Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = nuisance-alarm rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7986 KiB  
Article
Employing Eye Trackers to Reduce Nuisance Alarms
by Katherine Herdt, Michael Hildebrandt, Katya LeBlanc and Nathan Lau
Sensors 2025, 25(9), 2635; https://doi.org/10.3390/s25092635 - 22 Apr 2025
Viewed by 605
Abstract
When process operators anticipate an alarm prior to its annunciation, that alarm loses information value and becomes a nuisance. This study investigated using eye trackers to measure and adjust the salience of alarms with three methods of gaze-based acknowledgement (GBA) of alarms that [...] Read more.
When process operators anticipate an alarm prior to its annunciation, that alarm loses information value and becomes a nuisance. This study investigated using eye trackers to measure and adjust the salience of alarms with three methods of gaze-based acknowledgement (GBA) of alarms that estimate operator anticipation. When these methods detected possible alarm anticipation, the alarm’s audio and visual salience was reduced. A total of 24 engineering students (male = 14, female = 10) aged between 18 and 45 were recruited to predict alarms and control a process parameter in three scenario types (parameter near threshold, trending, or fluctuating). The study evaluated whether behaviors of the monitored parameter affected how frequently the three GBA methods were utilized and whether reducing alarm salience improved control task performance. The results did not show significant task improvement with any GBA methods (F(3,69) = 1.357, p = 0.263, partial η2 = 0.056). However, the scenario type affected which GBA method was more utilized (X2 (2, N = 432) = 30.147, p < 0.001). Alarm prediction hits with gaze-based acknowledgements coincided more frequently than alarm prediction hits without gaze-based acknowledgements (X2 (1, N = 432) = 23.802, p < 0.001, OR = 3.877, 95% CI 2.25–6.68, p < 0.05). Participant ratings indicated an overall preference for the three GBA methods over a standard alarm design (F(3,63) = 3.745, p = 0.015, partial η2 = 0.151). This study provides empirical evidence for the potential of eye tracking in alarm management but highlights the need for additional research to increase validity for inferring alarm anticipation. Full article
(This article belongs to the Special Issue New Trends in Biometric Sensing and Information Processing)
Show Figures

Figure 1

14 pages, 3301 KiB  
Article
The Urban Deployment Model: A Toolset for the Simulation and Performance Characterization of Radiation Detector Deployments in Urban Environments
by Nicolas Abgrall, Yassid Ayyad, Chun Ho Chow, Reynold Cooper, Daniel Hellfeld and Emil Rofors
Sensors 2024, 24(15), 4987; https://doi.org/10.3390/s24154987 - 1 Aug 2024
Cited by 1 | Viewed by 1011
Abstract
Static and mobile radiation detectors can be deployed in urban environments for a range of nuclear security applications, including radiological source search-and-tracking scenarios. Modeling detector performance for such applications is challenging, as it does not depend solely on the detector capabilities themselves. Many [...] Read more.
Static and mobile radiation detectors can be deployed in urban environments for a range of nuclear security applications, including radiological source search-and-tracking scenarios. Modeling detector performance for such applications is challenging, as it does not depend solely on the detector capabilities themselves. Many factors must be taken into consideration, including specific source and background signatures, the topology and constraints of the deployment environment, the presence of nuisance sources, and whether detectors are mobile or static. When considering the simultaneous deployment of multiple, heterogeneous detectors, assessment of the system-wide performance requires the simulation of the individual detectors, and a system-level analysis of the detection performance. In radiological source search-and-tracking scenarios, performance is mostly dominated by the probability of encounter, which depends on the specifics of a given deployment, e.g., static vs. mobile detectors or a combination of both modalities, the number of detectors deployed, the dynamic vs. static setting of false alarm rates, and individual vs. networked operation. The Urban Deployment Model (UDM) toolset was specifically developed to cover the gap in the available generic frameworks for the simulation of radiation detector deployments at city scales. UDM provides a unified and modular framework to support the simulation and performance characterization of heterogeneous detector deployments in urban environments. This paper presents the key components along the UDM workflow. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

