Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = navicular drop height

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4777 KiB  
Article
The Relationship Between Foot Anthropometrics, Lower-Extremity Kinematics, and Ground Reaction Force in Elite Female Basketball Players: An Exploratory Study Investigating Arch Height Index and Navicular Drop
by Catherine I. Cairns, Douglas W. Van Citters and Ryan M. Chapman
Biomechanics 2024, 4(4), 750-764; https://doi.org/10.3390/biomechanics4040055 - 1 Dec 2024
Cited by 1 | Viewed by 2465
Abstract
Static and dynamic foot function can be evaluated using easy-to-implement, low-cost measurements like arch height index (AHI) and navicular drop (ND). Connections between AHI/ND and lower-extremity kinematics/kinetics have largely focused on gait. Some studies exist evaluating basketball players; however, these predominantly focus on [...] Read more.
Static and dynamic foot function can be evaluated using easy-to-implement, low-cost measurements like arch height index (AHI) and navicular drop (ND). Connections between AHI/ND and lower-extremity kinematics/kinetics have largely focused on gait. Some studies exist evaluating basketball players; however, these predominantly focus on men. To our knowledge, few studies evaluate female athletes, and none have investigated connections between AHI/ND and lower-extremity biomechanics in elite female basketball players. Thus, we conducted an IRB-approved observational investigation of 10 female, National Collegiate Athletic Association (NCAA) Division 1 basketball players, evaluating connections between AHI/ND and lower-extremity biomechanics during basketball activities. Participants completed one visit wherein bilateral AHI/ND measurements and kinematics/kinetics were captured via optical motion capture and force-instrumented treadmill during basketball activities (walking, running, vertical/horizontal jumping, side shuffles, 45° cuts). No connections existed between the AHI and any variable during any task. Contrastingly, ND was statistically significantly correlated with medial/lateral force maximum and range during left cutting. This implies that individuals with stiffer feet produced more side-to-side force than those with more foot mobility during cutting. This is the first report connecting ND to lower-extremity biomechanics in elite, female basketball players. This could inform novel interventions and technologies to improve frontal kinematics/kinetics. Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
Show Figures

Figure 1

11 pages, 1084 KiB  
Article
Navicular Drop Height Asymmetry as an Intrinsic Risk Factor for Lower Limb Injury in Male Recreational Athletes
by Jarosław Domaradzki
Symmetry 2024, 16(10), 1390; https://doi.org/10.3390/sym16101390 - 18 Oct 2024
Cited by 1 | Viewed by 2570
Abstract
Morphological and functional asymmetry of the lower limbs is a well-recognized factor contributing to musculoskeletal injuries among athletes across different levels. However, limited research exists on evaluating foot mobility asymmetry as a potential predictor of such injuries. This study aimed to (1) assess [...] Read more.
Morphological and functional asymmetry of the lower limbs is a well-recognized factor contributing to musculoskeletal injuries among athletes across different levels. However, limited research exists on evaluating foot mobility asymmetry as a potential predictor of such injuries. This study aimed to (1) assess the frequency of foot mobility asymmetries among amateur athletes, (2) investigate the predictive value of foot mobility asymmetry (measured via navicular height drop) for injury risk, and (3) explore the relationship between foot type and injury occurrence. A cross-sectional sampling method was employed to select 45 physically active male amateur athletes (runners and team sports practitioners) from a university. Injury history was retrospectively recorded, and a modified navicular drop test was conducted to classify foot arch height. The predictive power of navicular height drop asymmetry was analyzed using ROC curves, and the relationship between foot type (neutral and defective combinations—pronated or supinated) and injury occurrence was examined using chi-square tests for independence. Multiple logistic regression was applied to calculate injury risk odds ratios across different foot type subgroups. The results revealed a significant frequency (51.1%) of participants with at least one defective foot, including 31.1% with one neutral and one defective foot and 20% with both feet defective. Navicular height drop asymmetry emerged as a valuable predictor of injuries, with a 36% asymmetry identified as the cut-off for increased injury risk (AUC = 0.832, 95% CI: 0.691–0.973, p < 0.001). A significant relationship was found between foot type and injury occurrence. Only one out of 22 participants with neutral feet (4.55%) experienced an injury, compared to 9 out of 14 (64.29%) with one neutral and one defective foot and 5 out of 9 (55.56%) with both feet defective. These differences were statistically significant (χ2 = 16.24, p < 0.001, Cramer’s V = 0.60). The odds ratio for injury risk was 37.8 (p = 0.016) for those with asymmetry (one neutral and one defective foot) and 26.3 (p = 0.102) for those with both feet defective, compared to participants with both feet neutral. In clinical practice, these findings suggest that routine screenings for physically active individuals should incorporate foot mobility asymmetry assessment. However, it is essential to integrate this factor with other risk indicators. For individuals exhibiting high asymmetry, general foot defect correction programs may be beneficial, but injury prevention strategies should adopt a more comprehensive approach, focusing on overall fitness and tailored interventions for high-risk individuals. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Life Sciences: Feature Papers 2024)
Show Figures

