Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = nephrotoxic-induced AKI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1704 KiB  
Systematic Review
Therapeutic Potential of Apocynin: A Promising Antioxidant Strategy for Acute Kidney Injury
by Jelena Nesovic Ostojic, Sanjin Kovacevic, Silvio R. De Luka, Milan Ivanov, Aleksandra Nenadovic and Andrija Vukovic
Antioxidants 2025, 14(8), 1025; https://doi.org/10.3390/antiox14081025 - 21 Aug 2025
Abstract
Acute kidney injury (AKI) is characterized by a sudden rise in serum creatinine levels, a reduction in urine output, or both. Despite its frequent occurrence in clinical settings, AKI remains poorly understood from a pathophysiological standpoint. As a result, management primarily relies on [...] Read more.
Acute kidney injury (AKI) is characterized by a sudden rise in serum creatinine levels, a reduction in urine output, or both. Despite its frequent occurrence in clinical settings, AKI remains poorly understood from a pathophysiological standpoint. As a result, management primarily relies on supportive care rather than targeted treatments. Emerging evidence underscores the pivotal role of oxidative stress in both the initiation and progression of AKI, thereby identifying it as a potential therapeutic target. This review aims to comprehensively examine the pharmacological effects and underlying mechanisms of apocynin (APO) in the context of AKI, with a particular focus on ischemia–reperfusion injury (IRI) and nephrotoxic-induced AKI. Experimental preclinical studies have consistently demonstrated that APO offers protective effects primarily through its inhibition of NADPH oxidase-mediated oxidative stress. In renal IRI and drug-induced nephrotoxicity models, APO has been shown to attenuate oxidative damage, reduce inflammatory responses, and preserve renal structure and function. These results suggest that it may serve as an effective treatment for reducing kidney damage caused by acute ischemia or exposure to nephrotoxic agents. Although the results are encouraging, further investigation is required to establish the optimal dosing strategy and treatment protocol, as well as to confirm the translational relevance of these findings in human clinical settings. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 7856 KiB  
Article
Cilastatin Attenuates Acute Kidney Injury and Reduces Mortality in a Rat Model of Sepsis
by María Ángeles González-Nicolás, Blanca Humanes, Raquel Herrero, Mario Arenillas, Beatriz López, Antonio Ferruelo, José Ángel Lorente and Alberto Lázaro
Int. J. Mol. Sci. 2025, 26(16), 7927; https://doi.org/10.3390/ijms26167927 - 16 Aug 2025
Viewed by 259
Abstract
Sepsis is a life-threatening condition caused by an abnormal host response to infection, leading to organ dysfunction and potentially death. Acute kidney injury (AKI) is a critical complication of sepsis. Various pathways, especially signaling through Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domain, [...] Read more.
Sepsis is a life-threatening condition caused by an abnormal host response to infection, leading to organ dysfunction and potentially death. Acute kidney injury (AKI) is a critical complication of sepsis. Various pathways, especially signaling through Toll-like receptors (TLRs) and the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome, contribute to inflammation and tissue damage. Cilastatin, a renal dehydropeptidase I inhibitor, has shown promise in protecting against AKI induced by nephrotoxic drugs. This study assessed cilastatin’s effectiveness in preventing AKI and inflammation caused by sepsis and its impact on survival. Sepsis was induced in male Sprague-Dawley rats using the cecal ligation puncture (CLP) model, with four groups: sham (control), CLP, sham + cilastatin, and CLP + cilastatin. Cilastatin (150 mg/kg) was administered immediately and 24 h after sepsis induction. Kidney injury was evaluated 48 h later by assessing serum creatinine, blood urea nitrogen, glomerular filtration rate, proteinuria, kidney injury molecule-1 levels, and renal morphology. Inflammatory and fibrotic biomarkers, particularly related to the TLR4 and NLRP3 pathways, were also measured. Cilastatin treatment prevented kidney dysfunction, reduced inflammatory markers, and improved survival by 33%. These results suggest that cilastatin could be a beneficial therapeutic strategy for sepsis-related AKI, improving outcomes and reducing mortality. Full article
(This article belongs to the Special Issue Acute Kidney Injury: From Molecular Pathology to Therapies)
Show Figures

