Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (168)

Search Parameters:
Keywords = network attack signatures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
65 pages, 3348 KB  
Systematic Review
The Role of Graph Neural Networks, Transformers, and Reinforcement Learning in Network Threat Detection: A Systematic Literature Review
by Thilina Prasanga Doremure Gamage, Jairo A. Gutierrez and Sayan K. Ray
Electronics 2025, 14(21), 4163; https://doi.org/10.3390/electronics14214163 (registering DOI) - 24 Oct 2025
Abstract
Traditional network threat detection based on signatures is becoming increasingly inadequate as network threats and attacks continue to grow in their novelty and sophistication. Such advanced network threats are better handled by anomaly detection based on Machine Learning (ML) models. However, conventional anomaly-based [...] Read more.
Traditional network threat detection based on signatures is becoming increasingly inadequate as network threats and attacks continue to grow in their novelty and sophistication. Such advanced network threats are better handled by anomaly detection based on Machine Learning (ML) models. However, conventional anomaly-based network threat detection with traditional ML and Deep Learning (DL) faces fundamental limitations. Graph Neural Networks (GNNs) and Transformers are recent deep learning models with innovative architectures, capable of addressing these challenges. Reinforcement learning (RL) can facilitate adaptive learning strategies for GNN- and Transformer-based Intrusion Detection Systems (IDS). However, no systematic literature review (SLR) has jointly analyzed and synthesized these three powerful modeling algorithms in network threat detection. To address this gap, this SLR analyzed 36 peer-reviewed studies published between 2017 and 2025, collectively identifying 56 distinct network threats via the proposed threat classification framework by systematically mapping them to Enterprise MITRE ATT&CK tactics and their corresponding Cyber Kill Chain stages. The reviewed literature consists of 23 GNN-based studies implementing 19 GNN model types, 9 Transformer-based studies implementing 13 Transformer architectures, and 4 RL-based studies with 5 different RL algorithms, evaluated across 50 distinct datasets, demonstrating their overall effectiveness in network threat detection. Full article
(This article belongs to the Special Issue AI-Enhanced Security: Advancing Threat Detection and Defense)
72 pages, 9523 KB  
Article
Neural Network IDS/IPS Intrusion Detection and Prevention System with Adaptive Online Training to Improve Corporate Network Cybersecurity, Evidence Recording, and Interaction with Law Enforcement Agencies
by Serhii Vladov, Victoria Vysotska, Svitlana Vashchenko, Serhii Bolvinov, Serhii Glubochenko, Andrii Repchonok, Maksym Korniienko, Mariia Nazarkevych and Ruslan Herasymchuk
Big Data Cogn. Comput. 2025, 9(11), 267; https://doi.org/10.3390/bdcc9110267 (registering DOI) - 22 Oct 2025
Abstract
Thise article examines the reliable online detection and IDS/IPS intrusion prevention in dynamic corporate networks problems, where traditional signature-based methods fail to keep pace with new and evolving attacks, and streaming data is susceptible to drift and targeted “poisoning” of the training dataset. [...] Read more.
Thise article examines the reliable online detection and IDS/IPS intrusion prevention in dynamic corporate networks problems, where traditional signature-based methods fail to keep pace with new and evolving attacks, and streaming data is susceptible to drift and targeted “poisoning” of the training dataset. As a solution, we propose a hybrid neural network system with adaptive online training, a formal minimax false-positive control framework, and a robustness mechanism set (a Huber model, pruned learning rate, DRO, a gradient-norm regularizer, and a prioritized replay). In practice, the system combines modal encoders for traffic, logs, and metrics; a temporal GNN for entity correlation; a variational module for uncertainty assessment; a differentiable symbolic unit for logical rules; an RL agent for incident prioritization; and an NLG module for explanations and the preparation of forensically relevant artifacts. In this case, the applied components are connected via a cognitive layer (cross-modal fusion memory), a Bayesian-neural network fuser, and a single multi-task loss function. The practical implementation includes the pipeline “novelty detection → active labelling → incremental supervised update” and chain-of-custody mechanisms for evidential fitness. A significant improvement in quality has been experimentally demonstrated, since the developed system achieves an ROC AUC of 0.96, an F1-score of 0.95, and a significantly lower FPR compared to basic architectures (MLP, CNN, and LSTM). In applied validation tasks, detection rates of ≈92–94% and resistance to distribution drift are noted. Full article
(This article belongs to the Special Issue Internet Intelligence for Cybersecurity)
Show Figures

