hens housed for egg laying and roosters kept for meat production are one alternative to the killing of male day-old chickens. However, dual-purpose hens seem to have additional advantages compared to conventional layers, for instance, a lower tendency to develop behavioral disorders, such as feather pecking and cannibalism. In the present study, three batches of about 1850 conventional layers (Lohmann Brown plus, LB+) and 1850 dual-purpose hens (Lohmann Dual, LD) each, all of them with untrimmed beaks, were observed during production (20–71 (56) weeks of life) in a semi-commercial aviary system. The aim was to investigate whether the hybrid and batch affected the occurrence of injurious pecking, and to identify a detailed time course of the damage caused by this behavior. Therefore, the hens’ plumage and skin condition were assessed as an indicator by means of a visual scoring method. The LB+ hens had higher production performances and higher mortality rates compared to the LD hens. Plumage loss in the LB+ flocks started at 23 to 25 weeks of age, and deteriorated continuously. The LD hens showed only moderate feather loss on the head/neck region, which started at 34 to 41 weeks and remained almost constant until the end of the observations. Compared to feather loss, injuries occurred in the LB+ hens with a delay of several weeks, with a maximum of 8% to 12% of hens affected. In contrast, skin injuries were observed only sporadically in single LD hens. In all batches, hybrid had an effect on the occurrence of feather loss (p < 0.05). Within the LB+ strain, the proportions of hens affected by plumage loss and injuries differed among batches (p < 0.05), whereas this was not the case in the LD flocks. Thus, severe feather pecking and cannibalism seemed to occur in the conventional layer hybrids but not in the dual-purpose hens, though both genetic strains were raised and managed under the same semi-commercial conditions. Therefore, keeping dual-purpose hens should also be considered as an alternative approach to avoid injurious pecking in laying hen husbandry. Full article
(This article belongs to the Special Issue Feather Pecking in Laying Hens and Its Effects on Welfare)
Show Figures

Figure 1

Back to TopTop