Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (183)

Search Parameters:
Keywords = non-invasive neuromodulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2058 KiB  
Review
Neuromodulation Interventions for Language Deficits in Alzheimer’s Disease: Update on Current Practice and Future Developments
by Fei Chen, Yuyan Nie and Chen Kuang
Brain Sci. 2025, 15(7), 754; https://doi.org/10.3390/brainsci15070754 - 16 Jul 2025
Viewed by 71
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have [...] Read more.
Alzheimer’s disease (AD) is a leading cause of dementia, characterized by progressive cognitive and language impairments that significantly impact communication and quality of life. Neuromodulation techniques, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS), have emerged as promising interventions. This study employs bibliometric analysis to evaluate global research trends in neuromodulation treatments for AD-related language impairments. A total of 88 publications from the Web of Science Core Collection (2006–2024) were analyzed using bibliometric methods. Key indicators such as publication trends, citation patterns, collaboration networks, and research themes were examined to map the intellectual landscape of this field. The analysis identified 580 authors across 65 journals, with an average of 34.82 citations per article. Nearly half of the publications were produced after 2021, indicating rapid recent growth. The findings highlight a predominant focus on non-invasive neuromodulation methods, particularly rTMS and tDCS, within neurosciences and neurology. While research activity is increasing, significant challenges persist, including ethical concerns, operational constraints, and the translational gap between research and clinical applications. This study provides insights into the current research landscape and future directions for neuromodulation in AD-related language impairments. The results emphasize the need for novel neuromodulation techniques and interdisciplinary collaboration to enhance therapeutic efficacy and clinical integration. Full article
(This article belongs to the Special Issue Noninvasive Neuromodulation Applications in Research and Clinics)
Show Figures

Figure 1

41 pages, 699 KiB  
Review
Neurobiological Mechanisms of Action of Transcranial Direct Current Stimulation (tDCS) in the Treatment of Substance Use Disorders (SUDs)—A Review
by James Chmiel and Donata Kurpas
J. Clin. Med. 2025, 14(14), 4899; https://doi.org/10.3390/jcm14144899 - 10 Jul 2025
Viewed by 490
Abstract
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in [...] Read more.
Introduction: Substance use disorders (SUDs) pose a significant public health challenge, with current treatments often exhibiting limited effectiveness and high relapse rates. Transcranial direct current stimulation (tDCS), a noninvasive neuromodulation technique that delivers low-intensity direct current via scalp electrodes, has shown promise in various psychiatric and neurological conditions. In SUDs, tDCS may help to modulate key neurocircuits involved in craving, executive control, and reward processing, potentially mitigating compulsive drug use. However, the precise neurobiological mechanisms by which tDCS exerts its therapeutic effects in SUDs remain only partly understood. This review addresses that gap by synthesizing evidence from clinical studies that used neuroimaging (fMRI, fNIRS, EEG) and blood-based biomarkers to elucidate tDCS’s mechanisms in treating SUDs. Methods: A targeted literature search identified articles published between 2008 and 2024 investigating tDCS interventions in alcohol, nicotine, opioid, and stimulant use disorders, focusing specifically on physiological and neurobiological assessments rather than purely behavioral outcomes. Studies were included if they employed either neuroimaging (fMRI, fNIRS, EEG) or blood tests (neurotrophic and neuroinflammatory markers) to investigate changes induced by single- or multi-session tDCS. Two reviewers screened titles/abstracts, conducted full-text assessments, and extracted key data on participant characteristics, tDCS protocols, neurobiological measures, and clinical outcomes. Results: Twenty-seven studies met the inclusion criteria. Across fMRI studies, tDCS—especially targeting the dorsolateral prefrontal cortex—consistently modulated large-scale network activity and connectivity in the default mode, salience, and executive control networks. Many of these changes correlated with subjective craving, attentional bias, or extended time to relapse. EEG-based investigations found that tDCS can alter event-related potentials (e.g., P3, N2, LPP) linked to inhibitory control and salience processing, often preceding or accompanying changes in craving. One fNIRS study revealed enhanced connectivity in prefrontal regions under active tDCS. At the same time, two blood-based investigations reported the partial normalization of neurotrophic (BDNF) and proinflammatory markers (TNF-α, IL-6) in participants receiving tDCS. Multi-session protocols were more apt to drive clinically meaningful neuroplastic changes than single-session interventions. Conclusions: Although significant questions remain regarding optimal stimulation parameters, sample heterogeneity, and the translation of acute neural shifts into lasting behavioral benefits, this research confirms that tDCS can induce detectable neurobiological effects in SUD populations. By reshaping activity across prefrontal and reward-related circuits, modulating electrophysiological indices, and altering relevant biomarkers, tDCS holds promise as a viable, mechanism-based adjunctive therapy for SUDs. Rigorous, large-scale studies with longer follow-up durations and attention to individual differences will be essential to establish how best to harness these neuromodulatory effects for durable clinical outcomes. Full article
(This article belongs to the Special Issue Substance and Behavioral Addictions: Prevention and Diagnosis)
Show Figures

Figure 1

13 pages, 784 KiB  
Review
Invasive and Non-Invasive Neuromodulation for the Treatment of Substance Use Disorders: A Review of Reviews
by Tyler S. Oesterle, Nicholas L. Bormann, Majd Al-Soleiti, Simon Kung, Balwinder Singh, Michele T. McGinnis, Sabrina Correa da Costa, Teresa Rummans, Mohit Chauhan, Juan M. Rojas Cabrera, Sara A. Vettleson-Trutza, Kristen M. Scheitler, Hojin Shin, Kendall H. Lee and Mark S. Gold
Brain Sci. 2025, 15(7), 723; https://doi.org/10.3390/brainsci15070723 - 6 Jul 2025
Viewed by 433
Abstract
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive [...] Read more.
Background: Invasive and non-invasive neuromodulation in psychiatry represents a burgeoning field that leverages advanced neuromodulation techniques to address substance use disorders (SUDs). Aims: This narrative review synthesizes findings from multiple reviews to evaluate the efficacy of neuromodulation in treating SUDs. Methods: A comprehensive literature search was conducted between December 2024 and April 2025, focusing on systematic reviews and meta-analyses that examined various neuromodulation modalities, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The selected reviews were analyzed to identify common themes, outcomes, and gaps in the current understanding of these treatments for SUDs. Results: 11 reviews met the final inclusion criteria; 5 focused on non-invasive neuromodulation (rTMS, tDCS) and 6 on invasive neuromodulation (DBS). Non-invasive neurostimulation was associated with modest improvements in craving and cognitive dysfunction in individuals with SUDs. Similarly, invasive neuromodulation (DBS), through high-frequency stimulation of the bilateral nucleus accumbens, appeared to reduce cravings and improve comorbid psychiatric symptoms in both preclinical and human studies. Importantly, small sample sizes, heterogeneity in targets and stimulation protocols, and short follow-up periods significantly limit the generalizability of current findings from both non-invasive and invasive neuromodulation studies. Conclusions: As novel and more effective therapies for the treatment of SUD are desperately needed, procedural interventional psychiatry holds promise. However, despite encouraging results, existing evidence is still preliminary, and larger, rigorously designed studies are warranted to further establish the safety and efficacy of neuromodulatory interventions for SUD treatment. Full article
(This article belongs to the Special Issue Psychedelic and Interventional Psychiatry)
Show Figures

Figure 1

22 pages, 331 KiB  
Review
Exploring Non-Pharmacologic Adjunctive Therapies for Patients with Neurodegenerative Diseases
by Maria Marchiș and Magdalena Iorga
Medicina 2025, 61(7), 1224; https://doi.org/10.3390/medicina61071224 - 5 Jul 2025
Viewed by 280
Abstract
Background: Alternative therapies, such as non-invasive neuromodulation techniques, cognitive therapies, virtual reality-based interventions, and psychological support, represent promising approaches for treating and supporting the management plan for patients with neurodegenerative disorders. Recent research has focused on the effectiveness of neuromodulation therapies, as [...] Read more.
Background: Alternative therapies, such as non-invasive neuromodulation techniques, cognitive therapies, virtual reality-based interventions, and psychological support, represent promising approaches for treating and supporting the management plan for patients with neurodegenerative disorders. Recent research has focused on the effectiveness of neuromodulation therapies, as they show improvements in both emotional and cognitive functions in patients with neurodegenerative disorders. Material and Methods: A literature review was conducted by searching Google Scholar, PubMed, Scopus, and Web of Science in February 2025. In total, 20 studies that met the inclusion criteria were considered for the present review, and the studies included were conducted between 2020 and 2025. Results: Innovative neuromodulation therapies have demonstrated their high potential in the management care plan of neurodegenerative disorders and as non-invasive neuromodulation therapies, both in the emotional manifestations of the patients and in the cognitive ones, with a direct impact on their caregivers’ experience. Although research is ongoing, the following preliminary findings are encouraging, suggesting that these methods may complement or even replace certain traditional interventions. Conclusions: Alternative therapies (non-invasive neuromodulation techniques, cognitive therapies, virtual reality-based interventions, and psychological support) represent promising approaches for treating and supporting the management care plan for neurodegenerative disorders, even in the cases where no other drug-based treatment option can be applied. Each method has its unique advantages, but further studies are needed to create treatment protocols and confirm their long-term effectiveness. Integrating these strategies into personalized management care plans can significantly improve cognitive function and emotional health and increase the quality of life of patients with cognitive and neurodegenerative disorders. Full article
1 pages, 131 KiB  
Correction
Correction: Báez-Suárez et al. Improving Sleep Quality and Well-Being in Institutionalized Older Adults: The Potential of NESA Non-Invasive Neuromodulation Treatment. Geriatrics 2025, 10, 4
by Aníbal Báez-Suárez, Virginia Báez-Suárez, Laissa Saldanha, Martín Vílchez-Barrera, Andrea Hernández-Pérez and Raquel Medina-Ramírez
Geriatrics 2025, 10(4), 86; https://doi.org/10.3390/geriatrics10040086 - 30 Jun 2025
Viewed by 111
Abstract
In the original publication [...] Full article
12 pages, 1312 KiB  
Systematic Review
Transcranial Direct Current Stimulation in Episodic Migraine: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Faraidoon Haghdoost, Abdul Salam, Fatemeh Zahra Seyed-Kolbadi, Deepika Padala, Candice Delcourt and Anthony Rodgers
Med. Sci. 2025, 13(3), 84; https://doi.org/10.3390/medsci13030084 - 26 Jun 2025
Viewed by 380
Abstract
Background: Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique for migraine prevention. This study evaluates the efficacy of tDCS compared to sham in preventing episodic migraine in adults. Methods: PubMed and Embase databases were searched until May 2025 to identify randomized [...] Read more.
Background: Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique for migraine prevention. This study evaluates the efficacy of tDCS compared to sham in preventing episodic migraine in adults. Methods: PubMed and Embase databases were searched until May 2025 to identify randomized controlled trials comparing tDCS with sham for the prevention of episodic migraine in adults. Risk of bias in the included trials was assessed using the Cochrane Risk of Bias Tool version 2. A random effect meta-analysis was conducted to evaluate the effects of cathodal and anodal tDCS on migraine frequency (days per month and attacks per month). Results: The meta-analysis included six trials with 172 participants (mean age 34 years, 82% females). Both cathodal (three studies, over the occipital area) and anodal (three studies, over the occipital or primary motor area) tDCS reduced the mean number of monthly migraine days and migraine attacks compared to sham. After pooling the outcomes and excluding two studies at high risk of bias, anodal tDCS over the occipital or primary motor area (standardized difference in means = −0.7, 95% CI: −1.7, 0.2, p = 0.124) and cathodal tDCS over the occipital area (standardized difference in means = −0.7, 95% CI: −1.1, −0.3, p = 0.000) reduced headache frequency compared to sham. However, the reduction with anodal tDCS was not statistically significant. Summary: tDCS may be effective in preventing episodic migraine. However, the evidence is limited by the small number of heterogeneous trials, with variation in electrode placement and stimulation intervals. Full article
(This article belongs to the Section Neurosciences)
Show Figures

Figure 1

21 pages, 1609 KiB  
Article
Resting-State Activity Changes Induced by tDCS in MS Patients and Healthy Controls: A Simultaneous tDCS rs-fMRI Study
by Marco Muccio, Giuseppina Pilloni, Lillian Walton Masters, Peidong He, Lauren Krupp, Abhishek Datta, Marom Bikson, Leigh Charvet and Yulin Ge
Bioengineering 2025, 12(6), 672; https://doi.org/10.3390/bioengineering12060672 - 19 Jun 2025
Viewed by 532
Abstract
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following [...] Read more.
Transcranial direct current stimulation (tDCS) is a safe, well-tolerated method of non-invasively eliciting cortical neuromodulation. It has gained recent interest, especially for its positive clinical outcomes in neurodegenerative diseases such as multiple sclerosis (MS). However, its simultaneous (during tDCS) and cumulative effects (following repeated tDCS sessions) on the regional brain activity during rest need further investigation, especially in MS. This study aims to elucidate tDCS’ underpinnings, alongside its therapeutic impact in MS patients, using concurrent tDCS-MRI methods. In total, 20 MS patients (age = 48 ± 12 years; 8 males) and 28 healthy controls (HCs; age = 36 ± 15 years; 12 males) were recruited. They participated in a tDCS-MRI session, during which resting-state functional MRI (rs-fMRI) was used to measure the levels of the fractional amplitude of low-frequency fluctuations (fALFFs), which is an index of regional neuronal activity, before and during left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA for 15 min). MS patients were then asked to return for an identical tDCS-MRI visit (follow-up) after 20 identical at-home tDCS sessions. Simultaneous tDCS-induced changes in fALFF are seen across cortical and subcortical areas in both HC and MS patients, with some regions showing increased and others decreased brain activity. In HCs, fALFF increased in the right pre- and post-central gyrus whilst it decreased in subcortical regions. Conversely, MS patients initially displayed increases in more posterior cortical regions but decreases in the superior and temporal cortical regions. At follow-up, MS patients showed reversed patterns, emphasizing significant cumulative effects of tDCS treatment upon brain excitation. Such long-lasting changes are further supported by greater pre-tDCS fALFFs measured at follow-up compared to baseline, especially around the cuneus. The results were significant after correcting for multiple comparisons (p-FDR < 0.05). Our study shows that tDCS has both simultaneous and cumulative effects on neuronal activity measured with rs-fMRI, especially involving major brain areas distant from the site of stimulation, and it is responsible for fatigue and cognitive and motor skills. Full article
Show Figures

Figure 1

6 pages, 177 KiB  
Commentary
Commentary: Treating Diseases from Alzheimer’s to Parkinson’s Using Transcranial Pulse Stimulation: Mechanistic Insights, Recent Evidence, and Ethical Considerations
by Lars Wojtecki
NeuroSci 2025, 6(2), 56; https://doi.org/10.3390/neurosci6020056 - 17 Jun 2025
Viewed by 542
Abstract
Transcranial pulse stimulation (TPS) is a non-invasive neuromodulation method that uses, high-intensity acoustic shockwaves to deliver focused mechanical stimulation to neural tissue with minimal thermal effects. The mechanism of action includes but is not limited to promotion of blood flow and angiogenesis through [...] Read more.
Transcranial pulse stimulation (TPS) is a non-invasive neuromodulation method that uses, high-intensity acoustic shockwaves to deliver focused mechanical stimulation to neural tissue with minimal thermal effects. The mechanism of action includes but is not limited to promotion of blood flow and angiogenesis through mechanotransduction. Clinical data to date are limited and preliminary. In Alzheimer’s disease (AD), TPS has demonstrated cognitive and mood improvements in pilot studies and secondary endpoint analysis in first randomized trials. The enhancement of gamma-band oscillations and network connectivity has been reported. Clinical observations in Parkinson’s disease (PD) suggest TPS as a hypothesis-generating approach to address non-motor symptoms—such as depression, cognitive decline, and the freezing of gait—through theoretical modulation of basal ganglia–cortical circuits. TPS is CE-marked in Europe for AD and shows a favorable safety profile; however, ethical considerations arise from the limited evidence base, potential impairment of patient autonomy and judgment in dementia, and the risk of withholding established treatments. TPS should only be offered under structured scientific protocols or within patient registries to ensure rigorous oversight. Ensuring that consent processes account for cognitive capacity, and that TPS is applied as adjunct rather than replacement therapy, is paramount. Future research must include large-scale randomized controlled trials (RCTs), standardize stimulation protocols, deepen mechanistic insight, and embed robust ethical frameworks. Full article
73 pages, 4141 KiB  
Systematic Review
Neurotechnological Approaches to Cognitive Rehabilitation in Mild Cognitive Impairment: A Systematic Review of Neuromodulation, EEG, Virtual Reality, and Emerging AI Applications
by Evgenia Gkintoni, Stephanos P. Vassilopoulos, Georgios Nikolaou and Apostolos Vantarakis
Brain Sci. 2025, 15(6), 582; https://doi.org/10.3390/brainsci15060582 - 28 May 2025
Cited by 1 | Viewed by 1741
Abstract
Background/Objectives: Mild Cognitive Impairment (MCI) represents a clinical syndrome characterized by cognitive decline greater than expected for an individual’s age and education level but not severe enough to significantly interfere with daily activities, with variable trajectories that may remain stable, progress to dementia, [...] Read more.
Background/Objectives: Mild Cognitive Impairment (MCI) represents a clinical syndrome characterized by cognitive decline greater than expected for an individual’s age and education level but not severe enough to significantly interfere with daily activities, with variable trajectories that may remain stable, progress to dementia, or occasionally revert to normal cognition. This systematic review examines neurotechnological approaches to cognitive rehabilitation in MCI populations, including neuromodulation, electroencephalography (EEG), virtual reality (VR), cognitive training, physical exercise, and artificial intelligence (AI) applications. Methods: A systematic review following PRISMA guidelines was conducted on 34 empirical studies published between 2014 and 2024. Studies were identified through comprehensive database searches and included if they employed neurotechnological interventions targeting cognitive outcomes in individuals with MCI. Results: Evidence indicates promising outcomes across multiple intervention types. Neuromodulation techniques showed beneficial effects on memory and executive function. EEG analyses identified characteristic neurophysiological markers of MCI with potential for early detection and monitoring. Virtual reality enhanced assessment sensitivity and rehabilitation engagement through ecologically valid environments. Cognitive training demonstrated the most excellent efficacy with multi-domain, adaptive approaches. Physical exercise interventions yielded improvements through multiple neurobiological pathways. Emerging AI applications showed potential for personalized assessment and intervention through predictive modeling and adaptive algorithms. Conclusions: Neurotechnological approaches offer promising avenues for MCI rehabilitation, with the most substantial evidence for integrated interventions targeting multiple mechanisms. Neurophysiological monitoring provides valuable biomarkers for diagnosis and treatment response. Future research should focus on more extensive clinical trials, standardized protocols, and accessible implementation models to translate these technological advances into clinical practice. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

18 pages, 6737 KiB  
Article
An Evaluation Model for Brain Ischemia Protection in Mice by Low-Intensity Pulsed Ultrasound Stimulation Based on Functional Cortico-Muscular Coupling
by Ziqiang Jin, Xiaoling Chen, Zechuan Du, Yi Yuan, Xiaoli Li and Ping Xie
Bioengineering 2025, 12(5), 541; https://doi.org/10.3390/bioengineering12050541 - 17 May 2025
Viewed by 467
Abstract
(1) Background: Ischemic stroke is a major global public-health concern with complex pathogenesis. Current treatment strategies face challenges. Low-intensity pulsed ultrasound stimulation (LIPUS), a non-invasive neuromodulation technology, shows promise in treating ischemic stroke, yet its underlying mechanisms lack in-depth investigation, especially in quantitative [...] Read more.
(1) Background: Ischemic stroke is a major global public-health concern with complex pathogenesis. Current treatment strategies face challenges. Low-intensity pulsed ultrasound stimulation (LIPUS), a non-invasive neuromodulation technology, shows promise in treating ischemic stroke, yet its underlying mechanisms lack in-depth investigation, especially in quantitative efficacy evaluation. (2) Methods: This study aimed to develop a neuromuscular functional coupling-based dynamic time warping (DTW) model to evaluate LIPUS’s neuroprotective effects in a mouse model of ischemic stroke. A bilateral carotid artery occlusion (BCAO) model in mice was established, and LIPUS treatment was given. Time- and frequency-domain analyses of local field potentials (LFPs) and electromyography (EMG) were conducted, and outcomes were quantified using a percentage-based scoring system. (3) Results: The BCAO+LIPUS group scored significantly higher than the BCAO group. (4) Conclusions: This study demonstrated that LIPUS is neuroprotective in BCAO mice and that the DTW-100 assessment evaluation model can quantify the neuroprotective effects of LIPUS. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

37 pages, 822 KiB  
Review
The Effect of Transcranial Direct Current Stimulation on Basketball Performance—A Scoping Review
by James Chmiel and Rafał Buryta
J. Clin. Med. 2025, 14(10), 3354; https://doi.org/10.3390/jcm14103354 - 12 May 2025
Viewed by 912
Abstract
Introduction: Basketball performance requires not only intermittent high-intensity movements—such as sprinting, jumping, and rapid directional changes—but also rapid decision-making under cognitive and psychological stress. Transcranial direct current stimulation (tDCS) has emerged as a potential modality to enhance both physical and mental performance [...] Read more.
Introduction: Basketball performance requires not only intermittent high-intensity movements—such as sprinting, jumping, and rapid directional changes—but also rapid decision-making under cognitive and psychological stress. Transcranial direct current stimulation (tDCS) has emerged as a potential modality to enhance both physical and mental performance due to its capacity to modulate cortical excitability and promote synaptic plasticity. Although the broader literature suggests that tDCS can benefit motor performance and endurance across various sports, its specific impact on basketball remains underexplored. Methods: This scoping review aimed to summarize current evidence on the effects of tDCS in basketball. A comprehensive literature search was conducted across databases including PubMed/Medline, Google Scholar, and Cochrane, identifying studies published between January 2008 and February 2025. Only clinical trials investigating tDCS interventions in basketball players were included. Eleven articles met the inclusion criteria and were synthesized narratively, with a focus on stimulation parameters (site, duration, intensity) and performance outcomes (shooting accuracy, dribbling, sprinting, decision-making, fatigue). Results: The reviewed studies indicated that tDCS—particularly when applied over the motor cortex—was associated with moderate improvements in shooting accuracy, dribbling time, repeated-sprint performance, and decision-making under fatigue. Some studies reported delayed rather than immediate benefits, suggesting that tDCS may prime neural networks for enhanced learning and retention. However, not all findings were consistent; certain interventions produced minimal or no significant effects, especially regarding subjective mental fatigue and cognitive workload. The variability in electrode placements and stimulation protocols highlights the need for methodological standardization. Conclusions: Current evidence partially supports the potential of tDCS to improve specific performance domains in basketball, particularly in skill acquisition, neuromuscular efficiency, and decision-making. Nevertheless, the findings are limited by small sample sizes, heterogeneous protocols, and a lack of long-term follow-up. Future research should prioritize larger, multisite studies with standardized tDCS parameters and ecologically valid outcome measures to confirm the efficacy and practical relevance of tDCS in competitive basketball settings. Full article
(This article belongs to the Special Issue Innovations in Neurorehabilitation)
Show Figures