Figure 1

32 pages, 1170 KB  
Article
Formal Analysis of EAP-TLS Protocol Based on Logic of Events
by Meihua Xiao, Weili Cheng, Hongming Fan, Huaibin Shao, Zehuan Li and Yingqiang Zhong
Symmetry 2025, 17(9), 1456; https://doi.org/10.3390/sym17091456 - 4 Sep 2025
Viewed by 593
Abstract
The Extensible Authentication Protocol–Transport Layer Security (EAP-TLS) is a critical authentication protocol for wireless networks and secure IoT communications. However, it faces significant challenges from man-in-the-middle attacks, including message tampering, replay, and certificate forgery. Although model checking techniques have been applied to verify [...] Read more.
The Extensible Authentication Protocol–Transport Layer Security (EAP-TLS) is a critical authentication protocol for wireless networks and secure IoT communications. However, it faces significant challenges from man-in-the-middle attacks, including message tampering, replay, and certificate forgery. Although model checking techniques have been applied to verify its security properties, the complexity of the EAP-TLS handshake often prevents accurate formal modeling; existing studies rarely assess the communication overhead of protocol enhancements. Moreover, traditional Logic of Events Theory (LoET) struggles to handle transport-layer protocols like EAP-TLS due to their intricate interaction processes. This study proposes a novel formal analysis approach, extending LoET by expanding five event classes, formulating corresponding rules, and introducing new axioms. Formal verification reveals attack paths involving plaintext theft, message tampering, and entity impersonation. The research proposes an enhanced strategy to mitigate these vulnerabilities through hash merging, encryption, and signature methods, alongside analyzing their communication costs to ensure feasibility. Using the extended LoET, the improved protocol is rigorously proven to satisfy strong authentication, thereby enhancing practical security. The proposed method achieves a time complexity of O(n2) and demonstrates superior performance in resisting state explosion compared with related approaches, thus establishing a more efficient and robust framework for EAP-TLS security analysis. Full article
Show Figures

Figure 1

37 pages, 2286 KB  
Article
Parameterised Quantum SVM with Data-Driven Entanglement for Zero-Day Exploit Detection
by Steven Jabulani Nhlapo, Elodie Ngoie Mutombo and Mike Nkongolo Wa Nkongolo
Computers 2025, 14(8), 331; https://doi.org/10.3390/computers14080331 - 15 Aug 2025
Viewed by 1232
Abstract
Zero-day attacks pose a persistent threat to computing infrastructure by exploiting previously unknown software vulnerabilities that evade traditional signature-based network intrusion detection systems (NIDSs). To address this limitation, machine learning (ML) techniques offer a promising approach for enhancing anomaly detection in network traffic. [...] Read more.
Zero-day attacks pose a persistent threat to computing infrastructure by exploiting previously unknown software vulnerabilities that evade traditional signature-based network intrusion detection systems (NIDSs). To address this limitation, machine learning (ML) techniques offer a promising approach for enhancing anomaly detection in network traffic. This study evaluates several ML models on a labeled network traffic dataset, with a focus on zero-day attack detection. Ensemble learning methods, particularly eXtreme gradient boosting (XGBoost), achieved perfect classification, identifying all 6231 zero-day instances without false positives and maintaining efficient training and prediction times. While classical support vector machines (SVMs) performed modestly at 64% accuracy, their performance improved to 98% with the use of the borderline synthetic minority oversampling technique (SMOTE) and SMOTE + edited nearest neighbours (SMOTEENN). To explore quantum-enhanced alternatives, a quantum SVM (QSVM) is implemented using three-qubit and four-qubit quantum circuits simulated on the aer_simulator_statevector. The QSVM achieved high accuracy (99.89%) and strong F1-scores (98.95%), indicating that nonlinear quantum feature maps (QFMs) can increase sensitivity to zero-day exploit patterns. Unlike prior work that applies standard quantum kernels, this study introduces a parameterised quantum feature encoding scheme, where each classical feature is mapped using a nonlinear function tuned by a set of learnable parameters. Additionally, a sparse entanglement topology is derived from mutual information between features, ensuring a compact and data-adaptive quantum circuit that aligns with the resource constraints of noisy intermediate-scale quantum (NISQ) devices. Our contribution lies in formalising a quantum circuit design that enables scalable, expressive, and generalisable quantum architectures tailored for zero-day attack detection. This extends beyond conventional usage of QSVMs by offering a principled approach to quantum circuit construction for cybersecurity. While these findings are obtained via noiseless simulation, they provide a theoretical proof of concept for the viability of quantum ML (QML) in network security. Future work should target real quantum hardware execution and adaptive sampling techniques to assess robustness under decoherence, gate errors, and dynamic threat environments. Full article
Show Figures

