Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = nonreceptor tyrosine kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 956 KiB  
Review
The Potential Therapeutic Role of Bruton Tyrosine Kinase Inhibition in Neurodegenerative Diseases
by Francesco D’Egidio, Housem Kacem, Giorgia Lombardozzi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Appl. Sci. 2025, 15(15), 8239; https://doi.org/10.3390/app15158239 - 24 Jul 2025
Viewed by 276
Abstract
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. [...] Read more.
Bruton Tyrosine Kinase (BTK) has emerged as a critical mediator in the pathophysiology of neuroinflammation associated with neurodegenerative diseases. BTK, a non-receptor tyrosine kinase predominantly expressed in cells of the hematopoietic lineage, modulates B-cell receptor signaling and innate immune responses, including microglial activation. Recent evidence implicates aberrant BTK signaling in the exacerbation of neuroinflammatory cascades contributing to neuronal damage in disorders such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, ischemic stroke, and Huntington’s disease. Pharmacological inhibition of BTK has shown promise in attenuating microglial-mediated neurotoxicity, reducing pro-inflammatory cytokine release, and promoting neuroprotection in preclinical models. BTK inhibitors, originally developed for hematological malignancies, demonstrate favorable blood–brain barrier penetration and immunomodulatory effects relevant to central nervous system pathology. This therapeutic approach may counteract detrimental neuroimmune interactions without broadly suppressing systemic immunity, thus preserving host defense. Ongoing clinical trials are evaluating the safety and efficacy of BTK inhibitors in patients with neurodegenerative conditions, with preliminary results indicating potential benefits in slowing disease progression and improving neurological outcomes. This review consolidates current knowledge on BTK signaling in neurodegeneration and highlights the rationale for BTK inhibition as a novel, targeted therapeutic strategy to modulate neuroinflammation and mitigate neurodegenerative processes. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

17 pages, 3681 KiB  
Article
Sensitivity of Pancreatic Cancer Cell Lines to Clinically Approved FAK Inhibitors: Enhanced Cytotoxicity Through Combination with Oncolytic Coxsackievirus B3
by Anja Geisler, Babette Dieringer, Leslie Elsner, Maxim Girod, Sophie Van Linthout, Jens Kurreck and Henry Fechner
Int. J. Mol. Sci. 2025, 26(14), 6877; https://doi.org/10.3390/ijms26146877 - 17 Jul 2025
Viewed by 288
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer characterized by a dense desmoplastic stroma and a highly immunosuppressive tumor microenvironment (TME). The focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is considered a critical regulator of various cellular processes involved in cancer development. FAK inhibitors (FAKi) have proven to be promising therapeutics for cancer treatment including for pancreatic cancer. As monotherapy, however, FAKi showed only a modest effect in clinical studies. In this study, we investigated the cytotoxicity of six FAKi (Defactinib, CEP-37440, VS-4718, VS-6062, Ifebemtinib and GSK2256098) used in clinical trials on five pancreatic tumor cell lines. We further examined whether their anti-tumor activity can be enhanced by combination with the oncolytic coxsackievirus B3 (CVB3) strain PD-H. IC50 analyses identified Defactinib and CEP-37440 as the most potent inhibitors of tumor cell growth. VS-4718, VS-6062, and Ifebemtinib showed slightly lower activity, while GSK2256098 was largely ineffective. The combination of Defactinib, CEP-37440, VS-4718, and VS-6062 with PD-H resulted in varying effects on cytotoxicity, depending on the cell line and the specific FAKi, ranging from no enhancement to a pronounced increase. Using the Chou–Talalay method, we determined combination indices (CI), revealing synergistic, additive, but also antagonistic interactions between the respective FAKi and PD-H. Considering both oncolytic efficacy and the CI, the greatest enhancement in oncolytic activity was achieved when VS-4718 or CEP-37440 was combined with PD-H. These findings indicate that co-treatment with PD-H can potentiate the therapeutic activity of the selected FAKi and may represent a novel strategy to improve treatment outcomes in PDAC. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

