Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = novel multi-power reaching law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1293 KiB  
Article
Singular Perturbation Decoupling and Composite Control Scheme for Hydraulically Driven Flexible Robotic Arms
by Jianliang Xu, Zhen Sui and Xiaohua Wei
Processes 2025, 13(6), 1805; https://doi.org/10.3390/pr13061805 - 6 Jun 2025
Viewed by 468
Abstract
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical [...] Read more.
Hydraulically driven flexible robotic arms (HDFRAs) play an indispensable role in industrial precision operations such as aerospace assembly and nuclear waste handling, owing to their high power density and adaptability to complex environments. However, inherent mechanical flexibility-induced vibrations, hydraulic nonlinear dynamics, and electromechanical coupling effects lead to multi-timescale control challenges, severely limiting high-precision trajectory tracking performance. The present study introduces a novel hierarchical control framework employing dual-timescale perturbation analysis, which effectively addresses the constraints inherent in conventional single-timescale control approaches. First, the system is decoupled into three subsystems via dual perturbation parameters: a second-order rigid-body motion subsystem (SRS), a second-order flexible vibration subsystem (SFS), and a first-order hydraulic dynamic subsystem (FHS). For SRS/SFS, an adaptive fast terminal sliding mode active disturbance rejection controller (AFTSM-ADRC) is designed, featuring a dual-bandwidth extended state observer (BESO) to estimate parameter perturbations and unmodeled dynamics in real time. A novel reaching law with power-rate hybrid characteristics is developed to suppress sliding mode chattering while ensuring rapid convergence. For FHS, a sliding mode observer-integrated sliding mode coordinated controller (SMO-ISMCC) is proposed, achieving high-precision suppression of hydraulic pressure fluctuations through feedforward compensation of disturbance estimation and feedback integration of tracking errors. The globally asymptotically stable property of the composite system has been formally verified through systematic Lyapunov-based analysis. Through comprehensive simulations, the developed methodology demonstrates significant improvements over conventional ADRC and PID controllers, including (1) joint tracking precision reaching 104 rad level under nominal conditions and (2) over 40% attenuation of current oscillations when subjected to stochastic disturbances. These results validate its superiority in dynamic decoupling and strong disturbance rejection. Full article
(This article belongs to the Special Issue Modelling and Optimizing Process in Industry 4.0)
Show Figures

Figure 1

16 pages, 3475 KiB  
Article
Agile Attitude Maneuver Control of Micro-Satellites for Multi-Target Observation Based on Piecewise Power Reaching Law and Variable-Structure Sliding Mode Control
by Xinyan Yang, Yurong Liao, Lei Li and Zhaoming Li
Appl. Sci. 2024, 14(2), 797; https://doi.org/10.3390/app14020797 - 17 Jan 2024
Cited by 3 | Viewed by 1219
Abstract
This paper addresses the issue of agile attitude maneuver control for low-Earth-orbit satellites during short arc segments for multi-target observations. Specifically, a configuration design for Control Moment Gyroscopes (CMGs) and a hybrid control law are provided. The control law is adept at avoiding [...] Read more.
This paper addresses the issue of agile attitude maneuver control for low-Earth-orbit satellites during short arc segments for multi-target observations. Specifically, a configuration design for Control Moment Gyroscopes (CMGs) and a hybrid control law are provided. The control law is adept at avoiding singularities and escaping singular planes. Subsequently, an optimal time-based attitude maneuver path-planning method is presented, rooted in the relationship between Euler angles/axis and quaternions. Furthermore, a novel satellite attitude maneuver controller is developed based on a piecewise power-reaching law for variable structure sliding mode control. The paper theoretically demonstrates that the proposed piecewise power reaching law possesses two favorable properties regarding convergence time. On the other hand, the designed reaching law maintains continuity at all stages, theoretically eliminating buffeting. The simulation results demonstrate that the proposed controller achieves an Euler angle control precision of ±0.03° and angular velocity accuracy of ±0.15°/s, fulfilling the demands of multi-objective observational tasks. Compared to conventional power reaching law controllers, the convergence time is reduced by 3 s, and Euler angle accuracy is improved by 70%. This underscores the effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Recent Advances and Application of Image Processing)
Show Figures

