Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = natural or manmade catastrophes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 8679 KiB  
Article
Geospatial and Temporal Patterns of Natural and Man-Made (Technological) Disasters (1900–2024): Insights from Different Socio-Economic and Demographic Perspectives
by Vladimir M. Cvetković, Renate Renner, Bojana Aleksova and Tin Lukić
Appl. Sci. 2024, 14(18), 8129; https://doi.org/10.3390/app14188129 - 10 Sep 2024
Cited by 14 | Viewed by 12839
Abstract
This pioneering study explores the geospatial and temporal patterns of natural and human-induced disasters from 1900 to 2024, providing essential insights into their global distribution and impacts. Significant trends and disparities in disaster occurrences and their widespread consequences are revealed through the utilization [...] Read more.
This pioneering study explores the geospatial and temporal patterns of natural and human-induced disasters from 1900 to 2024, providing essential insights into their global distribution and impacts. Significant trends and disparities in disaster occurrences and their widespread consequences are revealed through the utilization of the comprehensive international EM-DAT database. The results showed a dramatic escalation in both natural and man-made (technological) disasters over the decades, with notable surges in the 1991–2000 and 2001–2010 periods. A total of 25,836 disasters were recorded worldwide, of which 69.41% were natural disasters (16,567) and 30.59% were man-made (technological) disasters (9269). The most significant increase in natural disasters occurred from 1961–1970, while man-made (technological) disasters surged substantially from 1981–1990. Seasonal trends reveal that floods peak in January and July, while storms are most frequent in June and October. Droughts and floods are the most devastating in terms of human lives, while storms and earthquakes cause the highest economic losses. The most substantial economic losses were reported during the 2001–2010 period, driven by catastrophic natural disasters in Asia and North America. Also, Asia was highlighted by our research as the most disaster-prone continent, accounting for 41.75% of global events, with 61.89% of these events being natural disasters. Oceania, despite experiencing fewer total disasters, shows a remarkable 91.51% of these as natural disasters. Africa is notable for its high incidence of man-made (technological) disasters, which constitute 43.79% of the continent’s disaster events. Europe, representing 11.96% of total disasters, exhibits a balanced distribution but tends towards natural disasters at 64.54%. Examining specific countries, China, India, and the United States emerged as the countries most frequently affected by both types of disasters. The impact of these disasters has been immense, with economic losses reaching their highest during the decade of 2010–2020, largely due to natural disasters. The human toll has been equally significant, with Asia recording the most fatalities and Africa the most injuries. Pearson’s correlation analysis identified statistically significant links between socioeconomic factors and the effects of disasters. It shows that nations with higher GDP per capita and better governance quality tend to experience fewer disasters and less severe negative consequences. These insights highlight the urgent need for tailored disaster risk management strategies that address the distinct challenges and impacts in various regions. By understanding historical disaster patterns, policymakers and stakeholders can better anticipate and manage future risks, ultimately safeguarding lives and economies. Full article
Show Figures

Figure 1

32 pages, 3721 KiB  
Review
Categorizing and Harmonizing Natural, Technological, and Socio-Economic Perils Following the Catastrophe Modeling Paradigm
by Arnaud Mignan
Int. J. Environ. Res. Public Health 2022, 19(19), 12780; https://doi.org/10.3390/ijerph191912780 - 6 Oct 2022
Cited by 2 | Viewed by 7117
Abstract
The literature on probabilistic hazard and risk assessment shows a rich and wide variety of modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent professional and scientific discipline, provides a general structure for the quantification of natural (e.g., [...] Read more.
The literature on probabilistic hazard and risk assessment shows a rich and wide variety of modeling strategies tailored to specific perils. On one hand, catastrophe (CAT) modeling, a recent professional and scientific discipline, provides a general structure for the quantification of natural (e.g., geological, hydrological, meteorological) and man-made (e.g., terrorist, cyber) catastrophes. On the other hand, peril characteristics and related processes have yet to be categorized and harmonized to enable adequate comparison, limit silo effects, and simplify the implementation of emerging risks. We reviewed the literature for more than 20 perils from the natural, technological, and socio-economic systems to categorize them by following the CAT modeling hazard pipeline: (1) event source → (2) size distribution → (3) intensity footprint. We defined the following categorizations, which are applicable to any type of peril, specifically: (1) point/line/area/track/diffuse source, (2) discrete event/continuous flow, and (3) spatial diffusion (static)/threshold (passive)/sustained propagation (dynamic). We then harmonized the various hazard processes using energy as the common metric, noting that the hazard pipeline’s underlying physical process consists of some energy being transferred from an energy stock (the source), via an event, to the environment (the footprint). Full article
Show Figures