Graphical abstract

8 pages, 530 KiB  
Case Report
An Unusual Case of Anuric Acute Kidney Injury Secondary to the Use of Low-Dose Acetazolamide as Preventive Management for Acute Mountain Sickness
by Marco Dominguez Davalos, Raúl Valenzuela Córdova, Celia Rodríguez Tudero, Elena Jiménez Mayor, Carlos Bedia Castillo, José C. De La Flor, Roger Leon Montesinos, Cristian León Rabanal, Michael Cieza Terrones and Javier A. Neyra
Diseases 2025, 13(7), 228; https://doi.org/10.3390/diseases13070228 - 21 Jul 2025
Viewed by 496
Abstract
Background/Objectives: Acetazolamide is widely used for acute mountain sickness (AMS) prophylaxis. Whilst generally safe, acute kidney injury (AKI) is a rare but serious adverse event. We present a case of anuric AKI following minimal exposure to acetazolamide, contributing to the limited literature [...] Read more.
Background/Objectives: Acetazolamide is widely used for acute mountain sickness (AMS) prophylaxis. Whilst generally safe, acute kidney injury (AKI) is a rare but serious adverse event. We present a case of anuric AKI following minimal exposure to acetazolamide, contributing to the limited literature on its nephrotoxicity at prophylactic doses. Methods: A 54-year-old previously healthy male ingested 250 mg/day of oral acetazolamide for two days. He developed acute anuria and lumbar pain. Diagnostic evaluation included laboratory tests, imaging, microbiological cultures, autoimmune panels, and diuretic response. No signs of infection, urinary tract obstruction, or systemic disease were found. Results: The patient met KDIGO 2012 criteria for stage 3 AKI, with peak serum creatinine of 10.6 mg/dL and metabolic acidosis. Imaging confirmed non-obstructive nephrolithiasis. Conservative treatment failed; intermittent hemodialysis was initiated. Renal function recovered rapidly, with the normalization of serum creatinine and urinary output by day 4. Conclusions: This case represents the lowest cumulative dose of acetazolamide reported to cause stage 3 AKI. The findings support a pathophysiological mechanism involving sulfonamide-induced crystalluria and intratubular obstruction. Physicians should consider acetazolamide in the differential diagnosis of AKI, even with short-term prophylactic use. Full article
(This article belongs to the Section Respiratory Diseases)
Show Figures

Figure 1

18 pages, 3990 KiB  
Article
Hypovitaminosis D Does Not Aggravate the Progression of Gentamicin-Induced Kidney Injury in Rats
by Ana Lívia D. Maciel, Amanda L. Deluque, Beatriz M. Oliveira, Cláudia S. Souza, Heloísa D. C. Francescato, Cleonice Giovanini, Francisco J. A. de Paula, Terezila M. Coimbra and Rildo A. Volpini
Diseases 2025, 13(7), 200; https://doi.org/10.3390/diseases13070200 - 28 Jun 2025
Viewed by 373
Abstract
Background/Objectives: Gentamicin is one of the most effective and widely used antibiotics to treat serious infections. In addition to its bactericidal properties, gentamicin has a nephrotoxic effect that results in acute kidney injury (AKI). AKI may be intensified by hypovitaminosis D. This [...] Read more.
Background/Objectives: Gentamicin is one of the most effective and widely used antibiotics to treat serious infections. In addition to its bactericidal properties, gentamicin has a nephrotoxic effect that results in acute kidney injury (AKI). AKI may be intensified by hypovitaminosis D. This study evaluated the effect of hypovitaminosis D in the progression of gentamicin-induced renal injury. Methods: Male Wistar Hannover rats received a standard (SD) or a vitamin D-free diet (VitD) before gentamicin treatment. After that, we divided the animals into four groups: Ctrl VitD, SD diet, and saline injection; Ctrl VitD, VitD diet, and saline injection; Genta VitD, SD diet, and gentamicin injection (40 mg/kg; IM); Genta VitD, VitD diet, and gentamicin injection (40 mg/kg; IM). After the end of gentamicin treatment, we followed the animals for 5 days (protocol 1) and 30 days (protocol 2). Results: The Genta VitD group (protocol 1) presented impaired renal function. Regarding morphological analyses, the Genta VitD group presented necrotic tubules (protocol 1) and atrophied tubules (protocol 2). In the inflammatory scenario, the Genta VitD group presented an increase in the number of CD68+ cells, as well as in the levels of interleukin 1β (protocols 1 and 2). In addition, gentamicin-treated animals (protocols 1 and 2) presented an increased renal expression of vimentin and fibronectin. Despite the notable changes in functional, inflammatory, and structural parameters induced by gentamicin, hypovitaminosis D did not aggravate the renal injury in this experimental model. Conclusion: Hypovitaminosis D did not aggravate the progression of gentamicin-induced renal injury in rats. Full article
Show Figures