Figure 1

79 pages, 3684 KiB  
Review
Advancements in Wearable and Implantable BioMEMS Devices: Transforming Healthcare Through Technology
by Vishnuram Abhinav, Prithvi Basu, Shikha Supriya Verma, Jyoti Verma, Atanu Das, Savita Kumari, Prateek Ranjan Yadav and Vibhor Kumar
Micromachines 2025, 16(5), 522; https://doi.org/10.3390/mi16050522 - 28 Apr 2025
Cited by 3 | Viewed by 5493
Abstract
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These [...] Read more.
Wearable and implantable BioMEMSs (biomedical microelectromechanical systems) have transformed modern healthcare by enabling continuous, personalized, and minimally invasive monitoring, diagnostics, and therapy. Wearable BioMEMSs have advanced rapidly, encompassing a diverse range of biosensors, bioelectronic systems, drug delivery platforms, and motion tracking technologies. These devices enable non-invasive, real-time monitoring of biochemical, electrophysiological, and biomechanical signals, offering personalized and proactive healthcare solutions. In parallel, implantable BioMEMS have significantly enhanced long-term diagnostics, targeted drug delivery, and neurostimulation. From continuous glucose and intraocular pressure monitoring to programmable drug delivery and bioelectric implants for neuromodulation, these devices are improving precision treatment by continuous monitoring and localized therapy. This review explores the materials and technologies driving advancements in wearable and implantable BioMEMSs, focusing on their impact on chronic disease management, cardiology, respiratory care, and glaucoma treatment. We also highlight their integration with artificial intelligence (AI) and the Internet of Things (IoT), paving the way for smarter, data-driven healthcare solutions. Despite their potential, BioMEMSs face challenges such as regulatory complexities, global standardization, and societal determinants. Looking ahead, we explore emerging directions like multifunctional systems, biodegradable power sources, and next-generation point-of-care diagnostics. Collectively, these advancements position BioMEMS as pivotal enablers of future patient-centric healthcare systems. Full article
Show Figures

Figure 1

14 pages, 1629 KiB  
Review
Focused Ultrasounds in the Rehabilitation Setting: A Narrative Review
by Carmelo Pirri, Nicola Manocchio, Daniele Polisano, Andrea Sorbino and Calogero Foti
Appl. Sci. 2025, 15(9), 4743; https://doi.org/10.3390/app15094743 - 24 Apr 2025
Viewed by 706
Abstract
Focused ultrasound (FUS) is an emerging noninvasive technology with significant therapeutic potential across various clinical domains. FUS enables precise targeting of tissues using mechanisms like thermoablation, mechanical disruption, and neuromodulation, minimizing damage to surrounding areas. In movement disorders such as essential tremor and [...] Read more.
Focused ultrasound (FUS) is an emerging noninvasive technology with significant therapeutic potential across various clinical domains. FUS enables precise targeting of tissues using mechanisms like thermoablation, mechanical disruption, and neuromodulation, minimizing damage to surrounding areas. In movement disorders such as essential tremor and Parkinson’s disease, MR-guided FUS thalamotomy has demonstrated substantial tremor reduction and improved quality of life. Psychiatric applications include anterior capsulotomy for treatment-resistant obsessive-compulsive disorder and major depressive disorder, with promising symptom relief and minimal cognitive side effects. FUS also facilitates blood-brain barrier opening for drug delivery in neurological conditions like Alzheimer’s disease. Musculoskeletal applications highlight its efficacy in managing chronic pain from knee osteoarthritis and lumbar facet joint syndrome through precise thermal ablation. Additionally, FUS has shown potential in neuropathic pain management and peripheral nerve stimulation, offering innovative approaches for amputees and cancer survivors. Cognitive and neuromodulatory research underscores its ability to enhance motor function and interhemispheric cortical balance, benefiting stroke and traumatic brain injury rehabilitation. Despite these conditions frequently leading to various kinds of disabilities, no direct exploration of the possible FUS application in rehabilitation is yet available in the literature. All this considered, this review aims to discuss how FUS could be applied in rehabilitation, exploring the current status of knowledge and highlighting future directions. Full article
Show Figures