Figure 1

14 pages, 336 KiB  
Article
Does the Sustainability of the Anthropocene Technosphere Imply an Existential Risk for Our Species? Thinking with Peter Haff
by João Ribeiro Mendes
Soc. Sci. 2021, 10(8), 314; https://doi.org/10.3390/socsci10080314 - 19 Aug 2021
Cited by 5 | Viewed by 4900
Abstract
Throughout the 20th century, several thinkers noticed that Technology was becoming a global phenomenon. More recently, US geologist Peter Haff claimed that a Technosphere is now in place and can be conceived as a new Earth geological system. This unprecedented situation is creating [...] Read more.
Throughout the 20th century, several thinkers noticed that Technology was becoming a global phenomenon. More recently, US geologist Peter Haff claimed that a Technosphere is now in place and can be conceived as a new Earth geological system. This unprecedented situation is creating enormous challenges not only for our species, since more and more of its members are now dependent on the subsistence of this man-made sphere, but also for other species and natural ecosystems that have become increasingly dependent on it. Perhaps the most crucial of these challenges is the sustainability of the Technosphere itself. In the first part of the article, I attempted a critical reconstruction of Haff’s Technosphere concept. The second part is dedicated to analyzing how the unsustainability of the Technosphere represents a global catastrophic risk and ultimately an existential risk. Full article
26 pages, 10658 KiB  
Article
Archaeological and Natural Indicators of Sea-Level and Coastal Changes: The Case Study of the Caesarea Roman Harbor
by Ehud Galili, Amos Salamon, Gil Gambash and Dov Zviely
Geosciences 2021, 11(8), 306; https://doi.org/10.3390/geosciences11080306 - 23 Jul 2021
Cited by 9 | Viewed by 4988
Abstract
Archaeological and geomorphological features, as well as traces left by tsunamis, earthquakes, and vertical earth-crust displacements, are used to identify sea-level and coastal changes. Such features may be displaced, submerged or eroded by natural processes and human activities. Thus, identifying ancient sea levels [...] Read more.
Archaeological and geomorphological features, as well as traces left by tsunamis, earthquakes, and vertical earth-crust displacements, are used to identify sea-level and coastal changes. Such features may be displaced, submerged or eroded by natural processes and human activities. Thus, identifying ancient sea levels and coastal changes associated with such processes may be controversial and often leads to misinterpretations. We exemplify the use of sediment deposits and sea-level and coastline indicators by discussing the enigmatic demise of the Roman harbor of Caesarea, one of the greatest marine constructions built in antiquity, which is still debated and not fully understood. It was suggested that the harbor destruction was mainly the result of either tectonic subsidence associated with a local, active fault line, or as a result of an earthquake/tsunami that struck the harbor. Here we examine and reassess the deterioration of the harbor in light of historical records, and geological, geomorphological and archaeological studies of natural and man-made features associated with the harbor. We show that the alleged evidence of an earthquakes or tsunami-driven damage to the outer breakwaters is equivocal. There is no supporting evidence for the assumed tectonic, active fault, nor is there a reliable historic account of such a catastrophic destruction. It is suggested that geo-technic failure of the breakwater’s foundations caused by a series of annual winter storms was the main reason for the destruction and ultimate collapse of the western basin of the harbor. The breakwaters were constructed on unconsolidated sand that was later washed away by storm waves and sea currents that frequently hit the Israeli coast and undercut the breakwaters. The pounding effect of the waves could have contributed to the destruction by scouring and liquefying the sandy seabed underlying the foundations. Tsunamis that may have hit Caesarea could have added to the deterioration of the breakwaters, but did not constitute the main cause of its destruction. Full article
Show Figures

Figure 1

29 pages, 1412 KiB  
Review
Resilience Quantification of Smart Distribution Networks—A Bird’s Eye View Perspective
by Youba Nait Belaid, Patrick Coudray, José Sanchez-Torres, Yi-Ping Fang, Zhiguo Zeng and Anne Barros
Energies 2021, 14(10), 2888; https://doi.org/10.3390/en14102888 - 17 May 2021
Cited by 9 | Viewed by 3241
Abstract
The introduction of pervasive telecommunication devices, in the scope of smart grids (SGs), has accentuated interest in the distribution network, which integrates a huge portion of new grid applications. High impact low probability (HILP) events, such as natural hazards, manmade errors, and cyber-attacks, [...] Read more.
The introduction of pervasive telecommunication devices, in the scope of smart grids (SGs), has accentuated interest in the distribution network, which integrates a huge portion of new grid applications. High impact low probability (HILP) events, such as natural hazards, manmade errors, and cyber-attacks, as well as the inherent fragility of the distribution grid have propelled the development of effective resilience tools and methods for the power distribution network (PDN) to avoid catastrophic infrastructural and economical losses. Multiple resilience evaluation frameworks are proposed in the literature in order to assist distribution system operators (DSOs) in managing their networks when faced with exogenous threats. We conduct detailed analysis of existing quantitative resilience studies in both electric and telecommunication domains of a PDN, focusing on event type, metrics, temporal phases, uncertainty, and critical load. Our work adopts the standpoint of a DSO, whose target is to identify feasible resilience assessment frameworks, which apply to pre-defined requirements in terms of resilience evaluation objectives (planning, reactive response, or simple assessment), time of evaluation, and available enhancement strategies. Finally, results and observations on selected works are presented, followed by discussion of identified challenges and opportunities. Full article
(This article belongs to the Special Issue Reliability, Security and Resiliency of Smart Grids)
Show Figures