Figure 1

28 pages, 20644 KiB  
Article
Mechanisms of Cisplatin-Induced Acute Kidney Injury: The Role of NRF2 in Mitochondrial Dysfunction and Metabolic Reprogramming
by Jihan Liu, Yiming Wang, Panshuang Qiao, Yi Ying, Simei Lin, Feng Lu, Cai Gao, Min Li, Baoxue Yang and Hong Zhou
Antioxidants 2025, 14(7), 775; https://doi.org/10.3390/antiox14070775 - 24 Jun 2025
Viewed by 939
Abstract
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally [...] Read more.
Cisplatin (Cis) is a widely used chemotherapy drug, but its nephrotoxicity limits its clinical application. Acute kidney injury (AKI) is a common complication, restricting long-term use. This study investigates the mechanisms of cisplatin-induced AKI and explores potential therapeutic targets. C57BL/6J mice were intraperitoneally injected with 20 mg/kg cisplatin to establish an AKI model. Serum creatinine, urea nitrogen, and tubular injury biomarkers (NGAL, KIM-1) progressively increased, indicating kidney dysfunction. Mitochondrial ATP levels significantly decreased, along with reduced mitochondrial fission and fusion, suggesting mitochondrial dysfunction. Increased oxidases and reduced antioxidants indicated redox imbalance, and metabolic reprogramming was observed, with lipid deposition, impaired fatty acid oxidation (FAO), and enhanced glycolysis in proximal tubular epithelial cells (PTECs). Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcriptional regulator of redox homeostasis and mitochondrial function. We found NRF2 levels increased early in AKI, followed by a decrease in vivo and in vitro, suggesting activation in the stress response. Nfe2l2 knockout mice showed aggravated kidney injury, characterized by worsened kidney function and histopathological damage. Mechanistically, Nfe2l2 knockout resulted in redox imbalance, reduced ATP synthesis, mitochondrial dysfunction and metabolic dysregulation. Furthermore, we activated NRF2 using dimethyl fumarate (DMF), observing a reduction in kidney damage and lipid deposition in mice. In conclusion, activating NRF2-dependent antioxidant pathways plays a crucial role in protecting against cisplatin-induced AKI. NRF2 may serve as a potential target for developing therapeutic strategies to prevent cisplatin nephrotoxicity. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

