Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = nle genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8952 KiB  
Article
Functional Analysis of CPSF30 in Nilaparvata lugens Using RNA Interference Reveals Its Essential Role in Development and Survival
by Shengli Jing, Jing Yang, Yali Liu, Feifei Wang, Fang Zheng, Aobo Ren, Bingbing Yu, Yue Zhao, Bing Jia, Ruixian Chen, Bin Yu, Qingsong Liu and Jingang Xu
Insects 2024, 15(11), 860; https://doi.org/10.3390/insects15110860 - 3 Nov 2024
Viewed by 2177
Abstract
The brown planthopper (Nilaparvata lugens) is a major pest threatening global rice production, significantly reducing yields annually. As N. lugens increasingly develops resistance to conventional control methods, such as chemical pesticides, there is an urgent need for innovative and sustainable pest [...] Read more.
The brown planthopper (Nilaparvata lugens) is a major pest threatening global rice production, significantly reducing yields annually. As N. lugens increasingly develops resistance to conventional control methods, such as chemical pesticides, there is an urgent need for innovative and sustainable pest management strategies. Cleavage and Polyadenylation Specificity Factor 30 (CPSF30) is a key protein involved in mRNA 3′ end processing, yet its function in N. lugens remains poorly understood. This study aims to elucidate the role of CPSF30 in the growth and development of N. lugens and evaluate its potential as a target for RNA interference (RNAi)-based pest control strategies. We cloned and characterized the cDNA sequence of NlCPSF30, which encodes a protein of 341 amino acids containing five CCCH zinc-finger domains and two CCHC zinc-knuckle domains. Sequence alignment revealed that NlCPSF30 is highly conserved among insect species, particularly in the zinc-finger domains essential for RNA binding and processing. Phylogenetic analysis showed that NlCPSF30 is closely related to CPSF30 proteins from other hemipteran species. Expression analysis indicated that NlCPSF30 is most highly expressed in the fat body and during the adult stage, with significantly higher expression in females than in males. RNAi-mediated silencing of NlCPSF30 in third-instar nymphs resulted in severe phenotypic abnormalities, including disrupted molting and increased mortality following injection of double-stranded RNA (dsRNA) targeting NlCPSF30. Moreover, it influenced the expression of genes associated with hormone regulation, namely NlHry, NlE93, and NlKr-h1. These results suggest that NlCPSF30 is integral to critical physiological processes, with its disruption leading to increased mortality. Our findings identify NlCPSF30 as an essential gene for N. lugens’ survival and a promising target for RNAi-based pest management strategies. This study provides a valuable molecular target and theoretical insights for developing RNAi-based control methods against N. lugens. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

18 pages, 22102 KiB  
Article
Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells
by Jinye Dang, Gongrui Zhang, Jingjing Li, Libo He, Yi Ding, Jiaxiu Cai, Guohua Cheng, Yuhui Yang, Zhiyi Liu, Jiahui Fan, Linfang Du and Ke Liu
Nutrients 2024, 16(10), 1506; https://doi.org/10.3390/nu16101506 - 16 May 2024
Cited by 2 | Viewed by 3593
Abstract
Neem leaves have long been used in traditional medicine for promoting longevity. However, the precise mechanisms underlying their anti-aging effects remain elusive. In this study, we investigated the impact of neem leaf extract (NLE) extracted from a 50% ethanol solution on the chronological [...] Read more.
Neem leaves have long been used in traditional medicine for promoting longevity. However, the precise mechanisms underlying their anti-aging effects remain elusive. In this study, we investigated the impact of neem leaf extract (NLE) extracted from a 50% ethanol solution on the chronological lifespan of Saccharomyces cerevisiae, revealing an extension in lifespan, heightened oxidative stress resistance, and a reduction in reactive oxygen species. To discern the active compounds in NLE, LC/MS and the GNPS platform were employed. The majority of identified active compounds were found to be flavonoids. Subsequently, compound-target pharmacological networks were constructed using the STP and STITCH platforms for both S. cerevisiae and Homo sapiens. GOMF and KEGG enrichment analyses of the predicted targets revealed that “oxidoreductase activity” was among the top enriched terms in both yeast and human cells. These suggested a potential regulation of oxidative stress response (OSR) by NLE. RNA-seq analysis of NLE-treated yeast corroborated the anti-oxidative effect, with “oxidoreductase activity” and “oxidation-reduction process” ranking high in enriched GO terms. Notably, CTT1, encoding catalase, emerged as the most significantly up-regulated gene within the “oxidoreductase activity” cluster. In a ctt1 null mutant, the enhanced oxidative stress resistance and extended lifespan induced by NLE were nullified. For human cells, NLE pretreatment demonstrated a decrease in reactive oxygen species levels and senescence-associated β-galactosidase activity in HeLa cells, indicative of anti-aging and anti-oxidative effects. This study unveils the anti-aging and anti-oxidative properties of NLE while delving into their mechanisms, providing novel insights for pharmacological interventions in aging using phytochemicals. Full article
(This article belongs to the Special Issue Nutritional Regulation of Aging and Age-Related Diseases)
Show Figures