Figure 1

24 pages, 6512 KiB  
Article
Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: A Multicriteria Approach
by Emmanouil Psomiadis, Lefteris Tomanis, Antonis Kavvadias, Konstantinos X. Soulis, Nikos Charizopoulos and Spyros Michas
Water 2021, 13(3), 364; https://doi.org/10.3390/w13030364 - 31 Jan 2021
Cited by 67 | Viewed by 11073
Abstract
Dam breach has disastrous consequences for the economy and human lives. Floods are one of the most damaging natural phenomena, and some of the most catastrophic flash floods are related to dam collapses. The goal of the present study is to analyse the [...] Read more.
Dam breach has disastrous consequences for the economy and human lives. Floods are one of the most damaging natural phenomena, and some of the most catastrophic flash floods are related to dam collapses. The goal of the present study is to analyse the impact of a possible failure–collapse on a potentially affected area downstream of the existing Bramianos dam on southern Crete Island. HEC-RAS hydraulic analysis software was used to study the dam breach, the flood wave propagation, and estimate the extent of floods. The analysis was performed using two different relief datasets of the same area: a digital elevation model (DEM) taken from very high-resolution orthophoto images (OPH) of the National Cadastre and Mapping Agency SA and a detailed digital surface model (DSM) extracted from aerial images taken by an unmanned aerial vehicle (UAV). Remote sensing data of the Sentinel-2 satellite and OPH were utilised to create the geographic information system (GIS) layers of a thorough land use/cover classification (LULC) for the potentially flooded area, which was used to assess the impact of the flood wave. Different dam breach and flood scenarios, where the water flows over man-made structures, settlements, and olive tree cultivations, were also examined. The study area is dominated mainly by three geological formations with different hydrogeological characteristics that dictated the positioning and structure of the dam and determine the processes that shape the geomorphology and surface roughness of the floodplain, affecting flow conditions. The results show that the impact of a potential dam break at Bramianos dam is serious, and appropriate management measures should be taken to reduce the risk. The water flow downstream of the collapsed dam depends on the water volume stored in the reservoir. Moreover, the comparison of DSM and DEM cases shows that the detailed DSM may indicate more accurately the surface relief and existing natural obstacles such as vegetation, buildings, and greenhouses, enabling more realistic hydraulic simulation results. Dam breach flood simulations and innovative remote sensing data can provide valuable outcomes for engineers and stakeholders for decision-making and planning in order to confront the consequences of similar incidents worldwide. Full article
Show Figures

Figure 1

31 pages, 5835 KiB  
Article
Climate Change, Security, Sensors
by Giovanni P. Gregori
Acoustics 2020, 2(3), 474-504; https://doi.org/10.3390/acoustics2030026 - 3 Jul 2020
Viewed by 4468
Abstract
A concise threefold illustration is given: (i) of climate change on the gigayear (Ga) time scale through the nanosecond (nsec) time scale, (ii) of the role of the performance of solid materials, concerning both manmade and natural structures with [...] Read more.
A concise threefold illustration is given: (i) of climate change on the gigayear (Ga) time scale through the nanosecond (nsec) time scale, (ii) of the role of the performance of solid materials, concerning both manmade and natural structures with reference to security, and (iii) of the exploitation of the electrostatic energy of the atmospheric electrical circuit—which is an enormous reservoir of natural “clean” energy. Several unfortunate misunderstandings are highlighted that bias the present generally agreed beliefs. The typical natural pace of the Earth’s “electrocardiogram”, ~27.4 Ma, is such that, at present, for the first time humankind must challenge an Earth’s “heartbeat”. A correct use of sensors is needed to get an efficient monitoring of the ongoing climate change. Both anthropic and natural drivers are to be considered. A brief reminder is given about sensors that ought to monitor solid materials—with application (i) to every kind of machinery, building, viaduct or bridge, vehicle, aircraft, rocket, etc. and (ii) for a correct (and unprecedented) monitoring of the electric field at ground, which is the prerequisite for the exploitation of the electrostatic energy of the atmosphere. In every case, a systemic approach is always needed. Every specialized investigation often misses the true physics of phenomena. The resulting great complication can be tackled by means of suitable approximate and “simple” models, which always have to be correctly tested. The impact on the biosphere is manifested as a steady regeneration of microorganisms at the deep ocean floors, supplied by endogenous CH4. Microorganisms are thus the beginning of an ever rejuvenating food chain. The natural climate change implies a permanent evolution of living forms. On the longer time-scale, a permanent cycle occurs of species extinction and/or generation. In addition, owing to such a process, some living forms are likely to also exist underground on other planetary objects. That is, life ought to be a ubiquitous intrinsic endogenic feature of matter in the universe, while life’s survival, evolution and/or extinction, ought to depend on the available hosting environment. Full article
(This article belongs to the Special Issue Wind Turbine Noise)
Show Figures