10 pages, 525 KiB  
Review
Myeloid and Lymphoid Malignancies with Fusion Kinases Involving Spleen Tyrosine Kinase (SYK)—Emerging Rare Entities?
by Velizar Shivarov and Stefan Lozenov
Hemato 2025, 6(2), 17; https://doi.org/10.3390/hemato6020017 - 14 Jun 2025
Viewed by 402
Abstract
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK [...] Read more.
Myeloid/lymphoid neoplasms with tyrosine kinase gene fusions (MLN-TK) represent a distinct group of hematologic malignancies recognized in the latest WHO classification due to shared clinical, morphological, and molecular features, and their responsiveness to tyrosine kinase inhibitors (TKIs). Among these, fusions involving the SYK gene, such as ETV6::SYK and ITK::SYK, have emerged as rare but potentially targetable genetic events in both myeloid and lymphoid neoplasms. SYK, a non-receptor tyrosine kinase critical for hematopoietic signalling, can become constitutively activated through gene fusions, driving oncogenesis via the PI3K/AKT, MAPK, and JAK-STAT pathways. ETV6::SYK has been primarily associated with myeloid neoplasms, often presenting with eosinophilia, bone marrow dysplasia, and skin involvement. In vitro and in vivo models confirm its leukemogenic potential and identify SYK as a therapeutic target. Although SYK inhibitors like fostamatinib have shown transient efficacy, resistance mechanisms, possibly involving alternative pathway activation, remain a challenge. The ITK::SYK fusion, on the other hand, has been identified in peripheral T-cell lymphomas, particularly of the follicular helper T-cell subtype, with similar pathway activation and potential for targeted intervention. Additional rare SYK fusions, such as PML::SYK and CTLC::SYK, have been reported in myeloid neoplasms and juvenile xanthogranuloma, respectively, expanding the spectrum of SYK-driven diseases. Accumulating evidence supports the inclusion of SYK fusions in future classification systems and highlights the need for broader molecular screening and clinical evaluation of SYK-targeted therapies. Full article
Show Figures

Figure 1

31 pages, 17364 KiB  
Article
Structural Insights into the Dynamics of Water in SOD1 Catalysis and Drug Interactions
by Ilkin Yapici, Arda Gorkem Tokur, Belgin Sever, Halilibrahim Ciftci, Ayse Nazli Basak and Hasan DeMirci
Int. J. Mol. Sci. 2025, 26(9), 4228; https://doi.org/10.3390/ijms26094228 - 29 Apr 2025
Viewed by 773
Abstract
Superoxide dismutase 1 (SOD1) is a crucial enzyme that protects cells from oxidative damage by converting superoxide radicals into H2O2 and O2. This detoxification process, essential for cellular homeostasis, relies on a precisely orchestrated catalytic mechanism involving the [...] Read more.
Superoxide dismutase 1 (SOD1) is a crucial enzyme that protects cells from oxidative damage by converting superoxide radicals into H2O2 and O2. This detoxification process, essential for cellular homeostasis, relies on a precisely orchestrated catalytic mechanism involving the copper cation, while the zinc cation contributes to the structural integrity of the enzyme. This study presents the 2.3 Å crystal structure of human SOD1 (PDB ID: 9IYK), revealing an assembly of six homodimers and twelve distinct active sites. The water molecules form a complex hydrogen-bonding network that drives proton transfer and sustains active site dynamics. Our structure also uncovers subtle conformational changes that highlight the intrinsic flexibility of SOD1, which is essential for its function. Additionally, we observe how these dynamic structural features may be linked to pathological mutations associated with amyotrophic lateral sclerosis (ALS). By advancing our understanding of hSOD1’s mechanistic intricacies and the influence of water coordination, this study offers valuable insights for developing therapeutic strategies targeting ALS. Our structure’s unique conformations and active site interactions illuminate new facets of hSOD1 function, underscoring the critical role of structural dynamics in enzyme catalysis. Moreover, we conducted a molecular docking analysis using SOD1 for potential radical scavengers and Abelson non-receptor tyrosine kinase (c-Abl, Abl1) inhibitors targeting misfolded SOD1 aggregation along with oxidative stress and apoptosis, respectively. The results showed that CHEMBL1075867, a free radical scavenger derivative, showed the most promising docking results and interactions at the binding site of hSOD1, highlighting its promising role for further studies against SOD1-mediated ALS. Full article
(This article belongs to the Special Issue Advanced Research on Protein Structure and Protein Dynamics)
Show Figures

