Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = noble gas temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2972 KiB  
Article
ZnCu Metal–Organic Framework Electrocatalysts for Efficient Ammonia Decomposition to Hydrogen
by Mingguang Ouyang, Geng Chen, Weitao Ning, Xiaoyang Wang, Xiaojiang Mu and Lei Miao
Energies 2025, 18(14), 3871; https://doi.org/10.3390/en18143871 - 21 Jul 2025
Viewed by 335
Abstract
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, [...] Read more.
The electrocatalytic decomposition of ammonia represents a promising route for sustainable hydrogen production, yet current systems rely heavily on noble metal catalysts with prohibitive costs and limited durability. A critical challenge lies in developing non-noble electrocatalysts that simultaneously achieve high active site exposure, optimized electronic configurations, and robust structural stability. Addressing these requirements, this study strategically engineered Cu-doped ZIF-8 architectures via in situ growth on nickel foam (NF) substrates through a facile room-temperature hydrothermal synthesis approach. Systematic optimization of the Cu/Zn molar ratio revealed that Cu0.7Zn0.3-ZIF/NF achieved optimal performance, exhibiting a distinctive nanoflower-like architecture that substantially increased accessible active sites. The hybrid catalyst demonstrated superior electrocatalytic performance with a current density of 124 mA cm−2 at 1.6 V vs. RHE and a notably low Tafel slope of 30.94 mV dec−1, outperforming both Zn-ZIF/NF (39.45 mV dec−1) and Cu-ZIF/NF (31.39 mV dec−1). Combined XPS and EDS analyses unveiled a synergistic electronic structure modulation between Zn and Cu, which facilitated charge transfer and enhanced catalytic efficiency. A gas chromatography product analysis identified H2 and N2 as the primary gaseous products, confirming the predominant occurrence of the ammonia oxidation reaction (AOR). This study not only presents a noble metal-free electrocatalyst with exceptional efficiency and durability for ammonia decomposition but also demonstrates the significant potential of MOF-derived materials in sustainable hydrogen production technologies. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

15 pages, 4979 KiB  
Article
Etched Tungsten Oxide Modified with Au for Quick Xylene Detection
by Yinglin Wang, Zhaohui Lei, Xu Li, Yantong Meng, Wanting Cui, Yiyang Xu, Xidong Hao, Shanfu Sun and Pengfei Cheng
Micromachines 2025, 16(6), 646; https://doi.org/10.3390/mi16060646 - 28 May 2025
Viewed by 372
Abstract
Due to its widespread distribution in industrial, commercial, and residential settings, xylene detection is crucial. In this study, carbon sphere templates and NaHCO3 etching were used to synergistically prepare WO3 with uniform macropores, which was then decorated with Au elements. The [...] Read more.
Due to its widespread distribution in industrial, commercial, and residential settings, xylene detection is crucial. In this study, carbon sphere templates and NaHCO3 etching were used to synergistically prepare WO3 with uniform macropores, which was then decorated with Au elements. The findings demonstrated that the Au-decorated WO3-etched sample (WO3-1%E+Au) had the best sensing performance for 100 ppm xylene (response value: 21.3, optimal operating temperature: 360 °C) and short response/recovery time (1 s/11 s). The etching of NaHCO3 and the synergistic carbon sphere templates were responsible for the sensing performance, as they enhanced the sample surface’s specific surface area and roughness while also supplying additional active sites. Furthermore, the sensor’s sensitivity and selectivity to xylene were enhanced by the coupling effect and dehydrogenation catalysis of the noble metal Au. The results of this work advance our knowledge of gas-sensing mechanisms and offer guidance for the creation of extremely sensitive and selective xylene gas sensors. Full article
(This article belongs to the Special Issue Gas Sensors: From Fundamental Research to Applications, 2nd Edition)
Show Figures