Figure 1

12 pages, 254 KiB  
Article
Safety or Travel: Which Is More Important? The Impact of Disaster Events on Tourism
by Haiyan Ma, Yung-ho Chiu, Xiaocong Tian, Juanjuan Zhang and Quan Guo
Sustainability 2020, 12(7), 3038; https://doi.org/10.3390/su12073038 - 10 Apr 2020
Cited by 64 | Viewed by 10400
Abstract
Tourism is making an increasingly considerable contribution to the sustainable development of world economy, but its development is susceptible to a series of disaster events. The impact of disaster events on tourists’ travel decisions is receiving ever-growing attention. In this study, disasters are [...] Read more.
Tourism is making an increasingly considerable contribution to the sustainable development of world economy, but its development is susceptible to a series of disaster events. The impact of disaster events on tourists’ travel decisions is receiving ever-growing attention. In this study, disasters are classified into two categories: namely, natural disasters and man-made disasters. Among these disasters, earthquakes and terrorist attacks—as the most representative two types—are taken as research examples. By virtue of a difference-in-difference research method and online review data from TripAdvisor, multiple incidents that have occurred in different countries are systematically and comparatively analyzed for verifying the effects of catastrophic events with varying natures, frequencies, and intensities on tourism. The main findings are as follows: (1) both natural disasters and man-made disasters have a negative effect on the number of tourists and the tourist experience; (2) higher frequency and intensity of terrorist attacks may not correspond to tourism, and terrorist attacks exert a more influential impact on the safety image of tourist destinations; (3) compared with the scale and intensity of earthquakes, the frequency of earthquakes has a greater effect on tourism; (4) compared with terrorist attacks, earthquakes have a greater effect on the number of tourists. Full article
27 pages, 876 KiB  
Article
Insurer Resilience in an Era of Climate Change and Extreme Weather: An Econometric Analysis
by L. James Valverde and Matteo Convertino
Climate 2019, 7(4), 55; https://doi.org/10.3390/cli7040055 - 8 Apr 2019
Cited by 9 | Viewed by 6472
Abstract
Having sustained, over the course of more than two decades, record-breaking natural catastrophe losses, American insurers and reinsurers are justifiably questioning the potential linkage between anthropogenic climate change and extreme weather. Here, we explore issues pertaining to this linkage, looking at both the [...] Read more.
Having sustained, over the course of more than two decades, record-breaking natural catastrophe losses, American insurers and reinsurers are justifiably questioning the potential linkage between anthropogenic climate change and extreme weather. Here, we explore issues pertaining to this linkage, looking at both the likely short-term implications for the insurance industry, as well as potential longer-term impacts on financial performance and corporate resilience. We begin our discussion with an overview of the implications that climate change is likely to have on the industry, especially as it relates to how catastrophic risks are construed, assessed, and managed. We then present the rudiments of an econometric analysis that explores the financial resilience of the property/casualty (P/C) industry in the face of both natural and man-made catastrophes. In this analysis, we explore the profitability consequences of several illustrative scenarios involving large-scale losses from extreme weather—specifically, a sequence of storms like those striking the U.S. in 2004—and a scenario that explores the prospect of a Katrina-scale storm in combination with a mass terror attack on the scale of 9/11. At systemic levels of aggregation, our analysis suggests a high degree of macro-resilience for the P/C industry. Moreover, we find that insurer resilience is higher for larger impacts, considering both the speed of recovery, as well as the inverse of the area under the unaffected system profile. We conclude with a summary of our findings and a closing commentary that explores the potential implications of these results for P/C insurers moving forward. Full article
(This article belongs to the Special Issue Climate Change Resilience and Urban Sustainability)
Show Figures

Graphical abstract

Back to TopTop