Figure 1

17 pages, 5103 KiB  
Article
Research on Neural Network Terminal Sliding Mode Control of Robotic Arms Based on Novel Reaching Law and Improved Salp Swarm Algorithm
by Jianguo Duan, Hongzhi Zhang, Qinglei Zhang and Jiyun Qin
Actuators 2023, 12(12), 464; https://doi.org/10.3390/act12120464 - 13 Dec 2023
Cited by 5 | Viewed by 2239
Abstract
Modeling errors and external disturbances have significant impacts on the control accuracy of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular terminal sliding mode (FNTSM) [...] Read more.
Modeling errors and external disturbances have significant impacts on the control accuracy of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular terminal sliding mode (FNTSM) control, radial basis function (RBF) neural network, and an improved salp swarm algorithm (ALSSA). This method effectively enhances the trajectory tracking accuracy of robotic arms under the influence of uncertain factors. Firstly, the fast nonsingular terminal sliding surface is utilized to enhance the convergence speed of the system and achieve finite-time convergence. Building upon this, a novel multi-power reaching law is proposed to reduce system chattering. Secondly, the RBF neural network is utilized to estimate and compensate for modeling errors and external disturbances. Then, an improved salp swarm algorithm is proposed to optimize the parameters of the controller. Finally, the stability of the control system is demonstrated using the Lyapunov theorem. Simulation and experimental results demonstrate that the proposed ALSSA-RBFTSM algorithm exhibits superior robustness and trajectory tracking performance compared to the global fast terminal sliding mode (GFTSM) algorithm and the RBF neural network fast nonsingular terminal sliding mode (RBF-FNTSM) algorithm. Full article
(This article belongs to the Special Issue Modeling, Optimization and Control of Robotic Systems)
Show Figures

Figure 1

29 pages, 1372 KiB  
Article
Medical Diagnosis under Effective Bipolar-Valued Multi-Fuzzy Soft Settings
by Hanan H. Sakr, Salem A. Alyami and Mohamed A. Abd Elgawad
Mathematics 2023, 11(17), 3747; https://doi.org/10.3390/math11173747 - 31 Aug 2023
Cited by 2 | Viewed by 1596
Abstract
The Molodtsov-initiated soft set theory plays an important role as a powerful mathematical tool for handling uncertainty. As an extension of the soft set, the fuzzy soft set can be seen to be more generic and flexible than utilizing the soft set only [...] Read more.
The Molodtsov-initiated soft set theory plays an important role as a powerful mathematical tool for handling uncertainty. As an extension of the soft set, the fuzzy soft set can be seen to be more generic and flexible than utilizing the soft set only that fails to represent problem parameters fuzziness. Through this progress, the fuzzy soft set theory cannot deal with decision-making problems involving multi-attribute sets, bipolarity, or some effective considered parameters. Therefore, the goal of this article is to adapt effectiveness and bipolarity concepts with the multi-fuzzy soft set of order n. One can see that this approach generates a novel, extended, effective decision-making environment that is more applicable than any previously introduced one. In addition, types, concepts, and operations of effective bipolar-valued multi-fuzzy soft sets of dimension n are provided, each with an example. Furthermore, properties like absorption, associative, distributive, commutative, and De Morgan’s laws of those new sets are investigated. Moreover, a decision-making methodology under effective bipolar-valued multi-fuzzy soft settings is established. This technique facilitates reaching the final decision that this student is qualified to take a certain education level, or this patient is suffering from a certain disease, etc. In addition, a case study represented in a medical diagnosis example is discussed in detail to make the proposed algorithm clearer. Applying matrix techniques in this example as well as using MATLAB®, not only makes it easier and faster in doing calculations, but also gives more accurate, optimal, and effective decisions. Finally, the sensitivity analysis, as well as a comparison with the existing methods, are conducted in detail and are summarized in a chart to show the difference between them and the current one. Full article
(This article belongs to the Special Issue Fuzzy Logic and Computational Intelligence)
Show Figures