Figure 1

24 pages, 5702 KiB  
Review
Nano-Micro Structure of Metal Oxide Semiconductors for Triethylamine Sensors: ZnO and In2O3
by Yongbo Fan, Lixin Song, Weijia Wang and Huiqing Fan
Nanomaterials 2025, 15(6), 427; https://doi.org/10.3390/nano15060427 - 11 Mar 2025
Cited by 10 | Viewed by 2549
Abstract
Toxic and harmful gases, particularly volatile organic compounds like triethylamine, pose significant risks to human health and the environment. As a result, metal oxide semiconductor (MOS) sensors have been widely utilized in various fields, including medical diagnostics, environmental monitoring, food processing, and chemical [...] Read more.
Toxic and harmful gases, particularly volatile organic compounds like triethylamine, pose significant risks to human health and the environment. As a result, metal oxide semiconductor (MOS) sensors have been widely utilized in various fields, including medical diagnostics, environmental monitoring, food processing, and chemical production. Extensive research has been conducted worldwide to enhance the gas-sensing performance of MOS materials. However, traditional MOS materials suffer from limitations such as a small specific surface area and a low density of active sites, leading to poor gas sensing properties—characterized by low sensitivity and selectivity, high detection limits and operating temperatures, as well as long response and recovery times. To address these challenges in triethylamine detection, this paper reviews the synthesis of nano-microspheres, porous micro-octahedra, and hollow prism-like nanoflowers via chemical solution methods. The triethylamine sensing performance of MOS materials, such as ZnO and In2O3, can be significantly enhanced through nano-morphology control, electronic band engineering, and noble metal loading. Additionally, strategies, including elemental doping, oxygen vacancy modulation, and structural morphology optimization, have been employed to achieve ultra-high sensitivity in triethylamine detection. This review further explores the underlying mechanisms responsible for the improved gas sensitivity. Finally, perspectives on future research directions in triethylamine gas sensing are provided. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 8634 KiB  
Article
Industrial Potential of Formaldehyde Gas Sensor Based on PdPt Bimetallic Loaded SnO2 Nanoparticles
by Bing Shen, Tongwei Yuan, Wenshuang Zhang, Xian Tan, Yang Chen and Jiaqiang Xu
Sensors 2025, 25(5), 1627; https://doi.org/10.3390/s25051627 - 6 Mar 2025
Cited by 3 | Viewed by 2347
Abstract
SnO2-based semiconductor gas-sensing materials are regarded as some of the most crucial sensing materials, owing to their extremely high electron mobility, high sensitivity, and excellent stability. To bridge the gap between laboratory-scale SnO2 and its industrial applications, low-cost and high-efficiency [...] Read more.
SnO2-based semiconductor gas-sensing materials are regarded as some of the most crucial sensing materials, owing to their extremely high electron mobility, high sensitivity, and excellent stability. To bridge the gap between laboratory-scale SnO2 and its industrial applications, low-cost and high-efficiency requirements must be met. This implies the need for simple synthesis techniques, reduced energy consumption, and satisfactory gas-sensing performances. In this study, we utilized a surfactant-free simple method to modify SnO2 nanoparticles with PdPt noble metals, ensuring the stable state of the material. Under the synergistic catalytic effect of Pd and Pt, the composite material (1.0 wt%-PdPt-SnO2) significantly enhanced its response to HCHO. This modification decreased the optimal working temperature to as low as 180 °C to achieve a response value (Ra/Rg = 8.2) and showcased lower operating temperatures, higher sensitivity, and better selectivity to detect 10 ppm of HCHO when compared with pristine SnO2 or single noble metal-decorated SnO2 sensors. Stability tests verified that the gas sensor signals based on PdPt-SnO2 nanoparticles exhibit good reliability. Furthermore, a portable HCHO detector was designed for practical applications, such as in newly purchased cushions, indicating its potential for industrialization beyond the laboratory. Full article
(This article belongs to the Special Issue Gas Sensors: Materials, Mechanisms and Applications: 2nd Edition)
Show Figures

Figure 1

13 pages, 9272 KiB  
Article
Synthesis and Characterization of Pd/La2O3/ZnO Catalyst for Complete Oxidation of Methane, Propane and Butane
by Ralitsa Velinova, Nina Kaneva, Georgi Ivanov, Daniela Kovacheva, Ivanka Spassova, Silviya Todorova, Genoveva Atanasova and Anton Naydenov
Inorganics 2025, 13(1), 17; https://doi.org/10.3390/inorganics13010017 - 9 Jan 2025
Cited by 2 | Viewed by 1072
Abstract
The catalytic oxidation of volatile organic compounds (VOCs) is the subject of considerable interest due to its applications in environmental protection. Noble metal-based catalysts are widely employed to remove toxic compounds from gas mixtures. The objective of the present study was the synthesis [...] Read more.
The catalytic oxidation of volatile organic compounds (VOCs) is the subject of considerable interest due to its applications in environmental protection. Noble metal-based catalysts are widely employed to remove toxic compounds from gas mixtures. The objective of the present study was the synthesis of a palladium-containing catalyst deposited on a support modified with La2O3 zinc oxide. The composite support was initially obtained by a simple method, and then palladium was deposited on it by impregnation. Various methods, including N2-physisorption, XRD, HRTEM, XPS, TPD, TPR, and FTIR, were used to characterize the material. The obtained catalyst was studied in the reaction of the complete oxidation of butane, propane, and methane. It was found that the addition of La2O3 to ZnO led to an improved pore texture. The catalytic tests showed that the reaction of the complete oxidation of butane on Pd/La2O3/ZnO proceeded at the lowest temperatures. Full article
(This article belongs to the Special Issue Metal Catalyst Discovery, Design and Synthesis)
Show Figures