Figure 1

14 pages, 3712 KiB  
Article
Molecular and Genomic Analysis of the Virulence Factors and Potential Transmission of Hybrid Enteropathogenic and Enterotoxigenic Escherichia coli (EPEC/ETEC) Strains Isolated in South Korea
by Woojung Lee, Soohyun Sung, Jina Ha, Eiseul Kim, Eun Sook An, Seung Hwan Kim, Soon Han Kim and Hae-Yeong Kim
Int. J. Mol. Sci. 2023, 24(16), 12729; https://doi.org/10.3390/ijms241612729 - 12 Aug 2023
Cited by 7 | Viewed by 2369
Abstract
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause [...] Read more.
Hybrid strains Escherichia coli acquires genetic characteristics from multiple pathotypes and is speculated to be more virulent; however, understanding their pathogenicity is elusive. Here, we performed genome-based characterization of the hybrid of enteropathogenic (EPEC) and enterotoxigenic E. coli (ETEC), the strains that cause diarrhea and mortality in children. The virulence genes in the strains isolated from different sources in the South Korea were identified, and their phylogenetic positions were analyzed. The EPEC/ETEC hybrid strains harbored eae and est encoding E. coli attaching and effacing lesions and heat-stable enterotoxins of EPEC and ETEC, respectively. Genome-wide phylogeny revealed that all hybrids (n = 6) were closely related to EPEC strains, implying the potential acquisition of ETEC virulence genes during ETEC/EPEC hybrid emergence. The hybrids represented diverse serotypes (O153:H19 (n = 3), O49:H10 (n = 2), and O71:H19 (n = 1)) and sequence types (ST546, n = 4; ST785, n = 2). Furthermore, heat-stable toxin-encoding plasmids possessing estA and various other virulence genes and transporters, including nleH2, hlyA, hlyB, hlyC, hlyD, espC, espP, phage endopeptidase Rz, and phage holin, were identified. These findings provide insights into understanding the pathogenicity of EPEC/ETEC hybrid strains and may aid in comparative studies, virulence characterization, and understanding evolutionary biology. Full article
Show Figures

Figure 1

12 pages, 1496 KiB  
Article
Impact of Allelic Variation in Maturity Genes E1E4 on Soybean Adaptation to Central and West Siberian Regions of Russia
by Roman Perfil’ev, Andrey Shcherban, Dmitriy Potapov, Konstantin Maksimenko, Sergey Kiryukhin, Sergey Gurinovich, Veronika Panarina, Revmira Polyudina and Elena Salina
Agriculture 2023, 13(6), 1251; https://doi.org/10.3390/agriculture13061251 - 15 Jun 2023
Cited by 6 | Viewed by 2376
Abstract
Four maturity genes, namely, E1, E2, E3 and E4, have been found to play major roles in controlling the flowering and maturity time of soybean. Which genotypes of E1E4 genes provide effective adaptation to the varied conditions of [...] Read more.
Four maturity genes, namely, E1, E2, E3 and E4, have been found to play major roles in controlling the flowering and maturity time of soybean. Which genotypes of E1E4 genes provide effective adaptation to the varied conditions of Russia are unknown. To clarify this issue, we have studied the allele variation in soybean E1E4 genes in terms of both flowering and maturity time under the natural day-length conditions of Central Russia and Western Siberia in a collection of 176 soybean accessions, including 142 Russian and 34 foreign accessions. As a result, a high frequency of previously determined E1E4 alleles has been identified. The field experiment showed that genotypes with all recessive alleles from e1-nl/e2/e3/e4 and e1-as/e2/e3/e4 provide the effective adaptation of soybean to the mentioned conditions. Cultivars with these genotypes are considered to be most suitable for cultivation in Central Russia and Western Siberia. Full article
(This article belongs to the Special Issue Advances in Soybean Genetics and Breeding)
Show Figures

