Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nylon bag technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8380 KiB  
Article
Characterizing the Fermentation of Oat Grass (Avena sativa L.) in the Rumen: Integrating Degradation Kinetics, Ultrastructural Examination with Scanning Electron Microscopy, Surface Enzymatic Activity, and Microbial Community Analysis
by Liepeng Zhong, Yujun Qiu, Mingrui Zhang, Shanchuan Wei, Shuiling Qiu, Zhiyi Ma, Mingming Gu, Benzhi Wang, Xinyue Zhang, Mingke Gu, Nanqi Shen and Qianfu Gan
Animals 2025, 15(14), 2049; https://doi.org/10.3390/ani15142049 - 11 Jul 2025
Viewed by 275
Abstract
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern [...] Read more.
The objective of this study is to investigate the degradation characteristics of oat grass in the rumen of Mindong goats and changes in microbial community attached to the grass surface. Four healthy male goats, aged 14 months, with permanent rumen fistula, in eastern Fujian, were selected as experimental animals. The rumen degradation rate of oat grass was measured at 4, 12, 24, 36, 48, and 72 h using the nylon bag method. Surface physical structure changes in oat grass were observed using scanning electron microscopy (SEM), cellulase activity was measured, and bacterial composition was analyzed using high-throughput 16S rRNA gene sequencing technology. The findings of this study indicate that oat grass had effective degradation rates (ED) of 47.94%, 48.69%, 38.41%, and 30.24% for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acidic detergent fiber (ADF), respectively. The SEM was used to investigate the degradation process of oat grass in the rumen. After 24 h, extensive degradation of non-lignified tissue was observed, resulting in the formation of cavities. At 36 h, significant shedding was observed, and by 72 h, only the epidermis and thick-walled tissue, which exhibited resistance to degradation, remained intact. Surface-attached microorganisms produced β-GC, EG, CBH, and NEX enzymes. The activity of these enzymes exhibited a significant increase between 4 and 12 h and showed a positive correlation with the degradation rate of nutrients. However, the extent of correlation varied. Prevotella and Treponema were identified as key genera involved in the degradation of roughage, with their abundance decreasing over time. Principle Coordinate Analysis (PCOA) revealed no significant differences in the rumen microbial structure across different time points. However, Non-Metric Multidimensional Scaling (NMDS) indicated a discernible diversity order among the samples. According to the Spearman correlation coefficient test, Ruminococcus, Fibrobacter, and Saccharoferments exhibited the closest relationship with nutrient degradation rate and surface enzyme activity, displaying a significant positive correlation. In summary, this study delineates a time-resolved correlative framework linking microbial succession to structural and enzymatic dynamics during oat grass degradation. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