Figure 1

18 pages, 8037 KiB  
Article
A Novel MPPT Algorithm for Photovoltaic Systems Based on Improved Sliding Mode Control
by Yan Zhang, Ya-Jun Wang and Jia-Qi Yu
Electronics 2022, 11(15), 2421; https://doi.org/10.3390/electronics11152421 - 3 Aug 2022
Cited by 18 | Viewed by 3794
Abstract
Due to the poor tracking performance and significant chattering of traditional sliding mode control in the maximum power point tracking (MPPT) algorithm, a novel MPPT algorithm based on sliding mode control for photovoltaic systems is proposed in this paper. The sliding mode control [...] Read more.
Due to the poor tracking performance and significant chattering of traditional sliding mode control in the maximum power point tracking (MPPT) algorithm, a novel MPPT algorithm based on sliding mode control for photovoltaic systems is proposed in this paper. The sliding mode control structure and new sliding mode surface of the multi-power reaching law are designed with the boost converter as the carrier of the photovoltaic system, and the sigmoid function is proposed to replace the symbolic function and saturation function in the power reaching law to improve the reaching rate and control quality of the traditional sliding mode control. Furthermore, the Liapunov function is employed to analyze the accessibility, existence and stability of the improved sliding mode control. Simulation results under dynamic and partial shading conditions show that compared with exponential sliding mode and constant speed sliding mode, the improved sliding mode control strategy can quickly track the maximum power point of photovoltaic systems under various atmospheric conditions. The proposed MPPT algorithm has stronger robustness and universality. Additionally, the efficiency of the proposed algorithm is improved by 2.3% and 5.6% as compared to the exponential sliding model control algorithm and constant velocity sliding model control algorithm. In addition, the experimental platform is constructed to further validate the feasibility and effectiveness of the proposed algorithm. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

18 pages, 1551 KiB  
Article
Effects of Melt Temperature and Non-Isothermal Flow in Design of Coat Hanger Dies Based on Flow Network of Non-Newtonian Fluids
by Amin Razeghiyadaki, Dongming Wei, Asma Perveen, Dichuan Zhang and Yanwei Wang
Polymers 2022, 14(15), 3161; https://doi.org/10.3390/polym14153161 - 3 Aug 2022
Cited by 7 | Viewed by 2423
Abstract
In the design of coat hanger extrusion dies, the main objective is to provide a uniform flow rate at the die exit. Previously, a multi-rheology isothermal method model for coat hanger extrusion dies was developed to reach this objective. Polymer melts in extrusion [...] Read more.
In the design of coat hanger extrusion dies, the main objective is to provide a uniform flow rate at the die exit. Previously, a multi-rheology isothermal method model for coat hanger extrusion dies was developed to reach this objective. Polymer melts in extrusion dies commonly experience high shear rates. Viscous dissipation rooted by high shear rate may lead to significant temperature differences across the die. Due to temperature-dependency of viscosity, temperature differences may lead to nonuniform flow rates, which may significantly affect the flow rate at the die exit. As a result, a new design method is proposed to take into account the effects of temperature and viscous dissipation in the design of coat hanger dies. Although more non-Newtonian fluid rheology models can be adapted in the proposed study, as demonstration, temperature-dependent power-law and Carreau–Yasuda models are adapted in this study. Performances are compared with our isothermal method published earlier. In addition, the novel nonisothermal method is comprehensively examined where the effect of viscous dissipation is studied through Brinkman number of extrusion die. It is demonstrated that, for a low Brinkman number, both isothermal and nonisothermal design give similar flow uniformity level. However, for higher Brinkman numbers, the proposed nonisothermal method produces a design with more desirable velocity uniformity level along with a maximum improvement of 5.24% over the isothermal method. In addition, dependency of flow field on temperature, due to temperature-dependent viscosity, is studied, and it is demonstrated that fully-developed velocity profile changes as temperature increases along the flow channel. Moreover, the effect of the temperature sensitivity parameter in temperature-dependent non-Newtonian models is considered. It is demonstrated that the temperature boundary condition with the Biot number of 1.0 gives adequate results for lower values of the temperature sensitivity parameter. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Processing)
Show Figures