Figure 1

26 pages, 2767 KiB  
Review
Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs
by Yong Chool Boo
Biomedicines 2020, 8(9), 322; https://doi.org/10.3390/biomedicines8090322 - 1 Sep 2020
Cited by 31 | Viewed by 10839
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the [...] Read more.
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders. Full article
(This article belongs to the Special Issue Peptide-Based Drug Development)
Show Figures

Figure 1

20 pages, 4024 KiB  
Article
Transcriptome Analysis of Sogatella furcifera (Homoptera: Delphacidae) in Response to Sulfoxaflor and Functional Verification of Resistance-Related P450 Genes
by Xue-Gui Wang, Yan-Wei Ruan, Chang-Wei Gong, Xin Xiang, Xiang Xu, Yu-Ming Zhang and Li-Tao Shen
Int. J. Mol. Sci. 2019, 20(18), 4573; https://doi.org/10.3390/ijms20184573 - 15 Sep 2019
Cited by 21 | Viewed by 3850
Abstract
The white-back planthopper (WBPH), Sogatella furcifera, is a major rice pest in China and in some other rice-growing countries of Asia. The extensive use of pesticides has resulted in severe resistance of S. furcifera to variety of chemical insecticides. Sulfoxaflor is a [...] Read more.
The white-back planthopper (WBPH), Sogatella furcifera, is a major rice pest in China and in some other rice-growing countries of Asia. The extensive use of pesticides has resulted in severe resistance of S. furcifera to variety of chemical insecticides. Sulfoxaflor is a new diamide insecticide that acts on nicotinic acetylcholine receptors (nAChRs) in insects. The aim of this study was to explore the key genes related to the development of resistance to sulfoxaflor in S. furcifera and to verify their functions. Transcriptomes were compared between white-back planthoppers from a susceptible laboratory strain (Sus-Lab) and Sus-Lab screened with the sublethal LC25 dose of sulfoxaflor for six generations (SF-Sel). Two P450 genes (CYP6FD1 and CYP4FD2) and three transcription factors (NlE78sf, C2H2ZF1 and C2H2ZF3) with upregulated expression verified by qRT-PCR were detected in the Sus-Lab and SF-Sel strains. The functions of CYP6FD1 and CYP4FD2 were analyzed by RNA interference, and the relative normalized expressions of CYP6FD1 and CYP4FD2 in the SF-Sel population were lower than under dsGFP treatment after dsRNA injection. Moreover, the mortality rates of SF-Sel population treated with the LC50 concentration of sulfoxaflor after the injecting of dsRNA targeting CYP6FD1 and CYP4FD2 were significantly higher than in the dsGFP group from 72 h to 96 h (p < 0.05), and mortality in the CYP6FD1 knockdown group was clearly higher than that of the CYP4FD2 knockdown group. The interaction between the tertiary structures of CYP6FD1 and CYP4FD2 and sulfoxaflor was also predicted, and CYP6FD1 showed a stronger metabolic ability to process sulfoxaflor. Therefore, overexpression of CYP6FD1 and CYP4FD2 may be one of the primary factors in the development of sulfoxaflor resistance in S. furcifera. Full article
(This article belongs to the Special Issue Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity 2.0)
Show Figures

Figure 1

15 pages, 1663 KiB  
Article
Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Humans in South Africa: 2006–2013
by Musafiri Karama, Beniamino T. Cenci-Goga, Mogaugedi Malahlela, Anthony M. Smith, Karen H. Keddy, Saeed El-Ashram, Lawan M. Kabiru and Alan Kalake
Toxins 2019, 11(7), 424; https://doi.org/10.3390/toxins11070424 - 19 Jul 2019
Cited by 31 | Viewed by 5325
Abstract
Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC O26:H11 (24%) was the most frequent serotype associated with human disease, followed by O111:H8 (16%), O157:H7 (13%) and O117:H7 (13%). The majority of isolates were positive for key virulence-associated genes including stx1 (84%), eaeA (61%), ehxA (68.4%) and espP (55%), but lacked stx2 (29%), katP (42%), etpD (16%), saa (16%) and subA (3%). stx2 positive isolates carried stx2c (26%) and/or stx2d (26%) subtypes. All pathogenicity island encoded virulence marker genes were detected in all (100%) isolates except nleA (47%), nleC (84%) and nleD (76%). Multidrug resistance was observed in 89% of isolates. PFGE revealed 34 profiles with eight distinct clusters that shared ≥80% intra-serotype similarity, regardless of the year of isolation. In conclusion, STEC isolates that were implicated in human disease between 2006 and 2013 in South Africa were mainly non-O157 strains which possessed virulence genes and markers commonly associated with STEC strains that have been incriminated in mild to severe human disease worldwide. Improved STEC monitoring and surveillance programs are needed in South Africa to control and prevent STEC disease in humans. Full article
Show Figures

