Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = niosomal gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3876 KiB  
Article
pH Gradient-Driven Loading of Doxorubicin into Niosomes: A Comparative Study Using Bromocresol Green as a Visual Indicator
by Mohammed Altaee, Ahmed Mostafa Faheem and Amal Ali Elkordy
Pharmaceutics 2025, 17(7), 862; https://doi.org/10.3390/pharmaceutics17070862 - 30 Jun 2025
Viewed by 406
Abstract
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of [...] Read more.
Background: The active (remote) loading of drugs into nanoparticulate systems via the pH gradient technique has been proven highly successful in liposomes, as numerous formulations have reached the market. However, this is not the case for niosomes, as the full potential of this area remains largely undiscovered. The purpose of this research is to study the effect of different co-surfactants (Cremophor RH 40, Cremophor ELP and Solutol HS-15) on stabilising the niosomal membrane to enable the creation of a pH gradient. Methods: For visualisation of pH gradients, pH indicator bromocresol green (BCG) was used as a novel encapsulated model molecule to visually investigate the ability of niosomes to entrap drugs through active loading. Thereafter, the optimised BCG niosomal formulation was applied to encapsulate a therapeutic drug molecule, doxorubicin, via pH gradient active loading. Niosomes were formulated via thin-film hydration using Span 60, cholesterol, with or without co-surfactants. Thin films were hydrated with either Trizma buffer or HEPES buffer for BCG, or ammonium sulfate for doxorubicin. The niosomes’ outer membrane pH was adjusted via either the addition of HCl or citric acid in the case of BCG, or by passing the niosomes through a Sephadex G50 gel column, pre-equilibrated with PBS or Trizma buffer, in the case of doxorubicin. Results: Niosomes formulated with Span 60 and cholesterol could not be formed at acidic pH and thus could not create a pH gradient. All three co-surfactants, when added to Span 60 and cholesterol, stabilised the niosomes and enabled them to form a pH gradient. Niosomes (after size reduction) containing Solutol HS-15 showed significantly higher entrapment efficiency of BCG when compared to Cremophor RH 40 and Cremophor ELP (67.86% vs. 15.57% vs. 17.81%, respectively, with sizes of 159.6 nm, 177.9 nm and 219.1 nm, respectively). The use of HEPES buffer resulted in a higher EE of BCG compared to Trizma buffer (72.85% vs. 67.86%) and achieved a size of 283.4 nm. The Solutol HS-15 containing formulation has exhibited 68.28% EE of doxorubicin with ammonium sulfate as the inner buffer, while the external buffer was Trizma with a size of 241.1 nm after extrusion. Conclusions: Niosomal formulations containing Solutol HS-15 are highly promising for remote drug loading. The novel use of BCG for studying pH gradient and drug loading into niosomes has proved beneficial and successful. Full article
(This article belongs to the Special Issue Advanced Liposomes for Drug Delivery, 2nd Edition)
Show Figures

Figure 1

29 pages, 3448 KiB  
Review
New Gel Approaches for the Transdermal Delivery of Meloxicam
by Ioana-Alexandra Plugariu, Maria Bercea and Luiza Madalina Gradinaru
Gels 2025, 11(7), 500; https://doi.org/10.3390/gels11070500 - 26 Jun 2025
Cited by 1 | Viewed by 553
Abstract
Meloxicam is a promising non-steroidal anti-inflammatory drug (NSAID) for acute and chronic pain prevention and treatment. Due to its poor water solubility, the clinical use of meloxicam is limited. In addition, for transdermal applications, the impermeability of the skin makes it difficult to [...] Read more.
Meloxicam is a promising non-steroidal anti-inflammatory drug (NSAID) for acute and chronic pain prevention and treatment. Due to its poor water solubility, the clinical use of meloxicam is limited. In addition, for transdermal applications, the impermeability of the skin makes it difficult to conceive an appropriate NSAID-based delivery system that can penetrate through the skin barrier. Hydrophilic/hydrophobic gels, designed as transdermal drug delivery systems, can considerably improve other drug administration types (such as oral or intravenous), avoiding or limiting the side effects. The main purpose of this paper is to present some physicochemical and pharmaceutical considerations about meloxicam and to review the most important research concerning the gels used for the transdermal delivery of meloxicam. Thus, smart polymeric networks, semi-solid systems (lipogels, emulgels), β-cyclodextrin-based gels, liposomes (ethosomes, niosomes, flexosomes, transferosomes, menthosomes, invasomes), and nanostructured lipid carriers, with analgesic and anti-inflammatory activity, are discussed. The key objective of this study was to highlight various gel formulations with enhanced properties, which could be used in a minimally invasive manner for the sustained administration of meloxicam. Full article
Show Figures