Figure 1

18 pages, 1104 KiB  
Review
Fibrosis and Src Signalling in Glaucoma: From Molecular Pathways to Therapeutic Prospects
by Liam Bourke and Colm O’Brien
Int. J. Mol. Sci. 2025, 26(3), 1009; https://doi.org/10.3390/ijms26031009 - 24 Jan 2025
Viewed by 1235
Abstract
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to [...] Read more.
Glaucoma, a leading cause of irreversible blindness, is characterised by progressive optic nerve damage, with elevated intraocular pressure (IOP) and extracellular matrix (ECM) remodelling in the lamina cribrosa (LC) contributing to its pathophysiology. While current treatments focus on IOP reduction, they fail to address the underlying fibrotic changes that perpetuate neurodegeneration. The Src proto-oncogene, a non-receptor tyrosine kinase, has emerged as a key regulator of cellular processes, including fibroblast activation, ECM deposition, and metabolism, making it a promising target for glaucoma therapy. Beyond its well-established roles in cancer and fibrosis, Src influences pathways critical to trabecular meshwork function, aqueous humour outflow, and neurodegeneration. However, the complexity of Src signalling networks remains a challenge, necessitating further investigation into the role of Src in glaucoma pathogenesis. This paper explores the therapeutic potential of Src inhibition to mitigate fibrotic remodelling and elevated IOP in glaucoma, offering a novel approach to halting disease progression. Full article
(This article belongs to the Special Issue Molecular Pathways and Therapeutic Strategies for Fibrotic Conditions)
Show Figures

Figure 1

15 pages, 6275 KiB  
Article
O-GlcNAcylation of Focal Adhesion Kinase Regulates Cell Adhesion, Migration, and Proliferation via the FAK/AKT Pathway
by Zhiwei Zhang, Tomoya Isaji, Yoshiyuki Oyama, Jianwei Liu, Zhiwei Xu, Yuhan Sun, Tomohiko Fukuda, Haojie Lu and Jianguo Gu
Biomolecules 2024, 14(12), 1577; https://doi.org/10.3390/biom14121577 - 10 Dec 2024
Cited by 2 | Viewed by 1665
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that O [...] Read more.
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase pivotal in cellular signal transduction, regulating cell adhesion, migration, growth, and survival. However, the regulatory mechanisms of FAK during tumorigenesis and progression still need to be fully understood. Our previous study demonstrated that O-GlcNAcylation regulates integrin-mediated cell adhesion. To further elucidate the underlying molecular mechanism, we focused on FAK in this study and purified it from 293T cells. Using liquid chromatography–mass spectrometry (LC-MS/MS), we identified the O-GlcNAcylation of FAK at Ser708, Thr739, and Ser886. Compared with wild-type FAK expressed in FAK-knockout 293T cells, the FAK mutant, in which Ser708, Thr739, and Ser886 were replaced with Ala, exhibited lower phosphorylation levels of Tyr397 and AKT. Cell proliferation and migration, assessed through MTT and wound healing assays, were significantly suppressed in the FAK mutant cells compared to the wild-type FAK cells. Additionally, the interaction among FAK, paxillin, and talin was enhanced, and cell adhesion was increased in the mutant cells. These data indicate that specific O-GlcNAcylation of FAK plays a critical regulatory role in integrin-mediated cell adhesion and migration. This further supports the idea that O-GlcNAcylation is essential for tumorigenesis and progression and that targeting the O-GlcNAcylation of FAK could offer a promising therapeutic strategy for cancer treatment. Full article
(This article belongs to the Section Biomacromolecules: Carbohydrates)
Show Figures