23 pages, 11489 KiB  
Article
Data-Driven-Based Intelligent Alarm Method of Ultra-Supercritical Thermal Power Units
by Xingfan Zhang, Lanhui Ye, Cheng Zhang and Chun Wei
Processes 2024, 12(5), 889; https://doi.org/10.3390/pr12050889 - 28 Apr 2024
Viewed by 1144
Abstract
In order to ensure the safe operation of the ultra-supercritical thermal power units (USCTPUs), this paper proposes an intelligent alarm method to enhance the performance of the alarm system. Firstly, addressing the issues of slow response and high missed alarm rate (MAR [...] Read more.
In order to ensure the safe operation of the ultra-supercritical thermal power units (USCTPUs), this paper proposes an intelligent alarm method to enhance the performance of the alarm system. Firstly, addressing the issues of slow response and high missed alarm rate (MAR) in traditional alarm systems, a threshold optimization method is proposed by integrating kernel density estimation (KDE) and convolution optimization algorithm (COA). Based on the traditional approach, the expected detection delay (EDD) indicator is introduced to better evaluate the response speed of the alarm system. By considering the false alarm rate (FAR), and EDD, a threshold optimization objective function is constructed, and the COA is employed to obtain the optimal alarm threshold. Secondly, to address the problem of excessive nuisance alarms, this paper reduces the number of nuisance alarms by introducing an adaptive delay factor into the existing system. Finally, simulation results demonstrate that the proposed method significantly reduces the MAR and EDD, improves the response speed and performance of the alarm system, and effectively reduces the number of nuisance alarms, thereby enhancing the quality of the alarms. Full article
Show Figures

Figure 1

10 pages, 3674 KiB  
Article
Self-Contained Reference Sensors to Reduce Nuisance Alarm Rate in φ-OTDR-Based Fence Intrusion Detection System
by Hailiang Zhang, Hui Dong, Dora Juan Juan Hu and Jun Hong Ng
Optics 2023, 4(2), 330-339; https://doi.org/10.3390/opt4020024 - 15 May 2023
Cited by 5 | Viewed by 2282
Abstract
Nuisance alarm rate (NAR) is one of the key performance parameters in a phase-sensitive optical time domain reflectometry (φ-OTDR)-based fence intrusion detection system. Typically, the vibrations caused by ambient environmental conditions, such as heavy rain, strong wind, and passing vehicles, easily result in [...] Read more.
Nuisance alarm rate (NAR) is one of the key performance parameters in a phase-sensitive optical time domain reflectometry (φ-OTDR)-based fence intrusion detection system. Typically, the vibrations caused by ambient environmental conditions, such as heavy rain, strong wind, and passing vehicles, easily result in many nuisance alarms. Significant research efforts have been undertaken to suppress the NAR. In this paper, we propose to utilize short segments of the sensing fiber as reference sensors for significant reduction in the NAR in φ-OTDR for the first time, to the best of our knowledge. According to our field trial results, the proposed approach can reduce the NAR by more than 90%. The proposed approach is very simple, practical, and cost-effective, which can be easily integrated with the existing methods of reducing NAR and act as an additional level of decision-making algorithm for triggering alarms. Full article
(This article belongs to the Topic Advances in Optical Sensors)
Show Figures

Figure 1

12 pages, 1124 KiB  
Article
An Open-Source, Interoperable Architecture for Generating Real-Time Surgical Team Cognitive Alerts from Heart-Rate Variability Monitoring
by David Arney, Yi Zhang, Lauren R. Kennedy-Metz, Roger D. Dias, Julian M. Goldman and Marco A. Zenati
Sensors 2023, 23(8), 3890; https://doi.org/10.3390/s23083890 - 11 Apr 2023
Cited by 6 | Viewed by 3238
Abstract
Clinical alarm and decision support systems that lack clinical context may create non-actionable nuisance alarms that are not clinically relevant and can cause distractions during the most difficult moments of a surgery. We present a novel, interoperable, real-time system for adding contextual awareness [...] Read more.
Clinical alarm and decision support systems that lack clinical context may create non-actionable nuisance alarms that are not clinically relevant and can cause distractions during the most difficult moments of a surgery. We present a novel, interoperable, real-time system for adding contextual awareness to clinical systems by monitoring the heart-rate variability (HRV) of clinical team members. We designed an architecture for real-time capture, analysis, and presentation of HRV data from multiple clinicians and implemented this architecture as an application and device interfaces on the open-source OpenICE interoperability platform. In this work, we extend OpenICE with new capabilities to support the needs of the context-aware OR including a modularized data pipeline for simultaneously processing real-time electrocardiographic (ECG) waveforms from multiple clinicians to create estimates of their individual cognitive load. The system is built with standardized interfaces that allow for free interchange of software and hardware components including sensor devices, ECG filtering and beat detection algorithms, HRV metric calculations, and individual and team alerts based on changes in metrics. By integrating contextual cues and team member state into a unified process model, we believe future clinical applications will be able to emulate some of these behaviors to provide context-aware information to improve the safety and quality of surgical interventions. Full article
(This article belongs to the Special Issue Advanced Sensors for Real-Time Monitoring Applications ‖)
Show Figures