15 pages, 290 KiB  
Article
Nutritional Evaluation of Milk Thistle Meal as a Protein Feedstuff for Diets of Dairy Cattle
by Modinat Tolani Lambo, Rui Liu, Xianglong Zhang, Yonggen Zhang, Yang Li and Manji Sun
Animals 2024, 14(13), 1864; https://doi.org/10.3390/ani14131864 - 24 Jun 2024
Cited by 1 | Viewed by 1648
Abstract
The objective of this work is to investigate the chemical and nutritional value of milk thistle meal (MTM) in order to improve it and to provide theoretical support for its application in dairy cattle production. MTM was assessed in comparison with seven conventional [...] Read more.
The objective of this work is to investigate the chemical and nutritional value of milk thistle meal (MTM) in order to improve it and to provide theoretical support for its application in dairy cattle production. MTM was assessed in comparison with seven conventional protein feed sources, namely, soybean meal (SBM), cottonseed meal (CS), canola meal (CN), palm kernel meal (PK), rice bran meal (RB), corn germ meal (CG), and sesame meal (SS). The chemical composition of these feedstuffs was assessed using wet chemical analysis, the Cornell Net Carbohydrate and Protein System was used to evaluate the carbohydrate and protein fractions, and the in situ nylon bag technique and the modified three-step in vitro method were used to assess the rumen degradation and intestinal digestibility. Additionally, Fourier transform infrared technology was used to determine the feedstuff protein spectral molecular structure and its amino acid profile was also assessed. The result showed that MTM acid detergent fiber, lignin, unavailable nitrogen, and non-degradable carbohydrate content were higher than those of the other feedstuffs. It had a 17% and 36% rumen effective degradation rate of neutral detergent fiber and dry matter, respectively, and had the lowest small intestinal rumen undegradable protein digestibility rate. It was low in leucine, histidine, arginine, and proline, but high in methionine. The total area of amide I and amide II in the protein secondary structure was similar to that of CN and CS, and the amide I and II ratio was not different from that of RB. To sum up, MTM has a poor carbohydrate composition and is high in fiber but, in comparison to most other protein feeds, has a higher crude protein rumen effective degradation rate, similar to that of SBM, and it is a good source of methionine, a limiting amino acid. Hence, its nutritional value can be further improved for application in dairy feeding through processes such as microbial or enzymatic fermentation. Full article
15 pages, 1572 KiB  
Article
In Situ Degradation Kinetics of 25 Feedstuffs and the Selection of Time Points in Mathematical Statistics
by Sen Li, Liwen He, Fang Mo and Wei Zhang
Animals 2023, 13(5), 947; https://doi.org/10.3390/ani13050947 - 6 Mar 2023
Cited by 4 | Viewed by 2065
Abstract
Rumen degradation kinetics of 25 feedstuffs (six protein feeds, nine energy feeds and ten roughages) were first determined using the nylon bag technique in situ and the differences of degradation characteristics fitted with five or seven time points measuring data were evaluated with [...] Read more.
Rumen degradation kinetics of 25 feedstuffs (six protein feeds, nine energy feeds and ten roughages) were first determined using the nylon bag technique in situ and the differences of degradation characteristics fitted with five or seven time points measuring data were evaluated with the goodness of fit (R2) of degradation curves. Protein and energy feeds were incubated for 2, 4, 8, 16, 24, 36, 48 h, roughages were incubated for 4, 8, 16, 24, 36, 48, 72 h, where three and six data sets of five time points were screened out, respectively. Only the degradation parameters a (rapidly degraded proportion), b (slowly degraded proportion) and c (degradation rate of slowly degraded proportion) of several feeds at five time points were significantly different from those at seven time points (p < 0.05), and the others were not significant (p > 0.05). The R2 of the degradation curves obtained at five time points was closer to 1, indicating that the fitting obtained at five time points was more accurate in predicting the real-time rumen degradation rate of feed. These results indicate that it is feasible to determine the rumen degradation characteristics of feedstuffs by only setting five measuring time points. Full article
Show Figures

