Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = noncrop plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1165 KiB  
Article
Availability, Accessibility, and Suitability of Native Flowers from Central Chile to Mastrus ridens, a Parasitoid of Codling Moth
by Tania Zaviezo, Alejandra E. Muñoz and Erick Bueno
Insects 2025, 16(7), 665; https://doi.org/10.3390/insects16070665 - 26 Jun 2025
Viewed by 517
Abstract
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was [...] Read more.
Habitat manipulation through non-crop vegetation management is a strategy in conservation biological control, and using native plants is attractive because they can also help in biodiversity conservation. The potential for nectar provision of 13 flowering species native to Chile, and two introduced, was evaluated considering Mastrus ridens (Hymenoptera: Braconidae). Nectar availability was studied through flower phenology, accessibility through flower and parasitoid morphology, and suitability through longevity when exposed to nectar solutions or cut flowers. Most species had long flowering periods, potentially making nectar available when adults are active, but they differed in nectar accessibility and profitability. Of the 13 native species, nectar was easily accessible for M. ridens in Cistanthe grandiflora, Sphaeralcea obtusiloba, Andeimalva chilensis, and Lycium chilense. None of the nine native species tested with nectar solutions increased longevity, but with cut flowers, parasitoids lived longer with the natives Teucrium bicolor and S. obtusiloba, and the introduced Fagopyrum esculentum, making them candidates for M. ridens conservation. Females lived longer with cut flowers of T. bicolor and S. obtusiloba than with their nectar solutions. In conclusion, using the native flowering species Teucrium bicolor and Sphaeralcea obtusiloba in agroecosystems can serve biological control and biodiversity conservation. Full article
Show Figures

Figure 1

9 pages, 2686 KiB  
Article
Multigenerational Rearing on Non-Prey Foods Does Not Affect Prey (Aphid) Recognition Behavior of Coleomegilla maculata (Coleoptera: Coccinellidae)
by Eric W. Riddick, Maria Guadalupe Rojas and Juan A. Morales-Ramos
Insects 2024, 15(11), 852; https://doi.org/10.3390/insects15110852 - 31 Oct 2024
Viewed by 1165
Abstract
The pink spotted lady beetle Coleomegilla maculata has been identified as a promising predator to mass rear and release into greenhouses and high tunnels to control aphids on small fruits and vegetables. This study tested the hypothesis that laboratory-reared C. maculata, without [...] Read more.
The pink spotted lady beetle Coleomegilla maculata has been identified as a promising predator to mass rear and release into greenhouses and high tunnels to control aphids on small fruits and vegetables. This study tested the hypothesis that laboratory-reared C. maculata, without any exposure to aphids for multiple generations, could recognize, attack, and consume live aphids. The aphid adults of two species were collected from non-crop host plants (weeds) over two consecutive seasons. The time (seconds) that C. maculata adults required to recognize and partially or completely consume live, healthy adult aphids was recorded in Petri dish arenas in the laboratory. Regardless of the non-prey food source (brine shrimp egg diet, mealworm-protein-based artificial diet), C. maculata adults readily recognized aphids. Adult females were occasionally more voracious than males. One aphid species (Uroleucon erigeronense) was consumed more readily than the other aphid species (Aphis nerii). In conclusion, multigenerational rearing on non-prey foods did not affect the prey recognition behavior of C. maculata adults in the laboratory. Validating the ability of lady beetles reared on artificial diets to recognize and consume live aphids is an important protocol before augmentative releases for aphid control in greenhouses and high tunnels. Full article
(This article belongs to the Collection Science of Insect Rearing Systems)
Show Figures