Figure 1

10 pages, 15541 KiB  
Article
Multi-Twin-SSB Modulation with Direct Detection Based on Kramers–Kronig Scheme for Long-Reach PON Downstream
by Xiang Gao, Yuancheng Cai, Bo Xu, Xiaoling Zhang and Kun Qiu
Appl. Sci. 2019, 9(4), 748; https://doi.org/10.3390/app9040748 - 21 Feb 2019
Cited by 3 | Viewed by 4813
Abstract
As the demand for high data volumes keeps increasing in optical access networks, transmission capacities and distance are becoming bottlenecks for passive optical networks (PONs). To solve this problem, a novel scheme based on multi-twin single sideband (SSB) modulation with direct detection is [...] Read more.
As the demand for high data volumes keeps increasing in optical access networks, transmission capacities and distance are becoming bottlenecks for passive optical networks (PONs). To solve this problem, a novel scheme based on multi-twin single sideband (SSB) modulation with direct detection is proposed and investigated in this paper. At the central office, two SSB signals are generated simultaneously with the same digital-to-analog converters (DACs). The twin-SSB signal is not only robust against frequency selected power fading introduced by chromatic dispersion (CD), but also improves the spectral efficiency (SE). By combining a twin-SSB technique with multi-band carrier-less amplitude/phase modulation (multi-CAP), different optical network units (ONUs) can be supported by flexible multi-band allocation based on software-reconfigurable optical transceivers. The Kramers–Kronig (KK) scheme is adopted on the ONU side to effectively mitigate the signal–signal beat interference (SSBI) induced by the square-law detection. The proposed system is extensively studied and validated with four sub-bands using 50 Gbps 16 quadrature amplitude modulation (QAM) modulation for each sub-band using numerical simulations. Digital pre-equalization is introduced at the transmitter-side to balance the performance of different ONUs. After system optimization, a bit error rate (BER) threshold for hard decision forward error correction (HD-FEC) code with 7% redundancy ratio (BER = 3.8 × 10−3) can be reached for all ONUs over 50-km standard single-mode fiber. Full article
(This article belongs to the Special Issue Nonlinearity Compensation for Optical Communication Systems)
Show Figures

Figure 1

20 pages, 878 KiB  
Article
Urban Saturated Power Load Analysis Based on a Novel Combined Forecasting Model
by Huiru Zhao, Sen Guo and Wanlei Xue
Information 2015, 6(1), 69-88; https://doi.org/10.3390/info6010069 - 10 Mar 2015
Cited by 12 | Viewed by 7298
Abstract
Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting [...] Read more.
Analysis of urban saturated power loads is helpful to coordinate urban power grid construction and economic social development. There are two different kinds of forecasting models: the logistic curve model focuses on the growth law of the data itself, while the multi-dimensional forecasting model considers several influencing factors as the input variables. To improve forecasting performance, a novel combined forecasting model for saturated power load analysis was proposed in this paper, which combined the above two models. Meanwhile, the weights of these two models in the combined forecasting model were optimized by employing a fruit fly optimization algorithm. Using Hubei Province as the example, the effectiveness of the proposed combined forecasting model was verified, demonstrating a higher forecasting accuracy. The analysis result shows that the power load of Hubei Province will reach saturation in 2039, and the annual maximum power load will reach about 78,630 MW. The results obtained from this proposed hybrid urban saturated power load analysis model can serve as a reference for sustainable development for urban power grids, regional economies, and society at large. Full article
Show Figures

Graphical abstract

Back to TopTop