Figure 1

12 pages, 1483 KiB  
Article
The Effect of Combining Millet and Corn Straw as Source Forage for Beef Cattle Diets on Ruminal Degradability and Fungal Community
by Yaoyi Tong, Jincai Wu, Wenwei Guo, Zhimin Yang, Haocheng Wang, Hongkai Liu, Yong Gao, Maohong Sun and Chunwang Yue
Animals 2023, 13(4), 548; https://doi.org/10.3390/ani13040548 - 4 Feb 2023
Cited by 6 | Viewed by 2039
Abstract
Three ruminal cannulated Simmental crossbreed bulls (approximately 3 years of age and with 380 ± 20 kg live weight at initiation of the experiment) were used in a 3 × 3 Latin square experiment in order to determine the effects of the treatments [...] Read more.
Three ruminal cannulated Simmental crossbreed bulls (approximately 3 years of age and with 380 ± 20 kg live weight at initiation of the experiment) were used in a 3 × 3 Latin square experiment in order to determine the effects of the treatments on ruminal pH and degradability of nutrients, as well as the rumen fungal community. The experimental periods were 21 d, with 18 d of adjustment to the respective dietary treatments and 3 d of sample collection. Treatments consisted of a basal diet containing a 47.11% composition of two sources of forage as follows: (1) 100% millet straw (MILLSTR), (2) 50:50 millet straw and corn straw (COMB), and (3) 100% corn straw (CORNSTR). Dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) were tested for ruminal degradability using the nylon bag method, which was incubated for 6, 12, 24, 36, 48, and 72 h, and rumen fungal community in rumen fluid was determined by high-throughput gene sequencing technology. Ruminal pH was not affected by treatments. At 72 h, compared to MILLSTR, DM degradability of CORNSTR was 4.8% greater (p < 0.05), but when corn was combined with millet straw, the difference in DM degradability was 9.4%. During the first 24 h, degradability of CP was lower for CORNSTR, intermediate for MILLSTR, and higher for COMB. However, at 72 h, MILLSTR and COMB had a similar CP degradability value, staying greater than the CP degradability value of the CORNSTR treatment. Compared to MILLSTR, the rumen degradability of NDF was greater for CORNSTR and intermediate for the COMB. There was a greater degradability for ADF in CORNSTR, intermediate for COMB, and lower for MILLSTR. In all treatments, Ascomycota and Basidiomycota were dominant flora. Abundance of Basidiomycota in the group COMB was higher (p < 0.05) than that in the group CORNSTR at 12 h. Relative to the fungal genus level, the Thelebolus, Cladosporium, and Meyerozyma were the dominant fungus, and the abundance of Meyerozyma in COMB and CORNSTR were greater (p < 0.05) than MILLSTR at 12, 24, and 36 h of incubation. In conclusion, it is suggested to feed beef cattle with different proportions of millet straw and corn straw combinations. Full article
Show Figures

Figure 1

14 pages, 532 KiB  
Article
Associations of Protein Molecular Structures with Their Nutrient Supply and Biodegradation Characteristics in Different Byproducts of Seed-Used Pumpkin
by Yang Li, Qinghua Wu, Jingyi Lv, Xiaoman Jia, Jianxu Gao, Yonggen Zhang and Liang Wang
Animals 2022, 12(8), 956; https://doi.org/10.3390/ani12080956 - 7 Apr 2022
Cited by 12 | Viewed by 2641
Abstract
The purpose of this experiment was to explore the relationship of protein functional groups (including amide I, amide II, α-helix, and β-sheet) in byproducts of seed-used pumpkin (pumpkin seed cake, pumpkin seed coat, and seed-used pumpkin flesh) with their nutrient profiles and biodegradation [...] Read more.
The purpose of this experiment was to explore the relationship of protein functional groups (including amide I, amide II, α-helix, and β-sheet) in byproducts of seed-used pumpkin (pumpkin seed cake, pumpkin seed coat, and seed-used pumpkin flesh) with their nutrient profiles and biodegradation characteristics. The experiment was designed to use conventional chemical analysis, combining the Cornell Net Carbohydrate and Protein System (CNCPS) and nylon bag technology to assess the nutritional value and biodegradation characteristics of seed-used pumpkin byproducts. Fourier transform infrared spectroscopy (FTIR) was used to analyze the protein molecular structure properties of byproducts of seed-used pumpkin. In this study, we also applied correlation and regression analysis. The results showed that different byproducts of seed-used pumpkin had different in situ biodegradation, nutrient supplies, and spectral structures in the protein region. Among the byproducts of seed-used pumpkin, acid detergent-insoluble crude protein (ADICP) and neutral detergent-insoluble crude protein (NDICP) contents of the pumpkin seed coat were the highest, resulting in the lowest effective degradabilities (EDs) of dry matter and crude protein. The crude protein (CP) ED values were ranked as follows: pumpkin seed cake > seed-used pumpkin flesh > pumpkin seed coat. Significant differences were observed in the peak areas of amide I and amide II and the corresponding peak heights in the two peak areas in the molecular structure of the protein. The peak areas of amide I and amide II and the corresponding peak heights were at the highest levels for pumpkin seed cake, whereas there was no significant difference between the pumpkin seed coat and seed-used pumpkin flesh. Similarly, the peak heights of α-helices and β-sheets were highest for pumpkin seed cake. Correlation and regression results indicated that amide I and amide II area and height, α-helix and β-sheet heights, and area ratios of amide I: amide II, as well as the height ratios of amide I: amide II, and α-helices: β-sheets effectively estimated nutrient supply and that the height ratio of α-helices: β-sheets was mostly sensitive to biodegradation characteristics in different byproducts of seed-used pumpkin. There were significant differences in CP chemical composition and digestibility of different byproducts of seed-used pumpkin that were strongly related to the changes in protein molecular structures. Full article
(This article belongs to the Special Issue Feed Evaluation for Animal Health and Product Quality)
Show Figures