Figure 1

18 pages, 2375 KiB  
Article
A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses
by Mohammad Hajizadeh, Karima Ben Mansour and Adrian J. Gibbs
Viruses 2024, 16(9), 1351; https://doi.org/10.3390/v16091351 - 23 Aug 2024
Cited by 2 | Viewed by 1328
Abstract
Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their “centre of [...] Read more.
Nine viruses of the bean common mosaic virus subgroup of potyviruses are major international crop pathogens, but their phylogenetically closest relatives from non-crop plants have mostly been found only in SE Asia and Oceania, which is thus likely to be their “centre of emergence”. We have compared over 700 of the complete genomic ORFs of the crop pandemic and the non-crop viruses in various ways. Only one-third of crop virus genomes are non-recombinant, but more than half the non-crop virus genomes are. Four of the viruses were from crops domesticated in the Old World (Africa to SE Asia), and the other five were from New World crops. There was a temporal signal in only three of the crop virus datasets, but it confirmed that the most recent common ancestors of all the crop viruses were before inter-continental marine trade started after 1492 CE, whereas all the crown clusters of the phylogenies are from after that date. The non-crop virus datasets are genetically more diverse than those of the crop viruses, and Tajima’s D analyses showed that their populations were contracting, and only one of the crop viruses had a significantly expanding population. dN/dS analyses showed that most of the genes and codons in all the viruses were under significant negative selection, and the few that were under significant positive selection were mostly in the PIPO-encoding region of the P3 protein, or the PIPO protein itself. Interestingly, more positively selected codons were found in non-crop than in crop viruses, and, as the hosts of the former were taxonomically more diverse than the latter, this may indicate that the positively selected codons are involved in host range determination; AlphaFold3 modelling was used to investigate this possibility. Full article
(This article belongs to the Special Issue Plant Virus Spillovers)
Show Figures

Figure 1

11 pages, 2083 KiB  
Article
Trophic Interactions of Ceutorhynchinae spp. (Coleoptera: Curculionidae) with Their Host Plants (Brassicaceae) and Their Parasitoids in the Agroecosystem of Quebec, Canada
by Claudine Desroches, Joseph Moisan-De Serres, Émilien Rodrigue, Geneviève Labrie and Éric Lucas
Insects 2023, 14(7), 607; https://doi.org/10.3390/insects14070607 - 5 Jul 2023
Cited by 2 | Viewed by 1619
Abstract
The genus Ceutorhynchus Germar (Coleoptera: Curculionidae) is composed of canola pests, natural enemies of Brassicaceae, and other species associated with non-crop and non-weed plants. This study aimed to establish trophic associations of Ceutorhynchus with their host plants and with their parasitoids in the [...] Read more.
The genus Ceutorhynchus Germar (Coleoptera: Curculionidae) is composed of canola pests, natural enemies of Brassicaceae, and other species associated with non-crop and non-weed plants. This study aimed to establish trophic associations of Ceutorhynchus with their host plants and with their parasitoids in the agricultural landscape, in order to assess the actual beneficial or noxious ecological roles of the insects. Trophic associations were established by identifying Ceutorhynchus species and their parasitoids emerging from collected Brassicaceae plants in areas adjacent to canola fields and other crops in 2019 and 2020. Five Ceutorhynchus species were collected and identified as hosts of parasitoids in the families Pteromalidae and Eulophidae. Two functional groups were characterized: natural enemies of weeds and agricultural pests. The exotic wormseed wallflower, Erysimum cheiranthoides was identified as a new host plant of the invasive canola pest Ceutorhynchus obstrictus (Marsham), and the native tower rockcress, Arabis glabra, as a new host plant of the native Ceutorhynchus neglectus Blatchley. Association between the exotic Ceutorhynchus typhae (Herbst) and a parasitoid of the genus Elachertodomyia is reported for the first time. Finally, Ceutorhynchus neglectus and C. typhae hosted the exotic parasitoid Trichomalus perfectus, an important natural enemy of C. obstrictus. Full article
(This article belongs to the Special Issue Trophic Resources for Parasitoids in Agroecosystems)
Show Figures