Figure 1

20 pages, 6095 KiB  
Article
Formulation and Characterization of Teicoplanin Niosomal Gel for Healing Chronic Wounds Infected with Methicillin-Resistant Staphylococcus aureus (MRSA)
by Jaber Hemmati, Iraj Sedighi, Mehdi Azizi, Zahra Chegini, Raha Zare Shahraki, Mohsen Chiani and Mohammad Reza Arabestani
Gels 2025, 11(4), 230; https://doi.org/10.3390/gels11040230 - 22 Mar 2025
Cited by 2 | Viewed by 656
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is recognized as a significant pathogen playing a crucial role in causing bacterial infections of skin and soft tissues due to its high capacity for biofilm formation. Niosome-based gel systems offer significant potential for enhancing transdermal drug delivery and [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is recognized as a significant pathogen playing a crucial role in causing bacterial infections of skin and soft tissues due to its high capacity for biofilm formation. Niosome-based gel systems offer significant potential for enhancing transdermal drug delivery and increasing the effectiveness of loaded drugs. The current research investigates the feasibility of niosomal gel for formulating the topical administration of teicoplanin (TEC). The thin film hydration method was used for niosome formulation was composed of nonionic surfactant, cholesterol, and mPEG 2000. TEC niosomal gel was prepared with adding hydroxypropyl methylcellulose (HPMC) and Poloxamer 407 polymers to the system. The physiochemical characteristics of prepared niosomal gel formulation, such as particle morphology, size, zeta surface charge, homogeneity, encapsulation efficiency, and in vitro drug release, were evaluated. Also, the in vitro antibacterial potential of the prepared system was analyzed. Further, we examined the in vivo antibacterial activity of the synthesized niosomal gel on infected wounds in Wister rats. We found that the TEC niosomal gel had antibacterial and anti-biofilm capabilities against MRSA isolates, and could be an effective wound material for preventing therapeutic problems related to this superbug. Full article
Show Figures

Figure 1

13 pages, 10303 KiB  
Proceeding Paper
Nano-Encapsulated Ebastine Niosomal Transdermal Nanogel: QBD Model for Allergy Treatment and Evaluation
by Bhushan R. Rane, Aditi P. Padave and Ashish S. Jain
Biol. Life Sci. Forum 2024, 38(1), 9; https://doi.org/10.3390/blsf2024038009 - 11 Mar 2025
Viewed by 505
Abstract
Niosomes are a stable vesicular system composed of non-ionic surfactants and cholesterol, offering advantages such as enhanced stability and controlled drug release. In this study, a niosomal nanogel loaded with Ebastine was developed to improve patient compliance in treating skin allergic reactions. Thin-film [...] Read more.
Niosomes are a stable vesicular system composed of non-ionic surfactants and cholesterol, offering advantages such as enhanced stability and controlled drug release. In this study, a niosomal nanogel loaded with Ebastine was developed to improve patient compliance in treating skin allergic reactions. Thin-film hydration was employed to prepare niosomes using cholesterol, Span 60, Tween 80, and Ebastine, optimized via Box–Behnken experimental design. A dispersion method incorporating Carbopol 934 was utilized to create a niosomal gel, ensuring effective therapeutic outcomes. The formulation exhibited high drug entrapment efficiency (84.19%), a zeta potential of −27 mV, and vesicle sizes ranging from 100 to 300 nm. Evaluation included FTIR for drug–excipient compatibility, pH assessment, in vitro drug release studies, and stability testing, all yielding acceptable results. The encapsulation of Ebastine within niosomes is driven by critical physicochemical interactions between the drug, cholesterol, and surfactants. These interactions influence the stability, encapsulation efficiency, and release profile of the drug from the niosomal bilayer. Microbial studies indicated significant antimicrobial activity against S. aureus, underscoring its potential as an effective transdermal treatment for skin allergies. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Nutrients)
Show Figures