Figure 1

9 pages, 1144 KiB  
Communication
Classifications Based on Dynamic Navicular Drop during Gait and Characteristics of Flat Foot Muscle Morphology
by Kengo Fukuda, Kazunori Okamura, Tomohiro Ikeda, Kohei Egawa and Shusaku Kanai
Biomechanics 2024, 4(4), 633-641; https://doi.org/10.3390/biomechanics4040045 - 16 Oct 2024
Viewed by 1494
Abstract
This study investigated the collapse of the medial longitudinal arch (MLA) as a risk factor for medial tibial stress syndrome (MTSS), hypothesizing that overuse of extrinsic foot muscles to prevent MLA collapse can lead to disability. Twenty healthy adults (age: 20.8 ± 0.8, [...] Read more.
This study investigated the collapse of the medial longitudinal arch (MLA) as a risk factor for medial tibial stress syndrome (MTSS), hypothesizing that overuse of extrinsic foot muscles to prevent MLA collapse can lead to disability. Twenty healthy adults (age: 20.8 ± 0.8, height: 162.2 ± 10.4, weight: 54.9 ± 9, BMI: 20.8 ± 1.7) (39 feet) with a foot posture index score below 6 and no recent lower extremity orthopedic history participated. Ultrasonography measured foot muscle cross-sectional areas, while three-dimensional motion analysis using VICON assessed foot kinematics during gait, focusing on navicular height at initial contact (ICNH) and dynamic navicular drop (DND) during the stance phase. Hierarchical cluster analysis based on ICNH and DND compared muscle cross-sectional areas between clusters using ANOVA or Kruskal–Wallis test. The analysis indicated that ICNH was lower in clusters 1 and 3 than in cluster 2, and DND was smaller in clusters 1 and 2 than in cluster 3. Although there was no significant difference in muscle cross-sectional area between the clusters, the flexor hallucis longus tended to be thicker in cluster 1 than in cluster 3 (p = 0.051). The findings suggest that flexor digitorum longus may help prevent MLA compression during loading, indicating that overuse of extrinsic foot muscles may contribute to MTSS development. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