Figure 1

45 pages, 3405 KB  
Article
Electric Network Frequency as Environmental Fingerprint for Metaverse Security: A Comprehensive Survey
by Mohsen Hatami, Lhamo Dorje, Xiaohua Li and Yu Chen
Computers 2025, 14(8), 321; https://doi.org/10.3390/computers14080321 - 8 Aug 2025
Viewed by 1044
Abstract
The rapid expansion of the Metaverse presents complex security challenges, particularly in verifying virtual objects and avatars within immersive environments. Conventional authentication methods, such as passwords and biometrics, often prove inadequate in these dynamic environments, especially as essential infrastructures, such as smart grids, [...] Read more.
The rapid expansion of the Metaverse presents complex security challenges, particularly in verifying virtual objects and avatars within immersive environments. Conventional authentication methods, such as passwords and biometrics, often prove inadequate in these dynamic environments, especially as essential infrastructures, such as smart grids, integrate with virtual platforms. Cybersecurity threats intensify as advanced attacks introduce fraudulent data, compromising system reliability and safety. Using the Electric Network Frequency (ENF), a naturally varying signal emitted from power grids, provides an innovative environmental fingerprint to authenticate digital twins and Metaverse entities in the smart grid. This paper provides a comprehensive survey of the ENF as an environmental fingerprint for enhancing Metaverse security, reviewing its characteristics, sensing methods, limitations, and applications in threat modeling and the CIA triad (Confidentiality, Integrity, and Availability), and presents a real-world case study to demonstrate its effectiveness in practical settings. By capturing the ENF as having a unique signature that is timestamped, this method strengthens security by directly correlating physical grid behavior and virtual interactions, effectively combating threats such as deepfake manipulations. Building upon recent developments in signal processing, this strategy reinforces the integrity of digital environments, delivering robust protection against evolving cyber–physical risks and facilitating secure, scalable virtual infrastructures. Full article
(This article belongs to the Special Issue Using New Technologies in Cyber Security Solutions (2nd Edition))
Show Figures

Figure 1

24 pages, 2173 KB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Cited by 1 | Viewed by 2378
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