Figure 1

21 pages, 8687 KiB  
Article
Development and Characterization of Dual-Loaded Niosomal Ion-Sensitive In Situ Gel for Ocular Delivery
by Viliana Gugleva, Rositsa Mihaylova, Katya Kamenova, Dimitrina Zheleva-Dimitrova, Denitsa Stefanova, Virginia Tzankova, Maya Margaritova Zaharieva, Hristo Najdenski, Aleksander Forys, Barbara Trzebicka, Petar D. Petrov and Denitsa Momekova
Gels 2024, 10(12), 816; https://doi.org/10.3390/gels10120816 - 11 Dec 2024
Cited by 3 | Viewed by 1539
Abstract
The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed [...] Read more.
The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed by pulsatile sonication and were subjected to comprehensive physicochemical evaluation. The optimal composition was included in a gellan gum-based in situ gel, and the antimicrobial activity, in vitro toxicity in a suitable corneal epithelial model (HaCaT cell line), and antioxidant potential of the hybrid system were further assessed. Dual-loaded niosomes based on Span 60, Tween 60, and cholesterol (3.5:3.5:3 mol/mol) were characterized by appropriate size (250 nm), high entrapment efficiency values for both compounds (85% for CBD and 50% for EGCG) and sustained release profiles. The developed hybrid in situ gel exhibited suitable rheological characteristics to enhance the residence time on the ocular surface. The conducted microbiological studies reveal superior inhibition of methicillin-resistant Staphylococcus aureus (MRSA) adhesion by means of the niosomal in situ gel compared to the blank gel and untreated control. Regarding the antioxidant potential, the dual loading of CBD and EGCG in niosomes enhances their protective properties, and the inclusion of niosomes in gel form preserves these effects. The obtained outcomes indicate the developed niosomal in situ gel as a promising drug delivery platform in ophthalmology. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