15 pages, 3719 KiB  
Article
The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments
by Stephan Becker, Robin Göddel, Carlo Dindorf, David Littig, Michael Fröhlich and Oliver Ludwig
Biomechanics 2024, 4(3), 551-565; https://doi.org/10.3390/biomechanics4030039 - 5 Sep 2024
Cited by 1 | Viewed by 3065
Abstract
Background: Individuals may exhibit altered foot pronation during gait when fatigue sets in. Therefore, a more evidence-based understanding of these fatigue-induced changes may be helpful for future gait analysis and return-to-play tests since fatigue can provide new insights that might explain a person’s [...] Read more.
Background: Individuals may exhibit altered foot pronation during gait when fatigue sets in. Therefore, a more evidence-based understanding of these fatigue-induced changes may be helpful for future gait analysis and return-to-play tests since fatigue can provide new insights that might explain a person’s complaints. Methods: A total of 25 healthy individuals (12♂, 13♀; 24.3 ± 2.7 years; 174.9 ± 9.09 cm; 70 ± 14.2 kg; BMI: 22.7 ± 2.8) participated in this controlled non-randomized study of unilateral fatigue of the right foot’s stabilizing muscles with regard to the pronation of the foot, measured by navicular drop (ND) in static (statND; standing) and dynamic (dynND; walking) states. The left foot served as the control. Surface electromyography was used to verify fatigue. Results: While the statND did not change, the dynND increased significantly by 1.44 ± 2.1 mm (=22.3%) after the foot-stabilizing muscles experienced fatigue. No correlation was found between the statND and dynND. Conclusions: Muscular fatigue can affect foot pronation. The dynND appears to be more representative of the loads in everyday life, whereby most studies use the statND. Full article
(This article belongs to the Special Issue Personalized Biomechanics and Orthopedics of the Lower Extremity)
Show Figures

Figure 1

12 pages, 931 KiB  
Article
Prognostic Power of Foot Mobility in Identifying the Risk of Musculoskeletal Injuries: A Cross-Sectional Study of Male Volleyball Players at Different Competitive Levels
by Jarosław Domaradzki, Dawid Koźlenia, Marek Popowczak, Jaromir Šimonek, Ľubomír Paška and Pavol Horička
J. Clin. Med. 2024, 13(5), 1189; https://doi.org/10.3390/jcm13051189 - 20 Feb 2024
Cited by 2 | Viewed by 1843
Abstract
(1) Background: The arch structure and mobility of the foot are considered injury risk factors in volleyball. However, there are limited studies presenting differences in injury prevalence and the risk of lower limb injuries in relation to the competitive level in male volleyball. [...] Read more.
(1) Background: The arch structure and mobility of the foot are considered injury risk factors in volleyball. However, there are limited studies presenting differences in injury prevalence and the risk of lower limb injuries in relation to the competitive level in male volleyball. Therefore, the main aim of the current study was to evaluate foot mobility (through navicular drop test) as an injury risk factor in volleyball players from different competitive levels. (2) Methods: The reliability and usefulness of navicular drop testing were initially assessed in test–retest procedures (based on a sample of eight participants and 16 feet measurements), with primary analyses conducted using foot measurements of the twelve top-level volleyball players (24 feet) and eighteen academic-level volleyball players (36 feet). The modified navicular drop test was conducted, and the feet were classified based on arch height, and injury prevalence was retrospectively assessed with a previously validated questionnaire. Chi-squared tests, receiver operating curves, and logistic regression were used as statistical methods. The navicular drop test was verified as a reliable tool by intraclass correlation coefficient (ICC) (3.1) analysis. (3) Results: There were no significant differences in injury prevalence between academic- and top-level volleyball players, though there was a significant relationship between pronated foot and injury risk independent of competitive level. Generally, for both groups, thresholds above 10 mm of the navicular drop were predictors of lower limb injuries. The risk of injury if the foot was pronated ranged from 70% (academic level) to over 90% (top-level players). However, no statistically significant effect of competitive level on the chance of injury was observed. (4) Conclusions: Our study found a high prevalence of foot injuries independently of competitive level. There was a relationship between pronation of the foot and the risk of injury. However, the risk of lower limb injury was higher in pronated top-level players. Also, a navicular drop greater than 10 mm was an excellent predictor of injuries at both competitive levels. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

