Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = neuromyotonia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4363 KiB  
Case Report
Small Complex Rearrangement in HINT1-Related Axonal Neuropathy
by Alessandra Tessa, Mariapaola Schifino, Eliana Salvo, Rosanna Trovato, Luca Cesana, Silvia Frosini, Rosa Pasquariello, Giada Sgherri, Roberta Battini, Maria Clara Bonaglia, Filippo Maria Santorelli and Guja Astrea
Genes 2024, 15(11), 1483; https://doi.org/10.3390/genes15111483 - 19 Nov 2024
Viewed by 1698
Abstract
Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 (HINT1) gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent [...] Read more.
Background: Autosomal recessive inherited pathogenetic variants in the histidine triad nucleotide-binding protein 1 (HINT1) gene are responsible for an axonal Charcot-Marie-Tooth neuropathy associated with neuromyotonia, a phenomenon resulting from peripheral nerve hyperexcitability that causes a spontaneous muscle activity such as persistent muscle contraction, impaired relaxation and myokymias. Methods: Herein, we describe two brothers in whom biallelic HINT1 variants were identified following a multidisciplinary approach. Results: The younger brother came to our attention for clinical evaluation of moderate intellectual disability, language developmental delay, and some behavioral issues. His elder brother presented mild intellectual disability, hyperactivity, tiptoe walking, and gait ataxia. At first evaluation, motor impairment with frequent falls, pes cavus, and distal hyposthenia with reduced osteotendinous reflexes were found in both. Grip myotonic phenomenon was also noted. Blood tests revealed mildly elevated creatine kinase, and neurophysiology investigations revealed predominantly axonal polyneuropathy. Muscle MRI highlighted fibro-adipose infiltration, prevalent in the lower limbs. Gene panel testing detected a heterozygous HINT1 variant (c.355C>T/p.(Arg119Trp)) on the paternal allele. A further in-depth analysis using Integrative Genomics Viewer and Optical Genome Mapping led us to identify an additional variant in HINT1 represented by a complex rearrangement located in the region 5′UTR-exon 1-intron 1, not previously described. Conclusions: This complex rearrangement could have been overlooked if the clinical picture had not been evaluated as a whole (from a clinical, neurophysiological, and neuroimaging point of view). Neuropsychiatric manifestations (intellectual disability, hyperactivity, etc.) are part of the picture of HINT1-related neuromyotonia. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 946 KiB  
Review
The Superior Cerebellar Artery: Variability and Clinical Significance
by Mikołaj Malicki, Bartosz M. Szmyd, Ernest J. Bobeff, Filip F. Karuga, Michał M. Piotrowski, Dawid Kościołek, Sora Wanibuchi, Maciej Radek and Dariusz J. Jaskólski
Biomedicines 2023, 11(7), 2009; https://doi.org/10.3390/biomedicines11072009 - 17 Jul 2023
Cited by 13 | Viewed by 10642
Abstract
The superior cerebellar artery (SCA) arises from the distal part of the basilar artery and passes by the oculomotor, trochlear, and trigeminal nerves. SCA is known to play a crucial role in the development of trigeminal neuralgia. However, due to its anatomical variability, [...] Read more.
The superior cerebellar artery (SCA) arises from the distal part of the basilar artery and passes by the oculomotor, trochlear, and trigeminal nerves. SCA is known to play a crucial role in the development of trigeminal neuralgia. However, due to its anatomical variability, it may also trigger other neurovascular compression (NVC), including hemifacial spasm, oculomotor nerve palsy, and ocular neuromyotonia. Additionally, it may be associated with ischemic syndromes and aneurysm development, highlighting its clinical significance. The most common anatomical variations of the SCA include duplication, a single vessel origin from the posterior cerebral artery (PCA), and a common trunk with PCA. Rarely observed variants include bifurcation and origin from the internal carotid artery. Certain anatomical variants such as early bifurcation and caudal course of duplicated SCA trunk may increase the risk of NVC. In this narrative review, we aimed to examine the impact of the anatomical variations of SCA on the NVCs based on papers published in Pubmed, Scopus, and Web of Science databases with a snowballing approach. Our review emphasizes the importance of a thorough understanding of the anatomical variability of SCA to optimize the management of patients with NVCs associated with this artery. Full article
(This article belongs to the Special Issue Pathogenesis and Therapy of Neurovascular Compression Syndromes)
Show Figures