Figure 1

13 pages, 3615 KiB  
Article
Evaluating the Associations between Forward Collision Warning Severity and Driving Context
by Sean Seaman, Pnina Gershon, Linda Angell, Bruce Mehler and Bryan Reimer
Safety 2022, 8(1), 5; https://doi.org/10.3390/safety8010005 - 20 Jan 2022
Cited by 16 | Viewed by 6436
Abstract
Forward collision warning (FCW) systems typically employ forward sensing technologies to identify possible forward collisions and provide an alert to the driver in the event they have not recognized a threat. These systems have demonstrated safety benefits. However, because the base rate of [...] Read more.
Forward collision warning (FCW) systems typically employ forward sensing technologies to identify possible forward collisions and provide an alert to the driver in the event they have not recognized a threat. These systems have demonstrated safety benefits. However, because the base rate of collisions is low, sensitive FCW systems can provide a high rate of alarms in situations with no or low probability of collision, which may negatively impact driver responsiveness and satisfaction. We examined over 2000 naturally occurring FCWs in two modern vehicles as a part of a naturalistic driving study investigation into advanced vehicle technologies. Analysts used cabin and forward camera footage, as well as environmental characteristics, to judge the likelihood of a crash during each alert, which were used to model the likelihood of an alert representing a possible collision. Only nine FCWs were considered “crash possible and imminent”. Road-type, speed, traffic density, and deceleration profiles distinguished between alert severity. Modeling outcomes provide clues for reducing nuisance and false alerts, and the method of using subjective video annotation combined with vehicle kinematics shows promise for investigating FCW alerts in the real world. Full article
Show Figures

Figure 1

12 pages, 985 KiB  
Article
Pulse-Width Multiplexing ϕ-OTDR for Nuisance-Alarm Rate Reduction
by Xiang Zhong, Xicheng Gao, Huaxia Deng, Shisong Zhao, Mengchao Ma, Jin Zhang and Jianquan Li
Sensors 2018, 18(10), 3509; https://doi.org/10.3390/s18103509 - 18 Oct 2018
Cited by 10 | Viewed by 3341
Abstract
A pulse-width multiplexing method for reducing the nuisance-alarm rate of a phase-sensitive optical time-domain reflectometer ( ϕ -OTDR) is described. In this method, light pulses of different pulse-widths are injected into the sensing fiber; the data acquired at different pulse-widths are regarded as [...] Read more.
A pulse-width multiplexing method for reducing the nuisance-alarm rate of a phase-sensitive optical time-domain reflectometer ( ϕ -OTDR) is described. In this method, light pulses of different pulse-widths are injected into the sensing fiber; the data acquired at different pulse-widths are regarded as the outputs of different sensors; and these data are then processed by a multisensor data fusion algorithm. In laboratory tests with a sensing fiber on a vibrating table, the effects of pulse-width on the signal-to-noise ratio (SNR) of the ϕ -OTDR data are observed. Furthermore, by utilizing the SNR as the feature in a feature-layer algorithm based on Dempster–Shafer evidential theory, a four-pulse-width multiplexing ϕ -OTDR system is constructed, and the nuisance-alarm rate is reduced by about 70%. These experimental results show that the proposed method has great potential for perimeter protection, since the nuisance-alarm rate is significantly reduced by using a simple configuration. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

Back to TopTop