11 pages, 688 KiB  
Article
Ultrasound and Clinical Alterations in the Foot of Children with Obesity and Diabetes
by Martina Pappalardo, Laura Gori, Emioli Randazzo, Riccardo Morganti, Michelangelo Scaglione, Margherita Valiani, Alessandra Beni, Maria Di Cicco, Diego G. Peroni, Ferdinando Franzoni and Pasquale Comberiati
Diagnostics 2023, 13(17), 2781; https://doi.org/10.3390/diagnostics13172781 - 28 Aug 2023
Viewed by 1874
Abstract
Background. Alterations in plantar soft tissues are often reported in adults with diabetes, whereas data on children are conflicting. Also, the extent of foot damage caused by excess body fat in children has not been fully characterized yet. This study aimed to address [...] Read more.
Background. Alterations in plantar soft tissues are often reported in adults with diabetes, whereas data on children are conflicting. Also, the extent of foot damage caused by excess body fat in children has not been fully characterized yet. This study aimed to address the relationship between body mass and structural changes of the foot in children and adolescents with and without diabetes. Methods. In a case-control study, 43 participants (age 13 ± 2.6 years) were recruited, 29 (67%) with type 1 diabetes (T1D) and 14 (33%) controls. Anthropometric parameters [body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WHtR)], foot posture index-6 (FPI-6) for static foot posture, and navicular drop test (NDT) for medial longitudinal arch height (MLA) were measured in all participants. The thickness of the midfoot plantar fascia (MPF) and medial midfoot fat pad (MMFP) were quantified using ultrasound. Results. No differences in clinical and ultrasonographical parameters were observed between the study groups. MMFP thickness was correlated with MPF thickness (p = 0.027). MMFP and MPF thicknesses were positively associated with BMI (p < 0.001 and p = 0.013, respectively), WC (p < 0.001 and p = 0.013), and WHtR (p < 0.001 and p = 0.026). The NDT measured on the right and left foot correlated with WHtR (p = 0.038 and p = 0.009, respectively), but not with WC and BMI. Conclusions. Children with T1D show structural alterations of plantar soft tissues which seem related to body mass increase rather than diabetes pathology. Ultrasound is a valuable tool to assess early structural changes of the foot in young people with an elevated BMI. Full article
Show Figures

Figure 1

11 pages, 2360 KiB  
Article
Gait Kinematics Analysis of Flatfoot Adults
by Joel Marouvo, Filipa Sousa, Orlando Fernandes, Maria António Castro and Szczepan Paszkiel
Appl. Sci. 2021, 11(15), 7077; https://doi.org/10.3390/app11157077 - 30 Jul 2021
Cited by 16 | Viewed by 9731
Abstract
Background: Foot postural alignment has been associated with altered gait pattern. This study aims to investigate gait kinematic differences in flatfoot subjects’ regarding all lower limb segments compared to neutral foot subjects. Methods: A total of 31 participants were recruited (age: 23.26 yo [...] Read more.
Background: Foot postural alignment has been associated with altered gait pattern. This study aims to investigate gait kinematic differences in flatfoot subjects’ regarding all lower limb segments compared to neutral foot subjects. Methods: A total of 31 participants were recruited (age: 23.26 yo ± 4.43; height: 1.70 m ± 0.98; weight: 75.14 kg ± 14.94). A total of 15 subjects were integrated into the flatfoot group, and the remaining 16 were placed in the neutral foot group. All of the particpants were screened using the Navicular Drop Test and Resting Calcaneal Stance Position test to characterize each group, and results were submitted to gait analysis using a MOCAP system. Results: Significant kinematic differences between groups were found for the ankle joint dorsiflexion, abduction, and internal and external rotation (p < 0.05). Additionally, significant differences were found for the knee flexion, extension, abduction, and external rotation peak values (p < 0.001). Significant differences were also found for the hip flexion, extension, external rotation, pelvis rotation values (p < 0.02). Several amplitude differences were found concerning ankle abduction/adduction, knee flexion/extension and abduction/adduction, hip flexion/extension and rotation, and pelvis rotation (p < 0.01). Conclusion: Flatfooted subjects showed kinematic changes in their gait patterns. The impact on this condition on locomotion biomechanical aspects is clinically essential, and 3D gait biomechanical analysis use could be advantageous in the early detection of health impairments related to foot posture. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

Back to TopTop