Graphical abstract

43 pages, 43241 KiB  
Article
Excess 40Ar in Alkali Feldspar and 206,207Pb in Apatite Caused by Fluid-Induced Recrystallisation in a Semi-Closed Environment in Proterozoic (Meta)Granites of the Mt Isa Inlier, NE Australia
by Daniil Popov, Richard Spikings, André Navin Paul, Maria Ovtcharova, Massimo Chiaradia, Martin Kutzschbach, Alexey Ulianov, Gary O’Sullivan, David Chew, Kalin Kouzmanov, Eszter Badenszki, J. Stephen Daly and Joshua H. F. L. Davies
Geosciences 2024, 14(12), 358; https://doi.org/10.3390/geosciences14120358 - 21 Dec 2024
Cited by 1 | Viewed by 1293
Abstract
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have [...] Read more.
Interpretation of 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite depends on the dominant mechanism of isotopic transport in these minerals, which can be either diffusion or fluid-assisted dissolution-reprecipitation. To clarify the contributions of these processes, we have conducted a holistic study of alkali feldspar, apatite and other minerals from the Mt. Isa Inlier in NE Australia. Mineral characterisation by electron microscopy, optical cathodoluminescence imaging and element mapping reveal a complex interplay of textures resulting from magmatic crystallisation, deuteric recrystallisation, local deformation with subsequent higher-temperature alteration, and finally ubiquitous low-temperature alteration. U-Pb and Pb isotopic data for zircon, apatite, fluorite and alkali feldspar suggest that the latter event occurred at ~300 Ma and was associated with fluid-assisted exchange of Pb isotopes between minerals in the same rock, causing some apatite grains to have 207Pb-corrected U-Pb dates that exceed their crystallisation age. However, this event had no unequivocal effect on the 40Ar/39Ar or Rb-Sr systematics of the alkali feldspar, which were disturbed by higher-temperature alteration at ~1450 Ma. The age of the latter event is derived from Rb-Sr data. 40Ar/39Ar dates are very scattered and suggest that 40Ar redistribution proceeded by diffusion in the presence of traps in some places and by dissolution-reprecipitation with variable amounts of recycling in other places. Our results demonstrate the complex effects that interaction with limited amounts of fluids can have on 40Ar/39Ar dates of alkali feldspar and U-Pb dates of apatite and thereby reinforce previous critique of their suitability for thermochronological reconstructions. We further identify and discuss potential implications for noble gas geochronology of groundwaters and fission track dating of apatite. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

12 pages, 4518 KiB  
Article
Gas Sensor for Efficient Acetone Detection and Application Based on Au-Modified ZnO Porous Nanofoam
by Zhenchao Sun, Shanfu Sun, Xidong Hao, Yinglin Wang, Caili Gong and Pengfei Cheng
Sensors 2024, 24(24), 8100; https://doi.org/10.3390/s24248100 - 19 Dec 2024
Cited by 2 | Viewed by 1449
Abstract
Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient [...] Read more.
Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method. XRD and XPS spectra were utilized to investigate its structure, while SEM and TEM characterized its morphology. The gas sensitivity of the Au/ZnO sensors was investigated in a static test system. The results reveal that the gas-sensitive performance of porous ZnO toward the acetone can be enhanced by adjusting the loading ratio of noble Au nanoparticles. Specifically, the Au/ZnO sensor prepared by the Au loading ratio of 3.0% (Au/ZnO-3.0%) achieved a 100 ppm acetone gas response of 20.02 at the optimum working temperature of 275 °C. Additionally, a portable electronic device used a STM32 primary control chip to integrate the Au/ZnO-3.0% gas sensor with other modules to achieve the function of detecting and alarming toxic acetone gas. This work is of great significance for efficiently detecting and reducing acetone emissions. Full article
(This article belongs to the Special Issue Advanced Gas Sensors for Toxic Organics Detection)
Show Figures