Figure 1

18 pages, 1147 KiB  
Article
Weeds Enhance Insect Diversity and Abundance and May Improve Soil Conditions in Mango Cultivation of South Florida
by Blaire Kleiman and Suzanne Koptur
Insects 2023, 14(1), 65; https://doi.org/10.3390/insects14010065 - 10 Jan 2023
Cited by 12 | Viewed by 4073
Abstract
This study examined if weeds could serve as insectary plants to increase beneficial insect abundance and diversity in mango cultivation in southern Florida. Additionally, we examined how weed presence affects mango tree soil health. We found that weeds significantly increased pollinating and parasitoid [...] Read more.
This study examined if weeds could serve as insectary plants to increase beneficial insect abundance and diversity in mango cultivation in southern Florida. Additionally, we examined how weed presence affects mango tree soil health. We found that weeds significantly increased pollinating and parasitoid insect abundance and diversity. Eight insect orders and eighteen families were significantly more abundant on mango trees with weeds growing beneath them than those where weeds were removed. There was no difference in predatory insects between treatments, and slightly more herbivorous insects on weedy mango trees. Pollinating insects visiting mango flowers in the weed treatment were significantly greater, as well as spiders on weedy mango trees. However, there were more lacewings (Neuroptera) observed on the mango trees without weeds, and leaf chlorophyll in the old and new mango leaves was significantly greater, in the weed-free treatment. Soil conditions, however, significantly improved in soil carbon and a greater pH reduction in the presence of weeds, though weeds affected neither soil nitrogen, phosphorous, nor chlorophyll in productive green leaves. These results show that a tolerable level of selective weed species’ presence may benefit insect, plant, and soil biodiversity in farms. This is important in increasing production, sustainability, and biodiversity in agriculture, which otherwise may be deficient in non-crop life. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

22 pages, 13536 KiB  
Article
ThelR547v1—An Asymmetric Dilated Convolutional Neural Network for Real-time Semantic Segmentation of Horticultural Crops
by Md Parvez Islam, Kenji Hatou, Takanori Aihara, Masaki Kawahara, Soki Okamoto, Shuhei Senoo and Kirino Sumire
Sensors 2022, 22(22), 8807; https://doi.org/10.3390/s22228807 - 15 Nov 2022
Cited by 4 | Viewed by 2369
Abstract
Robust and automated image segmentation in high-throughput image-based plant phenotyping has received considerable attention in the last decade. The possibility of this approach has not been well studied due to the time-consuming manual segmentation and lack of appropriate datasets. Segmenting images of greenhouse [...] Read more.
Robust and automated image segmentation in high-throughput image-based plant phenotyping has received considerable attention in the last decade. The possibility of this approach has not been well studied due to the time-consuming manual segmentation and lack of appropriate datasets. Segmenting images of greenhouse and open-field grown crops from the background is a challenging task linked to various factors such as complex background (presence of humans, equipment, devices, and machinery for crop management practices), environmental conditions (humidity, cloudy/sunny, fog, rain), occlusion, low-contrast and variability in crops and pose over time. This paper presents a new ubiquitous deep learning architecture ThelR547v1 (Thermal RGB 547 layers version 1) that segmented each pixel as crop or crop canopy from the background (non-crop) in real time by abstracting multi-scale contextual information with reduced memory cost. By evaluating over 37,328 augmented images (aug1: thermal RGB and RGB), our method achieves mean IoU of 0.94 and 0.87 for leaves and background and mean Bf scores of 0.93 and 0.86, respectively. ThelR547v1 has a training accuracy of 96.27%, a training loss of 0.09, a validation accuracy of 96.15%, and a validation loss of 0.10. Qualitative analysis further shows that despite the low resolution of training data, ThelR547v1 successfully distinguishes leaf/canopy pixels from complex and noisy background pixels, enabling it to be used for real-time semantic segmentation of horticultural crops. Full article
(This article belongs to the Special Issue IoT for Smart Agriculture)
Show Figures