Figure 1

11 pages, 1122 KiB  
Article
Polymorphisms of TXK and PLCE1 Genes and Their Correlation Analysis with Growth Traits in Ashidan Yaks
by Juanxiang Zhang, Xita Zha, Guowu Yang, Xiaoming Ma, Yongfu La, Xiaoyun Wu, Xian Guo, Min Chu, Pengjia Bao, Ping Yan and Chunnian Liang
Animals 2024, 14(23), 3506; https://doi.org/10.3390/ani14233506 - 4 Dec 2024
Cited by 1 | Viewed by 843
Abstract
The tyrosine protein kinase (TXK) gene, as a member of the non-receptor tyrosine kinase Tec family, plays a vital role in signal transduction mediation. Phospholipase C epsilon 1 (PLCE1), a membrane-associated enzyme, is of paramount importance for the differentiation [...] Read more.
The tyrosine protein kinase (TXK) gene, as a member of the non-receptor tyrosine kinase Tec family, plays a vital role in signal transduction mediation. Phospholipase C epsilon 1 (PLCE1), a membrane-associated enzyme, is of paramount importance for the differentiation of myoblasts and the normal functioning of muscle tissue. In recent years, both of these genes have been reported to be associated with the economic traits of animals. This study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) in the TXK and PLCE1 genes and growth traits in Ashidan yaks and to search for potential molecular marker loci that can influence Ashidan yak breeding. A cGPS liquid microarray was utilized to genotype 232 Ashidan yaks and to analyze correlations between two SNP loci in the TXK and PLCE1 genes and yak body weight, body height, body length, and chest circumference at different periods. The results indicated that the g.55,999,531C>T locus of the TXK gene and the g.342,350T>G locus of the PLCE1 gene were significantly correlated with the growth traits of Ashidan yaks. Among these, individuals with the CC genotype at the g.55,999,531C>T locus showed a significantly higher body length at 6 months old compared to TT individuals, and those with the CT genotype at 12 months old had a significantly higher chest circumference than TT individuals. At the g.342,350T>G locus, the body height of GG genotype individuals at 18 months of age was significantly higher than that of TT genotype individuals and TG genotype individuals. The above findings can be used as theoretical support for the subsequent improvement of Ashidan yak breeding. Full article
(This article belongs to the Special Issue Genetics and Breeding in Ruminants)
Show Figures

Figure 1

37 pages, 14053 KiB  
Review
Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors
by Mohammed Hawash
Cells 2024, 13(19), 1656; https://doi.org/10.3390/cells13191656 - 6 Oct 2024
Cited by 7 | Viewed by 5183
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA [...] Read more.
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly. Full article
Show Figures

Figure 1

13 pages, 3017 KiB  
Article
Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation
by Jaeyoon Kim, Jang Ho Joo, Juhyun Kim, Heena Rim, Jae young Shin, Yun-Ho Choi, Kyoungin Min, So Young Lee, Seung-Hyun Jun and Nae-Gyu Kang
Curr. Issues Mol. Biol. 2024, 46(10), 11207-11219; https://doi.org/10.3390/cimb46100665 - 5 Oct 2024
Cited by 4 | Viewed by 2598
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. [...] Read more.
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation. Full article
Show Figures

Figure 1

34 pages, 3486 KiB  
Review
Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance
by Abdulaziz M. Eshaq, Thomas W. Flanagan, Sofie-Yasmin Hassan, Sara A. Al Asheikh, Waleed A. Al-Amoudi, Simeon Santourlidis, Sarah-Lilly Hassan, Maryam O. Alamodi, Marcelo L. Bendhack, Mohammed O. Alamodi, Youssef Haikel, Mossad Megahed and Mohamed Hassan
Cancers 2024, 16(15), 2754; https://doi.org/10.3390/cancers16152754 - 2 Aug 2024
Cited by 4 | Viewed by 2830
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues [...] Read more.
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an “on” or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Treatment Resistance)
Show Figures