16 pages, 11480 KiB  
Article
Dasatinib and Quercetin Combination Increased Kidney Damage in Acute Folic Acid-Induced Experimental Nephropathy
by Antonio Battaglia-Vieni, Vanessa Marchant, Lucia Tejedor-Santamaria, Cristina García-Caballero, Elena Flores-Salguero, María Piedad Ruiz-Torres, Sandra Rayego-Mateos, Ana Belen Sanz, Alberto Ortiz and Marta Ruiz-Ortega
Pharmaceuticals 2025, 18(6), 822; https://doi.org/10.3390/ph18060822 - 30 May 2025
Viewed by 2585
Abstract
Background/Objectives: Acute kidney injury (AKI) remains an unsolved medical problem due to the lack of effective treatments, high mortality, and increased susceptibility to progression to chronic kidney disease (CKD), especially in the elderly. Cellular senescence has been described in AKI, CKD, and [...] Read more.
Background/Objectives: Acute kidney injury (AKI) remains an unsolved medical problem due to the lack of effective treatments, high mortality, and increased susceptibility to progression to chronic kidney disease (CKD), especially in the elderly. Cellular senescence has been described in AKI, CKD, and aging and has been proposed as a promising therapeutic target. The senolytic drug combination of dasatinib plus quercetin (D&Q) is beneficial in some pathological conditions, including experimental CKD, but there are no data for AKI. Methods: The effect of D&Q combination was tested in folic acid-induced nephrotoxicity (FAN-AKI), a murine AKI model. Results: D&Q pretreatment did not prevent renal dysfunction in the acute phase of FAN-AKI, as determined by serum creatinine and BUN levels at 48 h. Moreover, gene expression of the kidney damage biomarkers Lcn2 and Havcr1, the Cdkn1a gene, which encodes p21, and some genes encoding components of the senescent cell secretome were significantly increased in response to D&Q treatment. The number of senescent p21-positive cells in injured kidneys was similar in untreated or D&Q-treated FAN mice. In addition, D&Q did not prevent the downregulation of the antiaging factor Klotho in damaged kidneys. Conclusions: D&Q treatment was not protective in FAN-AKI, exacerbating some deleterious responses. These results suggest caution when exploring the clinical translation of D&Q senolytic activity. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

11 pages, 4452 KiB  
Article
The Frequency and Risk Factors of Acute Kidney Injury in Children with Oncological Diseases: A Single-Center Study in Bulgaria
by Petya Markova, Antoniya Yaneva, Stoyan Markov, Mariya Spasova and Neofit Spasov
Children 2025, 12(5), 540; https://doi.org/10.3390/children12050540 - 23 Apr 2025
Viewed by 441
Abstract
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury [...] Read more.
Background: Progress in the treatment of childhood oncological diseases has led to the prolonged survival of patients with this severe diagnosis. On the other hand, the prolonged chemotherapy courses that achieve this outcome also bring a number of complications, with acute kidney injury being one of them. Its occurrence in patients not only affects their quality of life but also prolongs and increases the cost of hospitalization, burdens the body with additional treatment, and impacts the ability to manage the underlying disease. Aim: The aim of this study is to determine the frequency of acute kidney injury among children hospitalized in the Pediatric Oncohematology Unit in Plovdiv during the period 2016–2020, as well as to identify the risk factors for its occurrence, its severity, and its dependence on tumor type, gender, and age. Patients and Methods: During the five-year period under review, a total of 213 newly diagnosed children with hematological diseases were admitted to our Pediatric Oncohematology Unit—122 boys and 91 girls. Results: Acute kidney injury was identified in 94 (44.1%) of the children—54 with solid tumors and 40 with malignant hemopathies. The main cause of acute kidney injury diagnosed was drug-induced nephrotoxicity, especially due to nephrotoxic chemotherapeutic agents. No statistically significant association was found between the type of tumor and the occurrence of acute kidney injury. Of the children with documented episodes of AKI, 11 were found to have CKD according to the KDIGO criteria. Conclusions: Acute kidney injury is a common complication that occurs during the medical treatment of children with malignant diseases. Full article
(This article belongs to the Section Pediatric Hematology & Oncology)
Show Figures

Figure 1

13 pages, 4273 KiB  
Article
Diagnostic and Prognostic Potential of SH3YL1 and NOX4 in Muscle-Invasive Bladder Cancer
by Mingyu Kim, Euihyun Jung, Geehyun Song, Jaeyoung Joung, Jinsoo Chung, Hokyung Seo and Hyungho Lee
Int. J. Mol. Sci. 2025, 26(9), 3959; https://doi.org/10.3390/ijms26093959 - 22 Apr 2025
Viewed by 579
Abstract
Bladder cancer, especially muscle-invasive bladder cancer (MIBC), poses significant treatment challenges due to its aggressive nature and poor prognosis, often necessitating cisplatin-based chemotherapy. While cisplatin effectively reduces tumor burden, its nephrotoxic effects, specifically cisplatin-induced acute kidney injury (AKI), limit its clinical use. This [...] Read more.
Bladder cancer, especially muscle-invasive bladder cancer (MIBC), poses significant treatment challenges due to its aggressive nature and poor prognosis, often necessitating cisplatin-based chemotherapy. While cisplatin effectively reduces tumor burden, its nephrotoxic effects, specifically cisplatin-induced acute kidney injury (AKI), limit its clinical use. This study investigates SH3YL1 as a potential biomarker for bladder cancer progression and AKI. Plasma and urine SH3YL1 levels were measured in bladder cancer patients undergoing cisplatin treatment, showing elevated baseline levels compared to controls, suggesting a link with bladder cancer pathology rather than cisplatin-induced AKI. Functional network and Gene Ontology (GO) enrichment analyses identified SH3YL1’s interactions with NADPH oxidase pathways, particularly NOX family genes, and highlighted its roles in cell adhesion, migration, and cytoskeletal organization—processes critical for tumor invasiveness. Notably, SH3YL1 and NOX4 expression were significantly higher in MIBC than in non-muscle-invasive bladder cancer (NMIBC), with a strong correlation between SH3YL1 and NOX4 (r = 0.62) in MIBC, suggesting a subtype-specific interaction. Kaplan–Meier survival analysis using The Cancer Genome Atlas bladder cancer (TCGA-BLCA) data further demonstrated that low SH3YL1 expression is significantly associated with poor overall and disease-specific survival in MIBC patients, reinforcing its role as a prognostic biomarker. In conclusion, SH3YL1 is a promising biomarker for identifying the invasive characteristics of MIBC and predicting patient outcomes. These findings underscore the importance of SH3YL1–NOX4 pathways in MIBC and suggest the need for further research into targeted biomarkers for bladder cancer progression and cisplatin-induced AKI to improve patient outcomes in high-risk cases. Full article
Show Figures

Figure 1

15 pages, 4987 KiB  
Article
Dihydromyricetin Alleviated Acetaminophen-Induced Acute Kidney Injury via Nrf2-Dependent Anti-Oxidative and Anti-Inflammatory Effects
by Jianan Shi, Xiufang Peng, Junyi Huang, Mengyi Zhang and Yuqin Wang
Int. J. Mol. Sci. 2025, 26(5), 2365; https://doi.org/10.3390/ijms26052365 - 6 Mar 2025
Cited by 3 | Viewed by 1067
Abstract
Acute kidney injury (AKI) is a common side effect of acetaminophen (APAP) overdose. Dihydromyricetin (DHM) is the most abundant flavonoid in rattan tea, which has a wide range of pharmacological effects. In the current study, APAP-induced AKI models were established both in vivo [...] Read more.
Acute kidney injury (AKI) is a common side effect of acetaminophen (APAP) overdose. Dihydromyricetin (DHM) is the most abundant flavonoid in rattan tea, which has a wide range of pharmacological effects. In the current study, APAP-induced AKI models were established both in vivo and in vitro. The results showed that DHM pretreatment remarkably alleviated APAP-induced AKI by promoting antioxidant capacity through the nuclear factor erythroid-related factor 2 (Nrf2) signaling pathway in vivo. In addition, DHM reduced ROS production and mitochondrial dysfunction, thereby alleviating APAP-induced cytotoxicity in HK-2 cells. The way in which DHM improved the antioxidant capacity of HK-2 cells was through promoting the activation of the Nrf2-mediated pathway and inhibiting the expression levels of inflammation-related proteins. Furthermore, Nrf2 siRNA partially canceled out the protective effect of DHM against the cytotoxicity caused by APAP in HK-2 cells. Altogether, the protective effect of DHM on APAP-induced nephrotoxicity was related to Nrf2-dependent antioxidant and anti-inflammatory effects. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 14355 KiB  
Article
JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice
by Merlin Airik, Kacian Clayton, Peter Wipf and Rannar Airik
Antioxidants 2024, 13(12), 1534; https://doi.org/10.3390/antiox13121534 - 15 Dec 2024
Cited by 2 | Viewed by 1709
Abstract
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute [...] Read more.
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute kidney injury (AKI). About 30% of patients receiving cisplatin chemotherapy develop cisplatin-induced AKI. JP4-039 is a mitochondria-targeted reactive oxygen species (ROS) and electron scavenger. Recent studies have shown that JP4-039 mitigates a variety of genotoxic insults in preclinical studies in rodents by suppressing oxidative stress-mediated tissue damage and blocking apoptosis and ferroptosis. However, the benefits of JP4-039 treatment have not been tested in the setting of AKI. In this study, we investigated the potential renoprotective effect of JP4-039 on cisplatin-induced AKI. To address this goal, we treated mice with JP4-039 before or after cisplatin administration and analyzed them for functional and molecular changes in the kidney. JP4-039 co-administration attenuated cisplatin-induced renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by JP4-039. Mechanistically, JP4-039 suppressed lipid peroxidation, prevented tissue oxidative stress, and preserved the glutathione levels in cisplatin-injected mice. An increase in cisplatin-induced apoptosis and ferroptosis was also alleviated by the compound. Moreover, JP4-039 inhibited cytokine overproduction in cisplatin-injected mice. Together, our findings demonstrate that JP4-039 is a promising therapeutic agent against cisplatin-induced kidney injury. Full article
(This article belongs to the Special Issue Oxidative Stress in Renal Health)
Show Figures

Figure 1

14 pages, 5130 KiB  
Article
Sodium Phenylbutyrate Attenuates Cisplatin-Induced Acute Kidney Injury Through Inhibition of Pyruvate Dehydrogenase Kinase 4
by Chang Joo Oh, Wooyoung Choi, Ha Young Lee, In-Kyu Lee, Min-Ji Kim and Jae-Han Jeon
Biomedicines 2024, 12(12), 2815; https://doi.org/10.3390/biomedicines12122815 - 11 Dec 2024
Viewed by 1421
Abstract
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of [...] Read more.
Background/Objectives: Cisplatin nephrotoxicity is a significant clinical issue, and currently, no approved drug exists to prevent cisplatin-induced acute kidney injury (AKI). This study investigated whether sodium phenylbutyrate (4-PBA), a chemical chaperone, can prevent cisplatin-induced AKI. Methods: Six consecutive days of intraperitoneal injections of 4-PBA were administered in a murine model before and after the cisplatin challenge. This study evaluated tubular injury, serum blood urea nitrogen (BUN) and creatinine levels, and inflammatory markers such as tumor necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1). Additionally, apoptosis, mitochondrial membrane potential, oxygen consumption ratio, and reactive oxygen species (ROS) were assessed in renal tubular cells. The expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were also analyzed. Results: 4-PBA prevented tubular injury and normalized serum BUN and creatinine levels. Inflammatory markers TNF-α and ICAM-1 were suppressed. In renal tubular cells, 4-PBA reduced apoptosis, restored mitochondrial membrane potential and oxygen consumption ratio, and reduced ROS production. Mechanistically, 4-PBA suppressed the expression of Pdk4, which is known to be induced during cisplatin-induced renal injury. The protective effect of 4-PBA was abolished in Pdk4-overexpressing renal tubular cells, indicating that the efficacy of 4-PBA partially depends on the suppression of Pdk4 expression. In cancer cells, 4-PBA did not interfere with the anti-cancer efficacy of cisplatin. Conclusions: These findings suggest that 4-PBA effectively prevents cisplatin-induced acute kidney injury by suppressing Pdk4. Full article
Show Figures

Figure 1

12 pages, 845 KiB  
Systematic Review
Cisplatin-Induced Renal Failure Measured by Glomerular Filtration Rate (GFR) with 99mTc-DTPA Scans in Cancer Patients: A Systematic Review and Meta-Analysis
by Mansour M. Alqahtani
Diagnostics 2024, 14(22), 2468; https://doi.org/10.3390/diagnostics14222468 - 5 Nov 2024
Cited by 1 | Viewed by 1624
Abstract
Background: Cisplatin is a potent agent commonly used to treat cancer, but its effects pose a significant risk to renal function. Therefore, the present study aimed to evaluate the impact of cisplatin on renal function as measured by glomerular filtration rate (GFR) [...] Read more.
Background: Cisplatin is a potent agent commonly used to treat cancer, but its effects pose a significant risk to renal function. Therefore, the present study aimed to evaluate the impact of cisplatin on renal function as measured by glomerular filtration rate (GFR) using diethyltriamine-penta-acetic acid (DTPA) renal scintigraphy. Methods: Extensive literature searches were performed using PRISMA guidelines that investigated cisplatin-induced renal failure by measuring GFR with DTPA. Eligible studies were included based on predefined criteria. Data on GFR, serum creatinine levels, and acute kidney injury (AKI) before and after cisplatin therapy were extracted and analyzed. A meta-analysis was performed utilizing RevMan 5.4 to determine the overall effect of cisplatin on GFR before and after treatment. For non-randomized controlled trials (RCTs), quality assessment was performed using the Newcastle–Ottawa Scale, while for RCT, the Cochrane risk of bias tool was utilized. Results: Initially, 1003 studies were searched from different databases, including ScienceDirect, PubMed, Scopus, Google Scholar, and The Cochrane Library, and after screening, 8 studies (PubMed, Scopus, and GoogleS cholar) with 489 patients were found eligible for inclusion in the present study. Cisplatin was administrated with varying doses ranging from 20 mg/m2 to 114.02 mg/m2. The findings underscore the nephrotoxic effects of cisplatin, a widely used chemotherapeutic agent, as demonstrated by the significant decline in GFR observed across multiple treatment cycles, and these findings were also supported by the findings of a meta-analysis that showed a significant (p < 0.01) difference between peri- and post-treatment GFR level with 37.06 (95% CI, 10.90–63.23) effect size and 96% heterogeneity. In addition, the included studies were found to be of high quality. Conclusions: Cisplatin significantly affects renal function, as evidenced by a decrease in GFR measured with DTPA. The findings underscore the importance of the routine monitoring of GFR to detect early renal injury and guide treatment modification. Future research should focus on strategies to reduce cisplatin-induced toxicity and explore alternative therapies with reduced renal risk. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 3267 KiB  
Article
Dietary Probiotic Pediococcus acidilactici GKA4, Dead Probiotic GKA4, and Postbiotic GKA4 Improves Cisplatin-Induced AKI by Autophagy and Endoplasmic Reticulum Stress and Organic Ion Transporters
by Jaung-Geng Lin, Wen-Ping Jiang, You-Shan Tsai, Shih-Wei Lin, Yen-Lien Chen, Chin-Chu Chen and Guan-Jhong Huang
Nutrients 2024, 16(20), 3532; https://doi.org/10.3390/nu16203532 - 18 Oct 2024
Cited by 2 | Viewed by 1858
Abstract
Background/Objectives: Acute kidney injury (AKI) syndrome is distinguished by a quick decline in renal excretory capacity and usually diagnosed by the presence of elevated nitrogen metabolism end products and/or diminished urine output. AKI frequently occurs in hospital patients, and there are no existing [...] Read more.
Background/Objectives: Acute kidney injury (AKI) syndrome is distinguished by a quick decline in renal excretory capacity and usually diagnosed by the presence of elevated nitrogen metabolism end products and/or diminished urine output. AKI frequently occurs in hospital patients, and there are no existing specific treatments available to diminish its occurrence or expedite recovery. For an extended period in the food industry, Pediococcus acidilactici has been distinguished by its robust bacteriocin production, effectively inhibiting pathogen growth during fermentation and storage. Methods: In this study, the aim is to assess the effectiveness of P. acidilactici GKA4, dead probiotic GKA4, and postbiotic GKA4 against cisplatin-induced AKI in an animal model. The experimental protocol involves a ten-day oral administration of GKA4, dead probiotic GKA4, and postbiotic GKA4 to mice, with a cisplatin intraperitoneal injection being given on the seventh day to induce AKI. Results: The findings indicated the significant alleviation of the renal histopathological changes and serum biomarkers of GKA4, dead probiotic GKA4, and postbiotic GKA4 in cisplatin-induced nephrotoxicity. GKA4, dead probiotic GKA4, and postbiotic GKA4 elevated the expression levels of HO-1 and decreased the expression levels of Nrf-2 proteins. In addition, the administration of GKA4, dead probiotic GKA4, and postbiotic GKA4 significantly reduced the expression of apoptosis-related proteins (Bax, Bcl-2, and caspase 3), autophagy-related proteins (LC3B, p62, and Beclin1), and endoplasmic reticulum (ER) stress-related proteins (GRP78, PERK, ATF-6, IRE1, CHOP, and Caspase 12) in kidney tissues. Notably, GKA4, dead probiotic GKA4, and postbiotic GKA4 also upregulated the levels of proteins related to organic anion transporters and organic cation transporters. Conclusions: Overall, the potential therapeutic benefits of GKA4, dead probiotic GKA4, and postbiotic GKA4 are significant, particularly after cisplatin treatment. This is achieved by modulating apoptosis, autophagy, ER stress, and transporter proteins to alleviate oxidative stress. Full article
(This article belongs to the Special Issue What Is Proper Nutrition for Kidney Diseases?)
Show Figures

Figure 1

17 pages, 9314 KiB  
Article
Hydrogel-Mediated Local Delivery of Induced Nephron Progenitor Cell-Sourced Molecules as a Cell-Free Approach for Acute Kidney Injury
by Kyoungmin Park, Wei-Wei Gao, Jie Zheng, Kyung Taek Oh, In-Yong Kim and Seungkwon You
Int. J. Mol. Sci. 2024, 25(19), 10615; https://doi.org/10.3390/ijms251910615 - 2 Oct 2024
Viewed by 1595
Abstract
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present [...] Read more.
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present study describes the therapeutic potential of induced nephron progenitor cell-sourced molecules (iNPC-SMs) as a cell-free strategy against cisplatin (CP)-induced nephrotoxicity, employing hyaluronic acid (HA) hydrogel-mediated local delivery to minimize systemic leakage and degradation. iNPC-SMs exhibited anti-apoptotic effects on HK-2 cells by inhibiting CP-induced ROS generation. Additionally, the localized biodistribution facilitated by hydrogel-mediated iNPC-SM delivery contributed to enhanced renal function, anti-inflammatory response, and renal regeneration in AKI mice. This study could serve as a ‘proof of concept’ for injectable hydrogel-mediated iNPC-SM delivery in AKI and as a model for further exploration of the development of cell-free regenerative medicine strategies. Full article
(This article belongs to the Special Issue Advances in Stem Cell-Based Regenerative Medicine for Renal Disorders)
Show Figures

Graphical abstract

19 pages, 6046 KiB  
Article
Activation of Yes-Associated Protein Is Indispensable for Transformation of Kidney Fibroblasts into Myofibroblasts during Repeated Administration of Cisplatin
by Jia-Bin Yu, Babu J. Padanilam and Jinu Kim
Cells 2024, 13(17), 1475; https://doi.org/10.3390/cells13171475 - 2 Sep 2024
Cited by 1 | Viewed by 1732
Abstract
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of [...] Read more.
Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts. Full article
Show Figures

Figure 1

Back to TopTop