40 pages, 2206 KB  
Review
Toward Generative AI-Based Intrusion Detection Systems for the Internet of Vehicles (IoV)
by Isra Mahmoudi, Djallel Eddine Boubiche, Samir Athmani, Homero Toral-Cruz and Freddy I. Chan-Puc
Future Internet 2025, 17(7), 310; https://doi.org/10.3390/fi17070310 - 17 Jul 2025
Cited by 3 | Viewed by 1710
Abstract
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due [...] Read more.
The increasing complexity and scale of Internet of Vehicles (IoV) networks pose significant security challenges, necessitating the development of advanced intrusion detection systems (IDS). Traditional IDS approaches, such as rule-based and signature-based methods, are often inadequate in detecting novel and sophisticated attacks due to their limited adaptability and dependency on predefined patterns. To overcome these limitations, machine learning (ML) and deep learning (DL)-based IDS have been introduced, offering better generalization and the ability to learn from data. However, these models can still struggle with zero-day attacks, require large volumes of labeled data, and may be vulnerable to adversarial examples. In response to these challenges, Generative AI-based IDS—leveraging models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers—have emerged as promising solutions that offer enhanced adaptability, synthetic data generation for training, and improved detection capabilities for evolving threats. This survey provides an overview of IoV architecture, vulnerabilities, and classical IDS techniques while focusing on the growing role of Generative AI in strengthening IoV security. It discusses the current landscape, highlights the key challenges, and outlines future research directions aimed at building more resilient and intelligent IDS for the IoV ecosystem. Full article
Show Figures

Figure 1

19 pages, 2632 KB  
Article
Data-Driven Attack Detection Mechanism Against False Data Injection Attacks in DC Microgrids Using CNN-LSTM-Attention
by Chunxiu Li, Xinyu Wang, Xiaotao Chen, Aiming Han and Xingye Zhang
Symmetry 2025, 17(7), 1140; https://doi.org/10.3390/sym17071140 - 16 Jul 2025
Viewed by 760
Abstract
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant [...] Read more.
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant cybersecurity vulnerabilities. Notably, FDI attacks can effectively bypass conventional Chi-square detector-based protection mechanisms through malicious manipulation of communication layer data. To address this critical security challenge, we propose a hybrid deep learning framework that synergistically combines: Convolutional Neural Networks (CNN) for robust spatial feature extraction from power system measurements; Long Short-Term Memory (LSTM) networks for capturing complex temporal dependencies; and an attention mechanism that dynamically weights the most discriminative features. The framework operates through a hierarchical feature extraction process: First-level spatial analysis identifies local measurement patterns; second-level temporal analysis detects sequential anomalies; attention-based feature refinement focuses on the most attack-relevant signatures. Comprehensive simulation studies demonstrate the superior performance of our CNN-LSTM-Attention framework compared to conventional detection approaches (CNN-SVM and MLP), with significant improvements across all key metrics. Namely, the accuracy, precision, F1-score, and recall could be improved by at least 7.17%, 6.59%, 2.72% and 6.55%. Full article
Show Figures

Figure 1

14 pages, 1521 KB  
Article
Unsupervised Machine Learning Methods for Anomaly Detection in Network Packets
by Hyoseong Park, Dongil Shin, Chulgyun Park, Jisoo Jang and Dongkyoo Shin
Electronics 2025, 14(14), 2779; https://doi.org/10.3390/electronics14142779 - 10 Jul 2025
Cited by 1 | Viewed by 1662
Abstract
Traditional intrusion detection systems (IDS) based on packet signatures are widely used in network security but often fail to detect previously unseen attacks. To overcome this limitation, machine learning-based methods have been explored to identify anomalous patterns in network traffic indicative of unknown [...] Read more.
Traditional intrusion detection systems (IDS) based on packet signatures are widely used in network security but often fail to detect previously unseen attacks. To overcome this limitation, machine learning-based methods have been explored to identify anomalous patterns in network traffic indicative of unknown intrusions. In this study, we propose an IDS model based on the Long Short-Term Memory Autoencoder (LSTM-AE), specifically a Convolutional Neural Network Bidirectional LSTM Autoencoder (CNN-BiLSTM-AE). The model integrates convolutional layers for spatial feature extraction and bidirectional LSTM layers to capture temporal dependencies in both directions. By leveraging CNNs to extract key spatial features and BiLSTM to model sequential patterns, the proposed architecture enables effective differentiation between normal and malicious traffic. Anomalies are detected by computing reconstruction loss during inference and applying a predefined threshold to classify traffic. The experimental results demonstrate that the CNN-BiLSTM-AE model achieves high detection performance, with an accuracy of 98.1% and an F1-score of 98.3%, highlighting its effectiveness in identifying previously unknown intrusions. Full article
(This article belongs to the Special Issue Advancements in AI-Driven Cybersecurity and Securing AI Systems)
Show Figures

Figure 1

27 pages, 13752 KB  
Article
Robust Watermarking of Tiny Neural Networks by Fine-Tuning and Post-Training Approaches
by Riccardo Adorante, Alessandro Carra, Marco Lattuada and Danilo Pietro Pau
Symmetry 2025, 17(7), 1094; https://doi.org/10.3390/sym17071094 - 8 Jul 2025
Viewed by 2079
Abstract
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in [...] Read more.
Because neural networks pervade many industrial domains and are increasingly complex and accurate, the trained models themselves have become valuable intellectual properties. Developing highly accurate models demands increasingly higher investments of time, capital, and expertise. Many of these models are commonly deployed in cloud services and on resource-constrained edge devices. Consequently, safeguarding them is critically important. Neural network watermarking offers a practical solution to address this need by embedding a unique signature, either as a hidden bit-string or as a distinctive response to specially crafted “trigger” inputs. This allows owners to subsequently prove model ownership even if an adversary attempts to remove the watermark through attacks. In this manuscript, we adapt three state-of-the-art watermarking methods to “tiny” neural networks deployed on edge platforms by exploiting symmetry-related properties that ensure robustness and efficiency. In the context of machine learning, “tiny” is broadly used as a term referring to artificial intelligence techniques deployed in low-energy systems in the mW range and below, e.g., sensors and microcontrollers. We evaluate the robustness of the selected techniques by simulating attacks aimed at erasing the watermark while preserving the model’s original performances. The results before and after attacks demonstrate the effectiveness of these watermarking schemes in protecting neural network intellectual property without degrading the original accuracy. Full article
(This article belongs to the Section Computer)
Show Figures

Graphical abstract

22 pages, 5184 KB  
Article
Evaluating the Vulnerability of Hiding Techniques in Cyber-Physical Systems Against Deep Learning-Based Side-Channel Attacks
by Seungun Park, Aria Seo, Muyoung Cheong, Hyunsu Kim, JaeCheol Kim and Yunsik Son
Appl. Sci. 2025, 15(13), 6981; https://doi.org/10.3390/app15136981 - 20 Jun 2025
Viewed by 1047
Abstract
(1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional countermeasures, such as hiding techniques, attempt to obscure power consumption patterns; [...] Read more.
(1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional countermeasures, such as hiding techniques, attempt to obscure power consumption patterns; however, their effectiveness has been increasingly challenged. This study evaluates the vulnerability of dummy power traces against deep learning-based SCAs (DL-SCAs). (2) Methods: A power trace dataset was generated using a simulation environment based on Quick Emulator (QEMU) and GNU Debugger (GDB), integrating dummy traces to obfuscate execution signatures. DL models, including a Recurrent Neural Network (RNN), a Bidirectional RNN (Bi-RNN), and a Multi-Layer Perceptron (MLP), were used to evaluate classification performance. (3) Results: The models trained with dummy traces achieved high classification accuracy, with the MLP model reaching 97.81% accuracy and an F1-score of 97.77%. Despite the added complexity, DL models effectively distinguished real and dummy traces, highlighting limitations in existing hiding techniques. (4) Conclusions: These findings highlight the need for adaptive countermeasures against DL-SCAs. Future research should explore dynamic obfuscation techniques, adversarial training, and comprehensive evaluations of broader cryptographic algorithms. This study underscores the urgency of evolving security paradigms to defend against artificial intelligence-powered attacks. Full article
Show Figures