Figure 1

25 pages, 5017 KiB  
Review
Lck Function and Modulation: Immune Cytotoxic Response and Tumor Treatment More Than a Simple Event
by Juan Bautista De Sanctis, Jenny Valentina Garmendia, Hana Duchová, Viktor Valentini, Alex Puskasu, Agáta Kubíčková and Marián Hajdúch
Cancers 2024, 16(15), 2630; https://doi.org/10.3390/cancers16152630 - 24 Jul 2024
Cited by 3 | Viewed by 3535 | Correction
Abstract
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to [...] Read more.
Lck, a member of the Src kinase family, is a non-receptor tyrosine kinase involved in immune cell activation, antigen recognition, tumor growth, and cytotoxic response. The enzyme has usually been linked to T lymphocyte activation upon antigen recognition. Lck activation is central to CD4, CD8, and NK activation. However, recently, it has become clearer that activating the enzyme in CD8 cells can be independent of antigen presentation and enhance the cytotoxic response. The role of Lck in NK cytotoxic function has been controversial in a similar fashion as the role of the enzyme in CAR T cells. Inhibiting tyrosine kinases has been a highly successful approach to treating hematologic malignancies. The inhibitors may be useful in treating other tumor types, and they may be useful to prevent cell exhaustion. New, more selective inhibitors have been documented, and they have shown interesting activities not only in tumor growth but in the treatment of autoimmune diseases, asthma, and graft vs. host disease. Drug repurposing and bioinformatics can aid in solving several unsolved issues about the role of Lck in cancer. In summary, the role of Lck in immune response and tumor growth is not a simple event and requires more research. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

15 pages, 1157 KiB  
Review
The Evolving Role of Bruton’s Tyrosine Kinase Inhibitors in B Cell Lymphomas
by Shefali Mehra, Miah Nicholls and Justin Taylor
Int. J. Mol. Sci. 2024, 25(14), 7516; https://doi.org/10.3390/ijms25147516 - 9 Jul 2024
Cited by 3 | Viewed by 3657
Abstract
Bruton’s tyrosine kinase (BTK), a non-receptor tyrosine kinase crucial for B cell development and function, acts downstream of the B cell receptor (BCR) in the BCR pathway. Other kinases involved downstream of the BCR besides BTK such as Syk, Lyn, PI3K, and Mitogen-activated [...] Read more.
Bruton’s tyrosine kinase (BTK), a non-receptor tyrosine kinase crucial for B cell development and function, acts downstream of the B cell receptor (BCR) in the BCR pathway. Other kinases involved downstream of the BCR besides BTK such as Syk, Lyn, PI3K, and Mitogen-activated protein (MAP) kinases also play roles in relaying signals from the BCR to provide pro-survival, activation, and proliferation cues. BTK signaling is implicated in various B-cell lymphomas such as mantle cell lymphoma, Waldenström Macroglobulinemia, follicular lymphoma, and diffuse large B cell lymphoma, leading to the development of transformative treatments like ibrutinib, the first-in-class covalent BTK inhibitor, and pirtobrutinib, the first-in-class noncovalent BTK inhibitor. However, kinase-deficient mutations C481F, C481Y, C481R, and L528W in the BTK gene confer resistance to both covalent and non-covalent BTK inhibitors, facilitating B cell survival and lymphomagenesis despite kinase inactivation. Further studies have revealed BTK’s non-catalytic scaffolding function, mediating the assembly and activation of proteins including Toll-like receptor 9 (TLR9), vascular cell adhesion protein 1 (VCAM-1), hematopoietic cell kinase (HCK), and integrin-linked kinase (ILK). This non-enzymatic role promotes cell survival and proliferation independently of kinase activity. Understanding BTK’s dual roles unveils opportunities for therapeutics targeting its scaffolding function, promising advancements in disrupting lymphomagenesis and refining B cell lymphoma treatments. Full article
(This article belongs to the Special Issue New Advances in B-cell Lymphoma Biology)
Show Figures