Figure 1

21 pages, 1313 KiB  
Article
Cognitive and Neuropsychiatric Effects of 40 Hz tACS Simultaneously with Cognitive Exercises for Dementia: A Randomized, Crossover, Double-Blind, Sham-Controlled Study
by Maria Anabel Uehara, Sumeet Kalia, Mari Garcia Campuzano, Mohammad Jafari-Jozani, Brian Lithgow and Zahra Moussavi
Medicina 2025, 61(4), 757; https://doi.org/10.3390/medicina61040757 - 19 Apr 2025
Viewed by 996
Abstract
Background and Objectives: Transcranial alternating current stimulation (tACS) at 40 Hz has shown potential to enhance cognitive function. However, research on its combination with cognitive exercises, particularly its long-term effects in a dementia population, remains limited. This study investigated the effects of [...] Read more.
Background and Objectives: Transcranial alternating current stimulation (tACS) at 40 Hz has shown potential to enhance cognitive function. However, research on its combination with cognitive exercises, particularly its long-term effects in a dementia population, remains limited. This study investigated the effects of 40 Hz tACS paired with simultaneous cognitive exercises on cognition, neuropsychiatric symptoms, and the depression status of individuals with dementia in a sham-controlled, double-blind crossover design. Materials and Methods: A total of 42 participants with dementia were randomized into two groups: (1) the R1S2 group received 40 Hz real tACS with cognitive exercises, followed by a ≥8-week washout period, and then sham tACS with cognitive exercises; (2) the S1R2 group received the reversed sequence. tACS was applied at 1.5 mA peak-to-peak with electrodes over the left dorsolateral prefrontal cortex and contralateral supraorbital area. Participants received two 30 min stimulation sessions per day, 5 days per week, for 4 consecutive weeks, paired with cognitive exercises using the MindTriggers app (2.9.1). The primary outcome was the Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog) and the secondary outcomes included the Montgomery–Åsberg Depression Rating Scale (MADRS) and the Neuropsychiatric Inventory Questionnaire (NPI-Q). All outcome measures were assessed before and after each treatment block. Results: Real tACS paired with cognitive exercises significantly improved ADAS-Cog scores post-treatment compared to pre-treatment (p-value = 0.019), whereas sham tACS did not. Furthermore, real tACS produced significant long-term improvements approximately 2–3 months post-treatment in ADAS-Cog scores compared to sham (p-value = 0.048). Both real (p-value = 0.003) and sham (p-value = 0.015) tACS significantly reduced NPI-Q scores post-treatment. MADRS scores significantly improved (p-value = 0.007) post-treatment for real tACS but not sham. Conclusions: The 40 Hz tACS paired with cognitive exercises improves cognition, neuropsychiatric symptoms, and depression post-treatment in dementia, with sustained cognitive effects. The findings highlight its potential as a non-invasive therapeutic intervention for dementia. Full article
Show Figures

Figure 1

32 pages, 1152 KiB  
Review
Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management
by Jennifer Dimino and Braden Kuo
Diagnostics 2025, 15(7), 935; https://doi.org/10.3390/diagnostics15070935 - 5 Apr 2025
Viewed by 4104
Abstract
Upper gastrointestinal concerns including gastroparesis-like symptoms affect a large portion of the population, and determining the culprit condition can be difficult due to largely shared symptoms, clinical course, pathophysiology, and treatment pathways. The understanding of gastric neuromuscular disorders (GNDs) is emerging as a [...] Read more.
Upper gastrointestinal concerns including gastroparesis-like symptoms affect a large portion of the population, and determining the culprit condition can be difficult due to largely shared symptoms, clinical course, pathophysiology, and treatment pathways. The understanding of gastric neuromuscular disorders (GNDs) is emerging as a heterogeneous group encompassing conditions from gastroparesis to functional dyspepsia with chronic nausea, early satiety, bloating, or abdominal pain, irrespective of gastric emptying. This article aims to review the current concepts in gastroparesis and GNDs including pathophysiology, diagnosis, and management. While some established standards in their diagnosis and management exist, a number of novel diagnostics are becoming available. Durable therapeutic options are notably limited for such common conditions with chronic and debilitating symptoms, and neuromodulators may play a key role in symptom control, which has been previously under-recognized and underutilized. Advances in both pharmacologic treatment targets as well as noninvasive and invasive interventions and devices show promise in improving the experience of patients with gastroparesis-like symptoms. At this time, treatment of GNDs requires comprehensive multidisciplinary care from providers to achieve successful treatment outcomes. Full article
Show Figures

Figure 1

Back to TopTop