Figure 1

31 pages, 1107 KB  
Article
Length–Weight Distribution of Non-Zero Elements in Randomized Bit Sequences
by Christoph Lange, Andreas Ahrens, Yadu Krishnan Krishnakumar and Olaf Grote
Sensors 2025, 25(12), 3825; https://doi.org/10.3390/s25123825 - 19 Jun 2025
Viewed by 679
Abstract
Randomness plays an important role in data communication as well as in cybersecurity. In the simulation of communication systems, randomized bit sequences are often used to model a digital source information stream. Cryptographic outputs should look more random than deterministic in order to [...] Read more.
Randomness plays an important role in data communication as well as in cybersecurity. In the simulation of communication systems, randomized bit sequences are often used to model a digital source information stream. Cryptographic outputs should look more random than deterministic in order to provide an attacker with as little information as possible. Therefore, the investigation of randomness, especially in cybersecurity, has attracted a lot of attention and research activities. Common tests regarding randomness are hypothesis-based and focus on analyzing the distribution and independence of zero and non-zero elements in a given random sequence. In this work, a novel approach grounded in a gap-based burst analysis is presented and analyzed. Such approaches have been successfully implemented, e.g., in data communication systems and data networks. The focus of the current work is on detecting deviations from the ideal gap-density function describing randomized bit sequences. For testing and verification purposes, the well-researched post-quantum cryptographic CRYSTALS suite, including its Kyber and Dilithium schemes, is utilized. The proposed technique allows for quickly verifying the level of randomness in given cryptographic outputs. The results for different sequence-generation techniques are presented, thus validating the approach. The results show that key-encapsulation and key-exchange algorithms, such as CRYSTALS-Kyber, achieve a lower level of randomness compared to digital signature algorithms, such as CRYSTALS-Dilithium. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

35 pages, 1485 KB  
Article
Detecting Cyber Threats in UWF-ZeekDataFall22 Using K-Means Clustering in the Big Data Environment
by Sikha S. Bagui, Germano Correa Silva De Carvalho, Asmi Mishra, Dustin Mink, Subhash C. Bagui and Stephanie Eager
Future Internet 2025, 17(6), 267; https://doi.org/10.3390/fi17060267 - 18 Jun 2025
Viewed by 801
Abstract
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats [...] Read more.
In an era marked by the rapid growth of the Internet of Things (IoT), network security has become increasingly critical. Traditional Intrusion Detection Systems, particularly signature-based methods, struggle to identify evolving cyber threats such as Advanced Persistent Threats (APTs)and zero-day attacks. Such threats or attacks go undetected with supervised machine-learning methods. In this paper, we apply K-means clustering, an unsupervised clustering technique, to a newly created modern network attack dataset, UWF-ZeekDataFall22. Since this dataset contains labeled Zeek logs, the dataset was de-labeled before using this data for K-means clustering. The labeled data, however, was used in the evaluation phase, to determine the attack clusters post-clustering. In order to identify APTs as well as zero-day attack clusters, three different labeling heuristics were evaluated to determine the attack clusters. To address the challenges faced by Big Data, the Big Data framework, that is, Apache Spark and PySpark, were used for our development environment. In addition, the uniqueness of this work is also in using connection-based features. Using connection-based features, an in-depth study is done to determine the effect of the number of clusters, seeds, as well as features, for each of the different labeling heuristics. If the objective is to detect every single attack, the results indicate that 325 clusters with a seed of 200, using an optimal set of features, would be able to correctly place 99% of attacks. Full article
Show Figures