Figure 1

11 pages, 5847 KiB  
Article
Low-Temperature Hydrotreatment of C4/C5 Fractions Using a Dual-Metal-Loaded Composite Oxide Catalyst
by Zhou Du, Renyi Li, Zhenghui Shen, Xiao Hai and Ruqiang Zou
Nanomaterials 2024, 14(23), 1934; https://doi.org/10.3390/nano14231934 - 30 Nov 2024
Viewed by 1034
Abstract
C4 and C5 fractions are significant by-products in the ethylene industry, with considerable research and economic potential when processed through hydrogenation technology to enhance their value. This study explored the development of hydrotreating catalysts using composite oxides as carriers, specifically enhancing low-temperature performance [...] Read more.
C4 and C5 fractions are significant by-products in the ethylene industry, with considerable research and economic potential when processed through hydrogenation technology to enhance their value. This study explored the development of hydrotreating catalysts using composite oxides as carriers, specifically enhancing low-temperature performance by incorporating electronic promoters and employing specialized surface modification techniques. This approach enabled the synthesis of non-noble metal hydrogenation catalysts supported on Al2O3–TiO2 composite oxides. The catalysts were characterized using various techniques, including X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy, ammonia temperature-programmed desorption, infrared spectroscopy, and transmission electron microscopy. Mo–Ni/Al2O3–TiO2 catalysts were optimized for low-temperature hydrotreating of C4 and C5 fractions, demonstrating stable performance at inlet temperatures far below those typically required. This finding enables a shift from traditional gas-phase to gas–liquid two-phase reactions, eliminating the need for high-pressure steam in industrial settings. As a result, energy consumption is reduced, and operational stability is significantly improved. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

21 pages, 2822 KiB  
Review
Low-Power Chemiresistive Gas Sensors for Transformer Fault Diagnosis
by Haixia Mei, Jingyi Peng, Dongdong Xu and Tao Wang
Molecules 2024, 29(19), 4625; https://doi.org/10.3390/molecules29194625 - 29 Sep 2024
Cited by 4 | Viewed by 1759
Abstract
Dissolved gas analysis (DGA) is considered to be the most convenient and effective approach for transformer fault diagnosis. Due to their excellent performance and development potential, chemiresistive gas sensors are anticipated to supersede the traditional gas chromatography analysis in the dissolved gas analysis [...] Read more.
Dissolved gas analysis (DGA) is considered to be the most convenient and effective approach for transformer fault diagnosis. Due to their excellent performance and development potential, chemiresistive gas sensors are anticipated to supersede the traditional gas chromatography analysis in the dissolved gas analysis of transformers. However, their high operating temperature and high power consumption restrict their deployment in battery-powered devices. This review examines the underlying principles of chemiresistive gas sensors. It comprehensively summarizes recent advances in low-power gas sensors for the detection of dissolved fault characteristic gases (H2, C2H2, CH4, C2H6, C2H4, CO, and CO2). Emphasis is placed on the synthesis methods of sensitive materials and their properties. The investigations have yielded substantial experimental data, indicating that adjusting the particle size and morphology structure of the sensitive materials and combining them with noble metal doping are the principal methods for enhancing the sensitivity performance and reducing the power consumption of chemiresistive gas sensors. Additionally, strategies to overcome the significant challenge of cross-sensitivity encountered in applications are provided. Finally, the future development direction of chemiresistive gas sensors for DGA is envisioned, offering guidance for developing and applying novel gas-sensitive sensors in transformer fault diagnosis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