Figure 1

17 pages, 1716 KiB  
Article
At Which Spatial Scale Does Crop Diversity Enhance Natural Enemy Populations and Pest Control? An Experiment in a Mosaic Cropping System
by Coline C. Jaworski, Eva Thomine, Adrien Rusch, Anne-Violette Lavoir, Chunli Xiu, Di Ning, Yanhui Lu, Su Wang and Nicolas Desneux
Agronomy 2022, 12(8), 1973; https://doi.org/10.3390/agronomy12081973 - 21 Aug 2022
Cited by 5 | Viewed by 2957
Abstract
The importance of plant richness to enhance the presence, biodiversity and efficiency of natural enemies in agricultural systems has largely been studied and demonstrated these last decades. Planting and preserving non-crop plants or manipulating crop richness in fields are practices that have proven [...] Read more.
The importance of plant richness to enhance the presence, biodiversity and efficiency of natural enemies in agricultural systems has largely been studied and demonstrated these last decades. Planting and preserving non-crop plants or manipulating crop richness in fields are practices that have proven their efficiency. However, the impact of crop-richness continuity in space and time on pests and natural enemies at a landscape scale remains poorly studied. In a two-year study, we assessed the effect of crop richness (single crop vs. multiple crops) on pest and natural enemy abundance and spillover in a field experiment in north-east China. Overall, we found crop diversity had a limited impact on pest and natural enemy abundance at the spatial scale tested (0.025 vs. 0.2 ha). The total pest and natural enemy abundances were not different between single-crop and multi-crop plots in either year, and the community composition at the functional group level was mostly determined by the crop but not crop diversity. However, we found that crop diversity influenced the numeric response of ladybirds to aphids in wheat; their negative response (higher abundance where aphid abundance was lower, suggesting predation) was attenuated in multi-crop plots (no correlation of aphid and ladybird abundance, suggesting the use of alternative resources). This pattern was not found in maize. Finally, crop succession enhanced the spillover of ladybirds from wheat and maize to cotton plots but with limited benefits for aphid control. Because of these limited impacts, we hypothesized that crop diversity may benefit natural enemy populations and enhance pest control at larger spatial scales; while we found similar abundances of ladybirds between our small (0.025–0.2 ha) plots and in large (2 ha) close-by cotton fields, aphid abundances were more than ten times higher in large cotton fields. Our study highlights the need to accurately estimate the spatial scale at which crop biodiversity may benefit pest control, in relation to the ecology of the target pest and natural enemies. Full article
(This article belongs to the Special Issue Ecological Management of Pests)
Show Figures

Figure 1

13 pages, 1909 KiB  
Review
To Be Seen or Not to Be Seen: Latent Infection by Tobamoviruses
by Rabia Ilyas, Mareike J. Rohde, Katja R. Richert-Pöggeler and Heiko Ziebell
Plants 2022, 11(16), 2166; https://doi.org/10.3390/plants11162166 - 21 Aug 2022
Cited by 24 | Viewed by 4961
Abstract
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit [...] Read more.
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host–virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency. Full article
(This article belongs to the Special Issue Tobamoviruses and Interacting Viruses in Modern Agriculture)
Show Figures

Figure 1

16 pages, 770 KiB  
Article
Co-Flowering Species Richness Increases Pollinator Visitation to Apple Flowers
by Amy-Marie Gilpin, Conrad Kobel, Laura E. Brettell, Corey O’Brien, James M. Cook and Sally A. Power
Agriculture 2022, 12(8), 1246; https://doi.org/10.3390/agriculture12081246 - 17 Aug 2022
Cited by 6 | Viewed by 3085
Abstract
Co-flowering plants can experience an array of interactions, ranging from facilitation to competition, the direction and strength of which are often dependent on the relative abundance and diversity of the plant species involved and the foraging behavior of their pollinators. Understanding interactions between [...] Read more.
Co-flowering plants can experience an array of interactions, ranging from facilitation to competition, the direction and strength of which are often dependent on the relative abundance and diversity of the plant species involved and the foraging behavior of their pollinators. Understanding interactions between plant–pollinator networks and how they change over time is particularly important within agricultural systems, such as apples, that flower en masse and that also contain non-crop co-flowering species both within the farm and the surrounding landscape. We determined the degree of overlap between pollinator networks on two varieties of apple (Granny Smith and Pink Lady) and co-flowering plant species within orchards and the wider vegetation matrix in two apple-growing regions (Orange and Bilpin) in Australia. We surveyed plant–pollinator interactions at key stages of the cropping cycle: before mass flowering; during king, peak and late blooms; and, finally, once apple flowering had finished. Overall, we found considerable overlap in the flower visitor assemblage on apples and co-flowering species within the orchard. The introduced honeybee (Apis mellifera) was the most frequent flower visitor to all three vegetation types at all times in Orange. However, in Bilpin, both a native stingless bee (Tetragonula carbonaria) and A. mellifera were highly frequent visitors, both on- and off-crop. Numerous native bees, flies and Lepidoptera also commonly visited apple and co-flowering species within orchards in both locations. We found that native-bee and honeybee visitation to apple flowers was positively correlated with co-flowering species richness (within the orchard and the wider matrix); however, visitation by native bees decreased as the area of co-flowering species in the surrounding landscape increased. Our study highlights the importance of maintaining diverse co-flowering plant communities within the local landscape to increase and support a wide variety of pollinators in horticultural production systems. Full article
(This article belongs to the Special Issue Biodiversity in Fruit Orchards)
Show Figures

Figure 1

12 pages, 1634 KiB  
Article
Optimizing the Use of Basil as a Functional Plant for the Biological Control of Aphids by Chrysopa pallens (Neuroptera: Chrysopidae) in Greenhouses
by Yan Fang, Shu Li, Qingxuan Xu, Jie Wang, Yajie Yang, Yingying Mi, Zhenyu Jin, Nicolas Desneux and Su Wang
Insects 2022, 13(6), 552; https://doi.org/10.3390/insects13060552 - 16 Jun 2022
Cited by 13 | Viewed by 5204
Abstract
Effective biological control agents that can provide sustainable pest control need to be researched in further detail; functional plants (or non-crop insectary plants), in particular, are garnering increased research interest. Much remains to be learned as to how non-crop plants can augment biological [...] Read more.
Effective biological control agents that can provide sustainable pest control need to be researched in further detail; functional plants (or non-crop insectary plants), in particular, are garnering increased research interest. Much remains to be learned as to how non-crop plants can augment biological control in greenhouse systems. In this study, we combined laboratory and greenhouse assays to assess the extent to which basil (Ocimum basilicum L.) (Lamiales: Lamiaceae) affected the biological control of aphids by the predatory lacewing Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). In the presence of the target prey (peach aphid; Myzus persicae (Sulzer)), both the vegetative and flowering stages of basil enhanced C. pallens longevity and (early-age) fecundity as compared to a control treatment. When basil plants were established near aphid infested eggplants (Solanum melongena L.), the C. pallens colonization rate improved by 72–92% in the short-term. Lacewing colonization patterns were modulated by the basil planting density and spatial arrangement (i.e., perimeter planting vs. intercropping). Under high density intercrop arrangements, C. pallens colonization rates were highest, its populations persisted longer in the crop, and the aphid numbers declined more rapidly. Our work shows how basil enhanced the key fitness attributes of a generalist predatory lacewing and benefitted aphid biological control in a greenhouse setting. Full article
Show Figures

Figure 1

13 pages, 2179 KiB  
Article
Biological Control Services from Parasitic Hymenoptera in Urban Agriculture
by Joshua Earl Arnold
Insects 2022, 13(5), 467; https://doi.org/10.3390/insects13050467 - 17 May 2022
Cited by 5 | Viewed by 2817
Abstract
Urban agriculture is practiced in spatially fragmented landscapes with unique characteristics that can impact species occurrence in time and space. As a result, biological control services, an ecosystem service from naturally occurring arthropod natural enemies, can be negatively impacted. Many urban farms forgo [...] Read more.
Urban agriculture is practiced in spatially fragmented landscapes with unique characteristics that can impact species occurrence in time and space. As a result, biological control services, an ecosystem service from naturally occurring arthropod natural enemies, can be negatively impacted. Many urban farms forgo pesticides and utilize agroecological pest-management strategies that rely on natural enemies to help regulate pest populations. Understanding how these enemies are affected by landscape composition and on-farm management practices is critical to understanding agroecological pest management in UA and furthering our understanding of landscape-mediated population dynamics. Over two growing seasons, we sampled brassica crops in urban agriculture sites occurring on a spectrum of surrounding landscape imperviousness, spatial composition, size, and management practices to better understand parasitic Hymenoptera abundance, richness, and parasitism rates on the common cabbage aphid (Brevicoryne brassicae). We found that on-farm agroecological pest-management practices such as mulch coverage, floral richness, and overall crop-plant richness impacted parasitic Hymenoptera abundance. Larger proportions of on-farm noncrop area increased parasitoid abundance on urban farms. Aphid parasitism increased in relation to on-farm management practices, including increased crop-plant richness. These findings add to a growing understanding of urban agroecosystem function and support the enemies hypothesis in urban agroecosystems. Full article
(This article belongs to the Special Issue Integrated Pest Management of Arthropods in Urban Green Spaces)
Show Figures

Figure 1

14 pages, 5519 KiB  
Article
Perennial Flowering Plants Sustain Natural Enemy Populations in Gobi Desert Oases of Southern Xinjiang, China
by Yangtian Liu, Bing Liu, Qian Li, Mengxiao Sun, Minlong Li, Kris A. G. Wyckhuys, Peiling Wang and Yanhui Lu
Insects 2022, 13(5), 399; https://doi.org/10.3390/insects13050399 - 20 Apr 2022
Cited by 5 | Viewed by 2960
Abstract
Natural habitats play crucial roles in biodiversity conservation and shape the delivery of ecosystem services in farming landscapes. By providing diverse resources to foraging natural enemies, they can equally enhance biological pest control. In this study, we described the plant community and foliage-dwelling [...] Read more.
Natural habitats play crucial roles in biodiversity conservation and shape the delivery of ecosystem services in farming landscapes. By providing diverse resources to foraging natural enemies, they can equally enhance biological pest control. In this study, we described the plant community and foliage-dwelling invertebrate predators within non-crop habitats of the Gobi Desert oases in southern Xinjiang, China. We assessed whether plant-related variables (i.e., species identity, flowering status) and herbivore abundance affect natural enemy identity and abundance. A total of 18 plant species belonging to 18 genera and 10 families were commonly encountered, with Apocynum pictum (Apocynaceae), Phragmites communis (Poaceae), Karelinia caspia (Asteraceae), and Tamarix ramosissima (Tamaricaceae) as the dominant species. Certain plant species (P. communis) primarily provide shelter, while others offer (floral, non-floral) food resources or alternative prey. Predatory ladybeetles and spiders were routinely associated with these plants and foraged extensively within adjacent field crops. Plant traits and herbivore abundance explained up to 44% (3%–44%) variation in natural enemy community and exhibited consistent, year-round effects. Among all plant species, A. pictum consistently had a significantly higher abundance of resident natural enemies, except for August 2019. Our study underlines how perennial flowering plants, such as A. pictum, are essential to sustain natural enemy communities and related ecosystem services in arid settings. This work not only informs sustainable pest management initiatives but also shows how non-crop habitats at the periphery of agricultural fields underpin ecological resilience under adverse climatic conditions. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

36 pages, 9881 KiB  
Article
Genomic Screening to Identify Food Trees Potentially Dispersed by Precolonial Indigenous Peoples
by Monica Fahey, Maurizio Rossetto, Emilie Ens and Andrew Ford
Genes 2022, 13(3), 476; https://doi.org/10.3390/genes13030476 - 8 Mar 2022
Cited by 9 | Viewed by 3186
Abstract
Over millennia, Indigenous peoples have dispersed the propagules of non-crop plants through trade, seasonal migration or attending ceremonies; and potentially increased the geographic range or abundance of many food species around the world. Genomic data can be used to reconstruct these histories. However, [...] Read more.
Over millennia, Indigenous peoples have dispersed the propagules of non-crop plants through trade, seasonal migration or attending ceremonies; and potentially increased the geographic range or abundance of many food species around the world. Genomic data can be used to reconstruct these histories. However, it can be difficult to disentangle anthropogenic from non-anthropogenic dispersal in long-lived non-crop species. We developed a genomic workflow that can be used to screen out species that show patterns consistent with faunal dispersal or long-term isolation, and identify species that carry dispersal signals of putative human influence. We used genotyping-by-sequencing (DArTseq) and whole-plastid sequencing (SKIMseq) to identify nuclear and chloroplast Single Nucleotide Polymorphisms in east Australian rainforest trees (4 families, 7 genera, 15 species) with large (>30 mm) or small (<30 mm) edible fruit, either with or without a known history of use by Indigenous peoples. We employed standard population genetic analyses to test for four signals of dispersal using a limited and opportunistically acquired sample scheme. We expected different patterns for species that fall into one of three broadly described dispersal histories: (1) ongoing faunal dispersal, (2) post-megafauna isolation and (3) post-megafauna isolation followed by dispersal of putative human influence. We identified five large-fruited species that displayed strong population structure combined with signals of dispersal. We propose coalescent methods to investigate whether these genomic signals can be attributed to post-megafauna isolation and dispersal by Indigenous peoples. Full article
(This article belongs to the Special Issue The Genomic Impact of Human Migrations)
Show Figures

Figure 1

22 pages, 4824 KiB  
Article
Enhancing the Accuracy and Temporal Transferability of Irrigated Cropping Field Classification Using Optical Remote Sensing Imagery
by Zitian Gao, Danlu Guo, Dongryeol Ryu and Andrew W. Western
Remote Sens. 2022, 14(4), 997; https://doi.org/10.3390/rs14040997 - 18 Feb 2022
Cited by 12 | Viewed by 3377
Abstract
Mapping irrigated areas using remotely sensed imagery has been widely applied to support agricultural water management; however, accuracy is often compromised by the in-field heterogeneity of and interannual variability in crop conditions. This paper addresses these key issues. Two classification methods were employed [...] Read more.
Mapping irrigated areas using remotely sensed imagery has been widely applied to support agricultural water management; however, accuracy is often compromised by the in-field heterogeneity of and interannual variability in crop conditions. This paper addresses these key issues. Two classification methods were employed to map irrigated fields using normalized difference vegetation index (NDVI) values derived from Landsat 7 and Landsat 8: a dynamic thresholding method (method one) and a random forest method (method two). To improve the representativeness of field-level NDVI aggregates, which are the key inputs in our methods, a Gaussian mixture model (GMM)-based filtering approach was adopted to remove noncrop pixels (e.g., trees and bare soils) and mixed pixels along the field boundary. To improve the temporal transferability of method one we dynamically determined the threshold value to account for the impact of interannual weather variability based on the dynamic range of NDVI values. In method two an innovative training sample pool was designed for the random forest modeling to enable automatic calibration for each season, which contributes to consistent performance across years. The irrigated field mapping was applied to a major irrigation district in Australia from 2011 to 2018, for summer and winter cropping seasons separately. The results showed that using GMM-based filtering can markedly improve field-level data quality and avoid up to 1/3 of omission errors for irrigated fields. Method two showed superior performance, exhibiting consistent and good accuracy (kappa > 0.9) for both seasons. The classified maps in wet winter seasons should be used with caution, because rainfall alone can largely meet plant water requirements, leaving the contribution of irrigation to the surface spectral signature weak. The approaches introduced are transferable to other areas, can support multiyear irrigated area mapping with high accuracy, and significantly reduced model development effort. Full article
Show Figures

Figure 1

13 pages, 6034 KiB  
Article
Selection of Non-Crop Plant Mixes Informed by Arthropod-Plant Network Analyses for Multiple Ecosystem Services Delivery Towards Ecological Intensification of Agriculture
by Supratim Laha, Soumik Chatterjee, Amlan Das, Barbara Smith and Parthiba Basu
Sustainability 2022, 14(3), 1903; https://doi.org/10.3390/su14031903 - 7 Feb 2022
Cited by 5 | Viewed by 2797
Abstract
Ecological intensification (EI) of agriculture through the improvement of ecosystem service delivery has recently emerged as the alternative to the conventional intensification of agriculture that is widely considered unsustainable and has negative impacts on the environment. Although tropical agricultural landscapes are still heterogeneous, [...] Read more.
Ecological intensification (EI) of agriculture through the improvement of ecosystem service delivery has recently emerged as the alternative to the conventional intensification of agriculture that is widely considered unsustainable and has negative impacts on the environment. Although tropical agricultural landscapes are still heterogeneous, they are rapidly losing diversity due to agricultural intensification. Restoration of natural or semi-natural habitats, habitat diversity, and provision of multiple benefits have been identified as important targets for the transition to EI. Choosing the right plant mixes for the restoration of habitats that can offer multiple ecosystem service benefits is therefore crucial. The selection of candidate species for plant mixes is generally informed by studies focusing on a specific ecosystem service (e.g., pollination) and not based on the whole arthropod—non-crop plant interactions matrix. In this study, we try to identify non-crop plant mixes that would provide habitat for pollinators, act as refugia for natural pest predators, and also as a trap crop for potential crop pests by studying non-crop plants—arthropod interaction network. We have identified the non-crop plant species mixes by first identifying the connector species based on their centrality in the network and then by studying how their sequential exclusions affect the stability of the network. Full article
(This article belongs to the Special Issue Agro-Ecosystem Approaches for Sustainable Food Production)
Show Figures

Figure 1

Back to TopTop