Figure 1

32 pages, 7616 KB  
Article
ANCHOR-Grid: Authenticating Smart Grid Digital Twins Using Real-World Anchors
by Mohsen Hatami, Qian Qu, Yu Chen, Javad Mohammadi, Erik Blasch and Erika Ardiles-Cruz
Sensors 2025, 25(10), 2969; https://doi.org/10.3390/s25102969 - 8 May 2025
Cited by 2 | Viewed by 1383
Abstract
Integrating digital twins (DTs) into smart grid systems within the Internet of Smart Grid Things (IoSGT) ecosystem brings novel opportunities but also security challenges. Specifically, advanced machine learning (ML)-based Deepfake technologies enable adversaries to create highly realistic yet fraudulent DTs, threatening critical infrastructures’ [...] Read more.
Integrating digital twins (DTs) into smart grid systems within the Internet of Smart Grid Things (IoSGT) ecosystem brings novel opportunities but also security challenges. Specifically, advanced machine learning (ML)-based Deepfake technologies enable adversaries to create highly realistic yet fraudulent DTs, threatening critical infrastructures’ reliability, safety, and integrity. In this paper, we introduce Authenticating Networked Computerized Handling of Representations for Smart Grid security (ANCHOR-Grid), an innovative authentication framework that leverages Electric Network Frequency (ENF) signals as real-world anchors to secure smart grid DTs at the frontier against Deepfake attacks. By capturing distinctive ENF variations from physical grid components and embedding these environmental fingerprints into their digital counterparts, ANCHOR-Grid provides a robust mechanism to ensure the authenticity and trustworthiness of virtual representations. We conducted comprehensive simulations and experiments within a virtual smart grid environment to evaluate ANCHOR-Grid. We crafted both authentic and Deepfake DTs of grid components, with the latter attempting to mimic legitimate behavior but lacking correct ENF signatures. Our results show that ANCHOR-Grid effectively differentiates between authentic and fraudulent DTs, demonstrating its potential as a reliable security layer for smart grid systems operating in the IoSGT ecosystem. In our virtual smart grid simulations, ANCHOR-Grid achieved a detection rate of 99.8% with only 0.2% false positives for Deepfake DTs at a sparse attack rate (1 forged packet per 500 legitimate packets). At a higher attack frequency (1 forged packet per 50 legitimate packets), it maintained a robust 97.5% detection rate with 1.5% false positives. Against replay attacks, it detected 94% of 5 s-old signatures and 98.5% of 120 s-old signatures. Even with 5% injected noise, detection remained at 96.5% (dropping to 88% at 20% noise), and under network latencies from <5 ms to 200 ms, accuracy ranged from 99.9% down to 95%. These results demonstrate ANCHOR-Grid’s high reliability and practical viability for securing smart grid DTs. These findings highlight the importance of integrating real-world environmental data into authentication processes for critical infrastructure and lay the foundation for future research on leveraging physical world cues to secure digital ecosystems. Full article
Show Figures

Figure 1

25 pages, 2501 KB  
Article
ECAE: An Efficient Certificateless Aggregate Signature Scheme Based on Elliptic Curves for NDN-IoT Environments
by Cong Wang, Haoyu Wu, Yulong Gan, Rui Zhang and Maode Ma
Entropy 2025, 27(5), 471; https://doi.org/10.3390/e27050471 - 26 Apr 2025
Viewed by 786
Abstract
As a data-centric next-generation network architecture, Named Data Networking (NDN) exhibits inherent compatibility with the distributed nature of the Internet of Things (IoT) through its name-based routing mechanism. However, existing signature schemes for NDN-IoT face dual challenges: resource-constrained IoT terminals struggle with certificate [...] Read more.
As a data-centric next-generation network architecture, Named Data Networking (NDN) exhibits inherent compatibility with the distributed nature of the Internet of Things (IoT) through its name-based routing mechanism. However, existing signature schemes for NDN-IoT face dual challenges: resource-constrained IoT terminals struggle with certificate management and computationally intensive bilinear pairings under traditional Public Key Infrastructure (PKI), while NDN routers require low-latency batch verification for high-speed data forwarding. To address these issues, this study proposes ECAE, an efficient certificateless aggregate signature scheme based on elliptic curve cryptography (ECC). ECAE introduces a partial private key distribution mechanism in key generation, enabling the authentication of identity by a Key Generation Center (KGC) for terminal devices. It leverages ECC and universal hash functions to construct an aggregate verification model that eliminates bilinear pairing operations and reduces communication overhead. Security analysis formally proves that ECAE resists forgery, replay, and man-in-the-middle attacks under the random oracle model. Experimental results demonstrate substantial efficiency gains: total computation overhead is reduced by up to 46.18%, and communication overhead is reduced by 55.56% compared to state-of-the-art schemes. This lightweight yet robust framework offers a trusted and scalable verification solution for NDN-IoT environments. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

Back to TopTop