12 pages, 6562 KiB  
Article
Synthesis of Fe2O3 Nanorod and NiFe2O4 Nanoparticle Composites on Expired Cotton Fiber Cloth for Enhanced Hydrogen Evolution Reaction
by Sun Hua, Sayyar Ali Shah, Noor Ullah, Nabi Ullah and Aihua Yuan
Molecules 2024, 29(13), 3082; https://doi.org/10.3390/molecules29133082 - 28 Jun 2024
Cited by 5 | Viewed by 1539
Abstract
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O [...] Read more.
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O4 nanoparticles on cotton fiber cloth (Fe2O3-NiFe2O4/CF) at a low temperature as an efficient electrocatalyst for HERs. Among the as-prepared samples, the optimal Fe2O3-NiFe2O4/CF-3 electrocatalyst exhibits good HER performance with an overpotential of 127 mV at a current density of 10 mA cm−2, small Tafel slope of 44.9 mV dec−1, and good stability in 1 M KOH alkaline solution. The synergistic effect between Fe2O3 nanorods and NiFe2O4 nanoparticles of the heterojunction composite at the heterointerface is mainly responsible for improved HER performance. The CF is an effective substrate for the growth of the Fe2O3-NiFe2O4 nanocomposite and provides conductive channels for the active materials’ HER process. Full article
Show Figures

Figure 1

17 pages, 7127 KiB  
Article
In Situ Growth of Mn-Co3O4 on Mesoporous ZSM-5 Zeolite for Boosting Lean Methane Catalytic Oxidation
by Yuxuan Zhang, Ruibo Wei, Lin Yang, Jinming Ge, Feiyang Hu, Tingting Zhang, Fangyin Lu, Haiwang Wang and Jian Qi
Catalysts 2024, 14(7), 397; https://doi.org/10.3390/catal14070397 - 23 Jun 2024
Cited by 1 | Viewed by 1649
Abstract
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal [...] Read more.
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal oxide-based catalysts face the problem of easy sintering and the deactivation of active components at high temperatures, which is an important challenge that catalysts need to overcome in practical applications. In this work, a series of Mn-Co3O4 active components were grown in situ on ZSM-5 zeolite with mesoporous pore structures treated with an alkaline solution via a hydrothermal synthesis method. Due to the presence of polyethylene glycol as a structure-directing agent, manganese can be uniformly doped into the Co3O4 lattice. The large specific surface area of ZSM-5 zeolite allows the active component Mn-Co3O4 to be uniformly dispersed, effectively preventing the sintering and growth of active component particles during the catalytic reaction process. It is worth mentioning that the Mn-Co3O4/meso-ZSM-5-6.67 catalyst has a methane conversion rate of up to 90% at a space velocity of 36,000 mL·g−1·h−1 and a reaction temperature of 363 °C. This is mainly due to the mesoporous ZSM-5 carrier with a high specific surface area, which is conducive to the adsorption and mass transfer of reaction molecules. The active component has an abundance of oxygen vacancies, which is conducive to the activation of reaction molecules and enhances its catalytic activity, which is even higher than that of noble metal-based catalysts. The new ideas for the preparation of metal oxide-based low-temperature methane oxidation catalysts proposed in this work are expected to provide new solutions for low-temperature methane oxidation reactions and promote technological progress in related fields. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
Show Figures

Figure 1

16 pages, 4813 KiB  
Article
Enhancement of H2 Gas Sensing Using Pd Decoration on ZnO Nanoparticles
by Jin-Young Kim, Kyeonggon Choi, Seung-Wook Kim, Cheol-Woo Park, Sung-Il Kim, Ali Mirzaei, Jae-Hyoung Lee and Dae-Yong Jeong
Chemosensors 2024, 12(6), 90; https://doi.org/10.3390/chemosensors12060090 - 27 May 2024
Cited by 7 | Viewed by 1940
Abstract
Hydrogen (H2) gas, with its high calorimetric combustion energy and cleanness, is a green source of energy and an alternative to fossil fuels. However, it has a small kinetic diameter, with high diffusivity and a highly explosive nature. Hence, the reliable [...] Read more.
Hydrogen (H2) gas, with its high calorimetric combustion energy and cleanness, is a green source of energy and an alternative to fossil fuels. However, it has a small kinetic diameter, with high diffusivity and a highly explosive nature. Hence, the reliable detection of H2 gas is essential in various fields such as fuel cells. Herein, we decorated ZnO nanoparticles (NPs) with Pd noble metal NPs, using UV irradiation to enhance their H2 gas-sensing performance. The synthesized materials were fully characterized in terms of their phases, morphologies, and chemical composition. Then, the sensing layer was deposited on the electrode-patterned glass substrate to make a transparent sensor. The fabricated transparent gas sensor was able to detect H2 gas at various temperatures and humidity levels. At 250 °C, the sensor exhibited the highest response to H2 gas. As a novelty of the present study, we successfully detected H2 gas in mixtures of H2/benzene and H2/toluene gases. The enhanced H2 gas response was related to the catalytic effect of Pd, the formation of heterojunctions between Pd and ZnO, the partial reduction of ZnO to Zn in the presence of H2 gas, and the formation of PdHx. With a high performance in a high response, good selectivity, and repeatability, we believe that the sensor developed in this study can be a good candidate for practical applications where the detection of H2 is necessary. Full article
(This article belongs to the Special Issue Gas Sensors and Electronic Noses for the Real Condition Sensing)
Show Figures