2 pages, 144 KiB  
Retraction
RETRACTED: Fahmy et al. Intranasal Niosomal In Situ Gel as a Promising Approach for Enhancing Flibanserin Bioavailability and Brain Delivery: In Vitro Optimization and Ex Vivo/In Vivo Evaluation. Pharmaceutics 2020, 12, 485
by Usama A. Fahmy, Shaimaa M. Badr-Eldin, Osama A. A. Ahmed, Hibah M. Aldawsari, Singkome Tima, Hani Z. Asfour, Mohammed W. Al-Rabia, Aya A. Negm, Muhammad H. Sultan, Osama A. A. Madkhali and Nabil A. Alhakamy
Pharmaceutics 2024, 16(2), 189; https://doi.org/10.3390/pharmaceutics16020189 - 29 Jan 2024
Viewed by 1301
Abstract
This journal retracts the article “Intranasal Niosomal In Situ Gel as a Promising Approach for Enhancing Flibanserin Bioavailability and Brain Delivery: In Vitro Optimization and Ex Vivo/In Vivo Evaluation” [...] Full article
18 pages, 3075 KiB  
Article
Ophthalmic Bimatoprost-Loaded Niosomal In Situ Gel: Preparation, Optimization, and In Vivo Pharmacodynamics Study
by Mohammed F. Aldawsari, Ehssan H. Moglad, Hadil Faris Alotaibi, Hamad M. Alkahtani and El-Sayed Khafagy
Polymers 2023, 15(21), 4336; https://doi.org/10.3390/polym15214336 - 6 Nov 2023
Cited by 8 | Viewed by 2716
Abstract
This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) [...] Read more.
This study aimed at formulating the antiglaucoma agent, Bimatoprost (BMT), into niosomal in situ gel (BMT-ISG) for ocular delivery. Niosomes containing cholesterol/span 60 entrapping BMT were fabricated using a thin-film hydration method. The fabricated niosomes were optimized and characterized for entrapment efficiency (%EE) and size. The optimized BMT-loaded niosomal formulation prepared at a cholesterol/span 60 ratio of 1:2 exhibited the highest entrapment (81.2 ± 1.2%) and a small particle size (167.3 ± 9.1 nm), and they were selected for incorporation into in situ gelling systems (BMT-ISGs) based on Pluronic F127/Pluronic F68. Finally, the in vivo efficiency of the BMT-ISG formulation, in terms of lowering the intraocular pressure (IOP) in normotensive male albino rabbits following ocular administration, was assessed and compared to that of BMT ophthalmic solution. All the formulated BMT-ISGs showed sol–gel transition temperatures ranging from 28.1 °C to 40.5 ± 1.6 °C. In addition, the BMT-ISG formulation sustained in vitro BMT release for up to 24 h. Interestingly, in vivo experiments depicted that topical ocular administration of optimized BMT-ISG formulation elicited a significant decline in IOP, with maximum mean decreases in IOP of 9.7 ± 0.6 mm Hg, compared to BMT aqueous solution (5.8 ± 0.6 mm Hg). Most importantly, no signs of irritation to the rabbit’s eye were observed following topical ocular administration of the optimized BMT-ISG formulation. Collectively, our results suggested that niosomal in situ gels might be a feasible delivery vehicle for topical ocular administration of anti-glaucoma agents, particularly those with poor ocular bioavailability. Full article
(This article belongs to the Special Issue Advance of Polymer Nanogels and Microgels)
Show Figures

Figure 1

8 pages, 3253 KiB  
Proceeding Paper
Development and Evaluation of Atorvastatin Calcium Nanovesicular Niosomal Gel for the Treatment of Periodontitis
by Nidhi S. Kate, Bhushan R. Rane and Ashish S. Jain
Eng. Proc. 2023, 56(1), 66; https://doi.org/10.3390/ASEC2023-15313 - 26 Oct 2023
Cited by 5 | Viewed by 1137
Abstract
Nowadays, smoking and tobacco-related habits (chewing tobacco) are recognized as the most frequent environmental risk factor for periodontal disorders. Atorvastatin calcium (ATV) is a well-known lipid-lowering drug, but recent studies have discussed its pleiotropic effects, including anti-inflammatory properties, anti-bacterial properties, etc. This anti-inflammatory [...] Read more.
Nowadays, smoking and tobacco-related habits (chewing tobacco) are recognized as the most frequent environmental risk factor for periodontal disorders. Atorvastatin calcium (ATV) is a well-known lipid-lowering drug, but recent studies have discussed its pleiotropic effects, including anti-inflammatory properties, anti-bacterial properties, etc. This anti-inflammatory effect can be studied as an adjunct for scaling and root planing (a non-surgical process to remove dental tartar and smooth root surfaces) for periodontic problems. The goal of the study is to formulate and evaluate ATV-niosomes, introduce them in a gel-based formulation by utilizing an appropriate gelling agent, and evaluate them for various parameters. The niosomal vesicles were prepared using the thin-film hydration method. Gel was prepared using the dispersion method, and an in vitro drug release study was conducted using a Franz diffusion cell. According to the results evaluated, ATV niosomal gels loaded with different concentrations of Carbopol 934 were effectively produced utilizing ATV-niosomes that were formulated through the thin-film hydration process using cholesterol and Span 60. The ATV-niosomes showed the highest entrapment efficiency, up to 84%, and the zeta potential (−18 mV) and PDI (0.106) showed stable and homogenous behavior in the vesicles formed. The performance of the optimized gel containing 1% Carbopol 934 showed in vitro release of up to 8 h following zero-order release. The gel also proved to have antimicrobial activity against S. aureus and P. aeruginosa. Therefore, we conclude that 1% Carbopol 934 gel comprising ATV-niosomes showed a prolonged effect compared to plain ATV and can effectively work to improve the periodontal condition as an adjunct to scaling and root planing. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