Figure 1

11 pages, 1659 KiB  
Article
Pathogenicity Islands Distribution in Non-O157 Shiga Toxin-Producing Escherichia coli (STEC)
by Jimena Soledad Cadona, Ana Victoria Bustamante, Juliana González and Andrea Mariel Sanso
Genes 2018, 9(2), 81; https://doi.org/10.3390/genes9020081 - 10 Feb 2018
Cited by 9 | Viewed by 5057
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens associated with outbreaks and hemolytic-uremic syndrome. Cattle and meat foods are the main reservoir and infection source, respectively. Pathogenicity islands (PAIs) play an important role in STEC pathogenicity, and non-locus of the enterocyte effacement(LEE) effector [...] Read more.
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens associated with outbreaks and hemolytic-uremic syndrome. Cattle and meat foods are the main reservoir and infection source, respectively. Pathogenicity islands (PAIs) play an important role in STEC pathogenicity, and non-locus of the enterocyte effacement(LEE) effector (nle) genes present on them encode translocated substrates of the type III secretion system. A molecular risk assessment based on the evaluation of the nle content has been used to predict which STEC strains pose a risk to humans. The goal was to investigate the distribution of the PAIs OI (O-island)-36 (nleB2, nleC, nleH1-1, nleD), OI-57 (nleG2-3, nleG5-2, nleG6-2), OI-71 (nleA, nleF, nleG, nleG2-1, nleG9, nleH1-2) and OI-122 (ent/espL2, nleB, nleE, Z4321, Z4326, Z4332, Z4333) among 204 clinical, food and animal isolates belonging to 52 non-O157:H7 serotypes. Differences in the frequencies of genetic markers and a wide spectrum of PAI virulence profiles were found. In most LEE-negative strains, only module 1 (Z4321) of OI-122 was present. However, some unusual eae-negative strains were detected, which carried other PAI genes. The cluster analysis, excluding isolates that presented no genes, defined two major groups: eae-negative (determined as seropathotypes (SPTs) D, E or without determination, isolated from cattle or food) and eae-positive (mostly identified as SPTs B, C, or not determined). Full article
(This article belongs to the Special Issue Genetics and Genomics of Foodborne Pathogens)
Show Figures

Figure 1

24 pages, 461 KiB  
Article
Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia coli Infections in Calves and the Effectiveness of Celmanax®/Dairyman’s Choice™ Applications to Eliminate Morbidity and Mortality Losses
by Danica Baines, Mark Sumarah, Gretchen Kuldau, Jean Juba, Alberto Mazza and Luke Masson
Toxins 2013, 5(10), 1872-1895; https://doi.org/10.3390/toxins5101872 - 23 Oct 2013
Cited by 19 | Viewed by 8146
Abstract
Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin [...] Read more.
Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin content of hemorrhaged mucosa in dairy calves during natural disease outbreaks, compared the virulence genes of the STECs, evaluated the effect of the mucosal mycotoxins on STEC toxin expression and evaluated a Celmanax®/Dairyman’s Choice™ application to alleviate disease. As for human infections, the OI-122 encoded nleB gene was common to STEC genotypes eliciting serious disease. Low levels of aflatoxin (1–3 ppb) and fumonisin (50–350 ppb) were detected in the hemorrhaged mucosa. Growth of the STECs with the mycotoxins altered the secreted protein concentration with a corresponding increase in cytotoxicity. Changes in intracellular calcium indicated that the mycotoxins increased enterotoxin and pore-forming toxin activity. A prebiotic/probiotic application eliminated the morbidity and mortality losses associated with the STEC infections. Our study demonstrates: the same STEC disease complex exists for immature and mature cattle; the significance of the OI-122 pathogenicity island to virulence; the significance of mycotoxins to STEC toxin activity; and, finally, provides further evidence that prebiotic/probiotic applications alleviate STEC shedding and mycotoxin/STEC interactions that lead to disease. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feed)
Show Figures

Figure 1

Back to TopTop