Figure 1

15 pages, 3060 KiB  
Article
The Effect of Lignin Composition on Ruminal Fiber Fractions Degradation from Different Roughage Sources in Water Buffalo (Bubalus bubalis)
by Huimin Zhong, Jiayan Zhou, Mohamed Abdelrahman, Hao Xu, Zian Wu, Luncheng Cui, Zhenhua Ma, Liguo Yang and Xiang Li
Agriculture 2021, 11(10), 1015; https://doi.org/10.3390/agriculture11101015 - 17 Oct 2021
Cited by 23 | Viewed by 6147
Abstract
The water buffalo (Bubalus bubalis) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, [...] Read more.
The water buffalo (Bubalus bubalis) is known for its unique utilization of low-quality fibrous feeds and outstanding digestion performance, highlighting its role as an animal model in studying fiber fractions degradation. Among roughage, lignin attracted wide attention in ruminant nutrition studies, which affects animal digestibility. Therefore, the present study aims to investigate the functional relation between three lignin monomeric compositions of coniferyl alcohol (G), ρ-coumaryl alcohol (H) and sinapyl alcohol (S) and ruminal fiber degradation in water buffalo. Hence, three female water buffaloes (Nili-Ravi × Mediterranean, five years old, 480 ± 20 kg) were assigned for an in vivo study by utilizing the nylon-bag method, examining eight kinds of roughage. All the experimental roughage types were analyzed for the effective degradability (ED) of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL) and hemicellulose (HC) fractions. Then, prediction models for the roughage fiber degradation were established based on the characteristics of lignin monomer content. The results showed that S, S/G and S/(G+S+H) were positively correlated with the ED of NDF, ADF, CEL and HC; H/S was negatively correlated. For the effective degradability of ADL (ADLD), S and S/(G+S+H) were positively correlated with it; H, H/G, H/S and H/(G+S+H) were negatively correlated. The model with the highest fitting degree was ADLD = 0.161 − 1.918 × H + 3.152 × S (R2 = 0.758, p < 0.01). These results indicated that the lignin monomer composition is closely related to the utilization rate of roughage fiber. S-type lignin monomer plays a vital role in the fiber degradation of roughage. The experiment found the effect of lignin monomer composition on the degradation of fiber fractions using buffalo as the experimental animal and constructed prediction models, providing a scientific basis for building a new technological method using lignin composition to evaluate buffalo roughage. Furthermore, the capacity of ADL degradation of buffalo was proved in this experiment. In order to further explore the ability of lignin degradation by the buffalo, the DNA of rumen microorganisms was extracted for sequencing. The top three composition of rumen microorganisms at the genus level were Prevotella_1, 226, Rikenellaceae_RC9_gut_group and Ruminococcaceae_UCG-011. Six strains with lignin degradation ability were screened from buffalo rumen contents. This experiment also revealed that the buffalos possess rumen microorganisms with lignin degradation potential. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

Back to TopTop