14 pages, 3147 KiB  
Article
Proniosomal Gel-Loaded Phosphodiesterase Inhibitors (Sildenafil, Vardenafil, and Tadalafil): Prospects for Topical Penile Therapy of Tadalafil for Treatment of Erectile Dysfunction
by Soad A. Mohamed, Remon Roshdy Rofaeil, Hesham Salem, Mahmoud Elrehany, Yahya I. Asiri, Adel Al Fatease and Hamdy Abdelkader
Gels 2023, 9(8), 597; https://doi.org/10.3390/gels9080597 - 25 Jul 2023
Cited by 5 | Viewed by 3242
Abstract
Oral phosphodiesterase inhibitors have emerged as a game changer for the treatment of erectile dysfunction (ED) since attaining FDA approval for its first member, sildenafil, in 1998. Topical penile therapy could be a viable replacement for oral medication that would transform the treatment [...] Read more.
Oral phosphodiesterase inhibitors have emerged as a game changer for the treatment of erectile dysfunction (ED) since attaining FDA approval for its first member, sildenafil, in 1998. Topical penile therapy could be a viable replacement for oral medication that would transform the treatment of ED for many decades to come. This innovative idea could offer a safer topical alternative with less vision and cardiovascular side effects than the oral route. This work aims at developing proniosomal gels for three selected members (sildenafil, vardenafil, and tadalafil) and investigating the proniosomal gels on a rodent model. Niosomes derived from the parent proniosomal gels were characterized for entrapment efficiency (EE%), size, polydispersity index (PDI), zeta potential, and morphology. Proniosomal gels were evaluated for skin permeation, in vivo mating behaviors, and biochemical assays of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) post penile topical administrations. The optimized proniosomes loaded with tadalafil (F1-T) were compared with oral tablets (Cialis®). Proniosomal gels demonstrated significant enhancement of skin penetration by up to 5.5-fold, compared to control topical suspension. Tadalafil-loaded proniosomes showed superior skin permeability over sildenafil- and vardenafil-loaded proniosomes. In addition, significant improvement was noticed regarding intromission number, intromission ratio, NO, and cGMP for the proniosomal gel F1-T, compared to the untreated control. No statistically significant (p > 0.05) differences in sexual performance or biochemical parameters (NO and cGMP levels) were recorded among orally and topically (tadalafil proniosomal gel) administered groups. These findings support tadalafil topical penile therapy as a promising alternative to the oral route. Full article
(This article belongs to the Special Issue Advances in Functional Gel)
Show Figures

Graphical abstract

16 pages, 4781 KiB  
Article
Encapsulation of Thymol in Gelatin Methacryloyl (GelMa)-Based Nanoniosome Enables Enhanced Antibiofilm Activity and Wound Healing
by Maryam Moghtaderi, Saba Bazzazan, Ghazal Sorourian, Maral Sorourian, Yasaman Akhavanzanjani, Hassan Noorbazargan and Qun Ren
Pharmaceutics 2023, 15(6), 1699; https://doi.org/10.3390/pharmaceutics15061699 - 9 Jun 2023
Cited by 13 | Viewed by 2743
Abstract
Non-healing wounds impose huge cost on patients, healthcare, and society, which are further fortified by biofilm formation and antimicrobial resistance (AMR) problems. Here, Thymol, an herbal antimicrobial agent, is utilized to combat AMR. For efficient delivery of Thymol gelatin methacryloyl (GelMa), a hydrophilic [...] Read more.
Non-healing wounds impose huge cost on patients, healthcare, and society, which are further fortified by biofilm formation and antimicrobial resistance (AMR) problems. Here, Thymol, an herbal antimicrobial agent, is utilized to combat AMR. For efficient delivery of Thymol gelatin methacryloyl (GelMa), a hydrophilic polymeric hydrogel with excellent biocompatibility combined with niosome was used to encapsulate Thymol. After optimization of the niosomal Thymol (Nio–Thymol) in the company of GelMa (Nio–Thymol@GelMa) to achieve maximum entrapment efficiency, minimum size, and low polydispersity index, the Thymol release peaked at 60% and 42% from Nio–Thymol@GelMa in medium with pH values of 6.5 and 7.4 after 72 h, respectively. Furthermore, Nio–Thymol@GelMa demonstrated higher antibacterial and anti-biofilm activity than Nio–Thymol and free Thymol against both Gram-negative and Gram-positive bacteria. Interestingly, compared with other obtained formulations, Nio–Thymol@GelMa also led to greater enhancement of migration of human dermal fibroblasts in vitro, and higher upregulation of the expression of certain growth factors such as FGF-1, and matrix metalloproteinases such as MMP-2 and MMP-13. These results suggest that Nio–Thymol@GelMa can represent a potential drug preparation for Thymol to enhance the wound healing process and antibacterial efficacy. Full article
Show Figures

Figure 1

38 pages, 412 KiB  
Review
Recent Progress in Gels for Neuropathic Pain
by Ciprian Pușcașu, Anca Zanfirescu and Simona Negreș
Gels 2023, 9(5), 417; https://doi.org/10.3390/gels9050417 - 16 May 2023
Cited by 9 | Viewed by 7046
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the [...] Read more.
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. While several treatment options are available, they often have limited efficacy and are associated with adverse effects. In recent years, gels have emerged as a promising option for the treatment of neuropathic pain. Inclusion of various nanocarriers, such as cubosomes and niosomes, into gels results in pharmaceutical forms with higher drug stability and increased drug penetration into tissues compared to products currently marketed for the treatment of neuropathic pain. Furthermore, these compounds usually provide sustained drug release and are biocompatible and biodegradable, which makes them a safe option for drug delivery. The purpose of this narrative review was to provide a comprehensive analysis of the current state of the field and identify potential directions for future research in the development of effective and safe gels for the treatment of neuropathic pain, ultimately improving the quality of life for patients suffering from neuropathic pain. Full article
Show Figures

Graphical abstract

21 pages, 5629 KiB  
Article
Quality-by-Design-Assisted Optimization of Carvacrol Oil-Loaded Niosomal Gel for Anti-Inflammatory Efficacy by Topical Route
by Mohammed Ghazwani, Umme Hani, Aftab Alam and Mohammed H. Alqarni
Gels 2023, 9(5), 401; https://doi.org/10.3390/gels9050401 - 10 May 2023
Cited by 21 | Viewed by 2881
Abstract
Niosomes are multilamellar vesicles that effectively transfer active ingredients into the skin’s layers. To improve the active substance’s penetration across the skin, these carriers are frequently utilized as topical drug delivery systems. Essential oils (EOs) have garnered significant interest in the field of [...] Read more.
Niosomes are multilamellar vesicles that effectively transfer active ingredients into the skin’s layers. To improve the active substance’s penetration across the skin, these carriers are frequently utilized as topical drug delivery systems. Essential oils (EOs) have garnered significant interest in the field of research and development owing to their various pharmacological activities, cost-effectiveness, and simple manufacturing techniques. However, these ingredients undergo degradation and oxidation over time, leading to a loss of functionality. Niosome formulations have been developed to deal with these challenges. The main goal of this work was to create a niosomal gel of carvacrol oil (CVC) to improve its penetration into the skin for anti-inflammatory actions and stability. By changing the ratio of drug, cholesterol and surfactant, various formulations of CVC niosomes were formulated using Box Behnken Design (BBD). A thin-film hydration technique using a rotary evaporator was employed for the development of niosomes. Following optimization, the CVC-loaded niosomes had shown: 180.23 nm, 0.265, −31.70 mV, and 90.61% of vesicle size, PDI, zeta potential, and EE%. An in vitro study on drug release discovered the rates of drug release for CVC-Ns and CVC suspension, which were found to be 70.24 ± 1.21 and 32.87 ± 1.03, respectively. The release of CVC from niosomes best fit the Higuchi model, and the Korsmeyer–Peppas model suggests that the release of the drug followed the non-Fickian diffusion. In a dermatokinetic investigation, niosome gel significantly increased CVC transport in the skin layers when compared to CVC–conventional formulation gel (CVC-CFG). Confocal laser scanning microscopy (CLSM) of rat skin exposed to the rhodamine B-loaded niosome formulation showed a deeper penetration of 25.0 µm compared to the hydroalcoholic rhodamine B solution (5.0 µm). Additionally, the CVC-N gel antioxidant activity was higher than that of free CVC. The formulation coded F4 was selected as the optimized formulation and then gelled with carbopol to improve its topical application. Niosomal gel underwent tests for pH determination, spreadability, texture analysis, and CLSM. Our findings imply that the niosomal gel formulations could represent a potential strategy for the topical delivery of CVC in the treatment of inflammatory disease. Full article
(This article belongs to the Special Issue Properties and Applications of Biomaterials Related to Gels)
Show Figures

Figure 1

14 pages, 1577 KiB  
Article
Niosomal Curcumin Suppresses IL17/IL23 Immunopathogenic Axis in Skin Lesions of Psoriatic Patients: A Pilot Randomized Controlled Trial
by Hanieh Kolahdooz, Vahid Khori, Vahid Erfani-Moghadam, Fatemeh Livani, Saeed Mohammadi and Ali Memarian
Life 2023, 13(5), 1076; https://doi.org/10.3390/life13051076 - 24 Apr 2023
Cited by 8 | Viewed by 3866
Abstract
Psoriasis (PS) is characterized by hyperplasia of epidermis and infiltration of immune cells in the dermis. A negligible susceptibility of hypodermic permeation for local anti-inflammatory remedies is one of the major causes of medication failures. Although curcumin (CUR) has indicated effectiveness in treatment [...] Read more.
Psoriasis (PS) is characterized by hyperplasia of epidermis and infiltration of immune cells in the dermis. A negligible susceptibility of hypodermic permeation for local anti-inflammatory remedies is one of the major causes of medication failures. Although curcumin (CUR) has indicated effectiveness in treatment of inflammation, its successful permeation through the stratum corneum is yet a challenging issue. Therefore, niosome (NIO) nanoparticles were used as curcumin carriers to enhance its delivery and anti-inflammatory effects. Curcumin-niosome (CUR-NIO) formulations were constructed by the thin-film-hydration (TFH) technique and were added to hyaluronic acid and Marine-collagen gel-based formulation. Five mild-to-moderate PS patients (18–60 years) with PASI scores < 30 with symmetrical and similar lesions were included in the study. The prepared formulation (CUR 15 µM) was topically administered for 4 weeks on the skin lesions, in comparison to the placebo. Clinical skin manifestations were monitored and skin punches were obtained for further gene expression analyses. There was a significant reduction in redness, scaling, and an apparent improvement in CUR-NIO-treated group in comparison to the placebo-treated counterpart. The gene expression analyses resulted in significantly downregulation of IL17, IL23, IL22, and TNFα, S100A7, S100A12, and Ki67 in CUR-NIO-treated lesions. Consequently, CUR-NIO could provide therapeutic approaches for the patients with mild-to-moderate PS by suppressing the IL17/IL23 immunopathogenic axis. Full article
Show Figures

Figure 1

20 pages, 4914 KiB  
Article
Qbd-Based Approach to Optimize Niosomal Gel of Levosulpiride for Transdermal Drug Delivery
by Ahmed S. Alnaim, Hiral Shah, Anroop B. Nair, Vivek Mewada, Smit Patel, Shery Jacob, Bandar Aldhubiab, Mohamed A. Morsy, Rashed M. Almuqbil, Pottathil Shinu and Jigar Shah
Gels 2023, 9(3), 213; https://doi.org/10.3390/gels9030213 - 10 Mar 2023
Cited by 17 | Viewed by 3383
Abstract
Poor aqueous solubility besides extensive hepatic first effect significantly decreases the oral absorption of levosulpiride, which in turn minimizes its therapeutic effectiveness. Niosomes have been extensively investigated as a transdermal vesicular nanocarrier to increase the delivery of low permeable compounds into and across [...] Read more.
Poor aqueous solubility besides extensive hepatic first effect significantly decreases the oral absorption of levosulpiride, which in turn minimizes its therapeutic effectiveness. Niosomes have been extensively investigated as a transdermal vesicular nanocarrier to increase the delivery of low permeable compounds into and across the skin. This research work was to design, develop and optimize levosulpiride-loaded niosomal gel and to evaluate its prospects for transdermal delivery. The Box-Behnken design was used to optimize niosomes by analyzing the impact of three factors (cholesterol; X1, Span 40; X2, and sonication time; X3) on the responses (particle size, Y1, and entrapment efficiency, Y2). Optimized formulation (NC) was incorporated into gel and evaluated for pharmaceutical properties, drug release study, ex vivo permeation, and in vivo absorption. The design experiment data suggest that all three independent variables influence both response variables significantly (p < 0.01). Pharmaceutical characteristics of NC vesicles showed the absence of drug excipient interaction, nanosize (~102.2 nm), narrow distribution (~0.218), adequate zeta potential (−49.9 mV), and spherical shape, which are suitable for transdermal therapy. The levosulpiride release rates varied significantly (p < 0.01) between niosomal gel formulation and control. Greater flux (p < 0.01) was observed with levosulpiride-loaded niosomal gel than with control gel formulation. Indeed, the drug plasma profile of niosomal gel was significantly higher (p < 0.005), with ~3 folds higher Cmax and greater bioavailability (~500% higher; p < 0.0001) than its counterpart. Overall, these findings imply that the use of an optimized niosomal gel formulation can increase the therapeutic efficacy of levosulpiride and may represent a promising alternative to conventional therapy. Full article
Show Figures

Figure 1

16 pages, 3365 KiB  
Article
Niosomes for Topical Application of Antioxidant Molecules: Design and In Vitro Behavior
by Maddalena Sguizzato, Alessia Pepe, Anna Baldisserotto, Riccardo Barbari, Leda Montesi, Markus Drechsler, Paolo Mariani and Rita Cortesi
Gels 2023, 9(2), 107; https://doi.org/10.3390/gels9020107 - 26 Jan 2023
Cited by 13 | Viewed by 3042
Abstract
In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the [...] Read more.
In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application. Niosomes, composed of Span 20 or Tween 20, were produced through the direct hydration method, and therefore, borate buffer or a micellar solution of poloxamer 188 was used as the aqueous phase. The niosomes were firstly characterized in terms of morphology, dimensional and encapsulation stability. Afterwards, gels based on poloxamer 407 or xanthan gum were compared in terms of spreadability and adhesiveness. It was found to have greater spreadability for gels based on poloxamer 407 and 100% adhesiveness for those based on xanthan gum. The in vitro diffusion of drugs studied using Franz cells associated with membranes of mixed cellulose esters showed that the use of a poloxamer micellar hydration phase determined a lower release as well as the use of Span 20. The thickened niosomes ensured controlled diffusion of the antioxidant molecules. Lastly, the in vivo irritation test confirmed the safeness of niosomal gels after cutaneous application. Full article
(This article belongs to the Special Issue Liposomal and Ethosomal Gels: From Design to Application)
Show Figures

Graphical abstract

Back to TopTop