Figure 1

6 pages, 921 KiB  
Case Report
Neuromyotonia with Central Nervous System Lesions following Quadrivalent Human Papilloma Virus Vaccination
by Maryam Hatami, Moritz Förster, Vivien Weyers, Saskia Räuber, Sven G. Meuth and David Kremer
Vaccines 2022, 10(7), 1132; https://doi.org/10.3390/vaccines10071132 - 16 Jul 2022
Cited by 2 | Viewed by 5881
Abstract
Neuromyotonia is a rare peripheral nerve hyperexcitability syndrome often associated with antibodies directed against contactin-associated protein-like 2 and leucine-rich, glioma inactivated 1. The quadrivalent human papilloma virus vaccine Gardasil®, first approved in 2006, is known to be a highly effective prophylaxis [...] Read more.
Neuromyotonia is a rare peripheral nerve hyperexcitability syndrome often associated with antibodies directed against contactin-associated protein-like 2 and leucine-rich, glioma inactivated 1. The quadrivalent human papilloma virus vaccine Gardasil®, first approved in 2006, is known to be a highly effective prophylaxis against papillomavirus types 6, 11, 16, and 18. Molecularly, this non-infectious recombinant vaccine is based on purified L1 proteins from the human papilloma virus capsid. Since the approval of this vaccine, several studies have investigated its safety regarding the occurrence of autoimmune conditions following application. Here, we present the first case of neuromyotonia with active Gadolinium enhancing demyelinating central nervous system lesions following vaccination with Gardasil®. Full article
Show Figures

Figure 1

17 pages, 1444 KiB  
Review
Presynaptic Paraneoplastic Disorders of the Neuromuscular Junction: An Update
by Maria Pia Giannoccaro, Patrizia Avoni and Rocco Liguori
Brain Sci. 2021, 11(8), 1035; https://doi.org/10.3390/brainsci11081035 - 3 Aug 2021
Cited by 10 | Viewed by 5816
Abstract
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia [...] Read more.
The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ. Full article
(This article belongs to the Special Issue Advanced Research in Neuromuscular Disorders)
Show Figures

Figure 1

14 pages, 1981 KiB  
Article
Musculoskeletal Features without Ataxia Associated with a Novel de novo Mutation in KCNA1 Impairing the Voltage Sensitivity of Kv1.1 Channel
by Paola Imbrici, Andrea Accogli, Rikard Blunck, Concetta Altamura, Michele Iacomino, Maria Cristina D’Adamo, Anna Allegri, Marina Pedemonte, Noemi Brolatti, Stella Vari, Matteo Cataldi, Valeria Capra, Stefano Gustincich, Federico Zara, Jean-Francois Desaphy and Chiara Fiorillo
Biomedicines 2021, 9(1), 75; https://doi.org/10.3390/biomedicines9010075 - 14 Jan 2021
Cited by 5 | Viewed by 3808
Abstract
The KCNA1 gene encodes the α subunit of the voltage-gated Kv1.1 potassium channel that critically regulates neuronal excitability in the central and peripheral nervous systems. Mutations in KCNA1 have been classically associated with episodic ataxia type 1 (EA1), a movement disorder triggered by [...] Read more.
The KCNA1 gene encodes the α subunit of the voltage-gated Kv1.1 potassium channel that critically regulates neuronal excitability in the central and peripheral nervous systems. Mutations in KCNA1 have been classically associated with episodic ataxia type 1 (EA1), a movement disorder triggered by physical and emotional stress. Additional features variably reported in recent years include epilepsy, myokymia, migraine, paroxysmal dyskinesia, hyperthermia, hypomagnesemia, and cataplexy. Interestingly, a few individuals with neuromyotonia, either isolated or associated with skeletal deformities, have been reported carrying variants in the S2–S3 transmembrane segments of Kv1.1 channels in the absence of any other symptoms. Here, we have identified by whole-exome sequencing a novel de novo variant, T268K, in KCNA1 in a boy displaying recurrent episodes of neuromyotonia, muscle hypertrophy, and skeletal deformities. Through functional analysis in heterologous cells and structural modeling, we show that the mutation, located at the extracellular end of the S3 helix, causes deleterious effects, disrupting Kv1.1 function by altering the voltage dependence of activation and kinetics of deactivation, likely due to abnormal interactions with the voltage sensor in the S4 segment. Our study supports previous evidence suggesting that specific residues within the S2 and S3 segments of Kv1.1 result in a distinctive phenotype with predominant musculoskeletal presentation. Full article
Show Figures

Graphical abstract

22 pages, 1705 KiB  
Review
Assembly and Function of the Juxtaparanodal Kv1 Complex in Health and Disease
by Delphine Pinatel and Catherine Faivre-Sarrailh
Life 2021, 11(1), 8; https://doi.org/10.3390/life11010008 - 24 Dec 2020
Cited by 14 | Viewed by 6108
Abstract
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their [...] Read more.
The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease. Full article
(This article belongs to the Special Issue Myelin and Oligodendrocyte-Neuron Interactions)
Show Figures

Figure 1

21 pages, 1295 KiB  
Review
Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches
by Maria Cristina D’Adamo, Antonella Liantonio, Jean-Francois Rolland, Mauro Pessia and Paola Imbrici
Int. J. Mol. Sci. 2020, 21(8), 2935; https://doi.org/10.3390/ijms21082935 - 22 Apr 2020
Cited by 68 | Viewed by 8188
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal [...] Read more.
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential. Full article
Show Figures

Figure 1

Back to TopTop