Figure 1

29 pages, 5116 KiB  
Review
Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review
by Hao Chen, Huayang Chen, Jiabao Chen and Mingxin Song
Sensors 2024, 24(10), 2962; https://doi.org/10.3390/s24102962 - 7 May 2024
Cited by 16 | Viewed by 4689
Abstract
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. [...] Read more.
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Figure 1

16 pages, 5592 KiB  
Article
Highly Sensitive and Selective Toluene Gas Sensors Based on ZnO Nanoflowers Decorated with Bimetallic AuPt
by Huiting Peng, Yiping Liu, Yinfeng Shen, Ling Xu, Jicun Lu, Ming Li, Hong-Liang Lu and Liming Gao
Molecules 2024, 29(7), 1657; https://doi.org/10.3390/molecules29071657 - 7 Apr 2024
Cited by 13 | Viewed by 4815
Abstract
Efficient sensors for toluene detecting are urgently needed to meet people’s growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas [...] Read more.
Efficient sensors for toluene detecting are urgently needed to meet people’s growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas sensors based on pure MOS have certain limitations in selectivity, operating temperature, and long-term stability, which hinders their further practical applications. Noble metals (including Ag, Au, Pt, Pd, etc.) have the ability to enhance the performance of MOS-based sensors via surface functionalization. Herein, ZnO nanoflowers (ZNFs) modified with bimetallic AuPt are prepared for toluene detection through hydrothermal method. The response of a AuPt@ZNF-based gas sensor can reach 69.7 at 175 °C, which is 30 times, 9 times, and 10 times higher than that of the original ZNFs, Au@ZNFs, and Pt@ZNFs, respectively. Furthermore, the sensor also has a lower optimal operating temperature (175 °C), good stability (94% of previous response after one month), and high selectivity towards toluene, which is the result of the combined influence of the electronic and chemical sensitization of noble metals, as well as the unique synergistic effect of the AuPt alloy. In summary, AuPt@ZNF-based sensors can be further applied in toluene detection in practical applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

19 pages, 5485 KiB  
Review
A Mini-Review on Metal Oxide Semiconductor Gas Sensors for Carbon Monoxide Detection at Room Temperature
by Yaoyi He and Mingzhi Jiao
Chemosensors 2024, 12(4), 55; https://doi.org/10.3390/chemosensors12040055 - 6 Apr 2024
Cited by 17 | Viewed by 7426
Abstract
Carbon monoxide can cause severe harm to humans even at low concentrations. Metal Oxide Semiconductor (MOS) carbon monoxide gas sensors have excellent sensing performance regarding sensitivity, selectivity, response speed, and stability, making them very desirable candidates for carbon monoxide monitoring. However, MOS gas [...] Read more.
Carbon monoxide can cause severe harm to humans even at low concentrations. Metal Oxide Semiconductor (MOS) carbon monoxide gas sensors have excellent sensing performance regarding sensitivity, selectivity, response speed, and stability, making them very desirable candidates for carbon monoxide monitoring. However, MOS gas sensors generally work at temperatures higher than room temperature, and need a heating source that causes high power consumption. High power consumption is a great problem for long-term portable monitoring devices for point-of-care or wireless sensor nodes for IoT application. Room-temperature MOS carbon monoxide gas sensors can function well without a heater, making them rather suitable for IoT or portable applications. This review first introduces the primary working mechanism of MOS carbon monoxide sensors and then gives a detailed introduction to and analysis of room-temperature MOS carbon monoxide sensing materials, such as ZnO, SnO2, and TiO2. Lastly, several mechanisms for room-temperature carbon monoxide sensors based on MOSs are discussed. The review will be interesting to engineers and researchers working on MOS gas sensors. Full article
(This article belongs to the Special Issue Chemical Sensors for Volatile Organic Compound Detection, 2nd Edition)
Show Figures

Figure 1

Back to TopTop