Figure 1

16 pages, 1397 KiB  
Review
Recent Developments in the Role of Protein Tyrosine Phosphatase 1B (PTP1B) as a Regulator of Immune Cell Signalling in Health and Disease
by Neve E. Read and Heather M. Wilson
Int. J. Mol. Sci. 2024, 25(13), 7207; https://doi.org/10.3390/ijms25137207 - 29 Jun 2024
Cited by 6 | Viewed by 2841
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and [...] Read more.
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase—a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders. Full article
(This article belongs to the Special Issue Advances in Protein Tyrosine Phosphatases)
Show Figures

Figure 1

15 pages, 4044 KiB  
Article
Neuroprotective Activity of a Non-Covalent Imatinib+TP10 Conjugate in HT-22 Neuronal Cells In Vitro
by Izabela Rusiecka, Iwona Gągało and Ivan Kocić
Pharmaceutics 2024, 16(6), 778; https://doi.org/10.3390/pharmaceutics16060778 - 7 Jun 2024
Cited by 1 | Viewed by 1286
Abstract
This study evaluated the probable relevance of a non-covalent conjugate of imatinib with TP10 in the context of a neuroprotective effect in Parkinson’s disease. Through the inhibition of c-Abl, which is a non-receptor tyrosine kinase and an indicator of oxidative stress, imatinib has [...] Read more.
This study evaluated the probable relevance of a non-covalent conjugate of imatinib with TP10 in the context of a neuroprotective effect in Parkinson’s disease. Through the inhibition of c-Abl, which is a non-receptor tyrosine kinase and an indicator of oxidative stress, imatinib has shown promise in preclinical animal models of this disease. The poor distribution of imatinib within the brain tissue triggered experiments in which a conjugate was obtained by mixing the drug with TP10, which is known for exhibiting high translocation activity across the cell membrane. The conjugate was tested on the HT-22 cell line with respect to its impact on MPP+-induced oxidative stress, apoptosis, necrosis, cytotoxicity, and mortality. Additionally, it was checked whether the conjugate activated the ABCB1 protein. The experiments indicated that imatinib+PEG4+TP10 reduced the post-MPP+ oxidative stress, apoptosis, and mortality, and these effects were more prominent than those obtained after the exposition of the HT-22 cells to imatinib alone. Its cytotoxicity was similar to that of imatinib itself. In contrast to imatinib, the conjugate did not activate the ABCB1 protein. These favorable qualities of imatinib+PEG4+TP10 make it a potential candidate for further in vivo research, which would confirm its neuroprotective action in PD-affected brains. Full article
Show Figures

Figure 1

15 pages, 3147 KiB  
Article
Targeting SHP2 Cryptic Allosteric Sites for Effective Cancer Therapy
by Ashfaq Ur Rehman, Cizhang Zhao, Yongxian Wu, Qiang Zhu and Ray Luo
Int. J. Mol. Sci. 2024, 25(11), 6201; https://doi.org/10.3390/ijms25116201 - 4 Jun 2024
Cited by 1 | Viewed by 1707
Abstract
SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases, has been underscored in the progression of various human cancers and neurodevelopmental disorders. Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations, such as E76K, convert SHP2 into [...] Read more.
SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases, has been underscored in the progression of various human cancers and neurodevelopmental disorders. Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations, such as E76K, convert SHP2 into its open state, wherein the catalytic cleft becomes fully exposed to its ligands. This study elucidates the dynamic properties of SHP2 structures across different states, with a focus on the effects of oncogenic mutation on two known binding sites of allosteric inhibitors. Through extensive modeling and simulations, we further identified an alternative allosteric binding pocket in solution structures. Additional analysis provides insights into the dynamics and stability of the potential site. In addition, multi-tier screening was deployed to identify potential binders targeting the potential site. Our efforts to identify a new allosteric site contribute to community-wide initiatives developing therapies using multiple allosteric inhibitors to target distinct pockets on SHP2, in the hope of potentially inhibiting or slowing tumor growth associated with SHP2. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop